
Spatiotemporal Optimization for Rolling Shutter
Camera Pose Interpolation

Philippe-Antoine Gohard1,2, Bertrand Vandeportaele1, and Michel Devy1

1 LAAS-CNRS, Toulouse University, CNRS, UPS, Toulouse, France
2 Innersense, Ramonville-Saint-Agne, France

{philippe-antoine.gohard, bertrand.vandeportaele, michel.devy}@laas.fr

Abstract. Rolling Shutter cameras are predominant in the tablet and
smart-phone market due to their low cost and small size. However, these
cameras require specific geometric models when either the camera or the
scene is in motion to account for the sequential exposure of the differ-
ent lines of the image. This paper proposes to improve a state-of-the-art
model for RS cameras through the use of Non Uniformly Time-Sampled
B-splines. This allows to interpolate the pose of the camera while taking
into account the varying dynamic of its motion, using higher density of
control points where needed while keeping a low number of control points
where the motion is smooth. Two methods are proposed to determine
adequate distributions for the control points, using either an IMU sensor
or an iterative reprojection error minimization. The non-uniform camera
model is integrated into a Bundle Adjustment optimization which is able
to converge even from a poor initial estimate. A routine of spatiotempo-
ral optimization is presented in order to optimize both the spatial and
temporal positions of the control points. Results on synthetic and real
datasets are shown to prove the concepts and future works are introduced
that should lead to the integration of our model in a SLAM algorithm.

Keywords: Rolling Shutter · Camera Geometric Model · Bundle Ad-
justment · Simultaneous Localization And Mapping · B-splines interpo-
lation.

INTRODUCTION

In Augmented Reality applications for mobile devices (smartphones and tablets),
the real-time localization of the device camera and the 3D modeling of the envi-
ronment are used to integrate virtual elements onto the images of the real envi-
ronment. This task is usually performed by algorithms of Structure From Motion
(SFM: [6]), and Simultaneous Localization and Mapping (SLAM: MonoSLAM[2],
PTAM[10] OrbSLAM [15]). Most existing implementations assume that the cam-
eras are using a Global Shutter (GS), for which all the lines of the image are
exposed at the same time, ie. if the integration time is neglected, the whole image
is the projection of the scene using a single pose for the camera.

However, more than 90% of mobile devices are equipped with Rolling Shutter
(RS) cameras because of their lower cost and smaller size compared with the

2 P-A. Gohard et al.

classic GS cameras. The advantages of RS cameras come with some drawbacks;
by the way they are designed, they cause image distortions when observing a
dynamic scene or when the camera is moving. In these sensors, all the lines of
the image are exposed and transferred sequentially at different times.

More complex geometric models are thus required for RS cameras, to account
for the the varying pose of the camera. Previous RS Camera model presented
in[19][16] are achieving camera pose interpolation using B-splines controlled by
Control Points (CP) that are sampled in time with a constant interval. This kind
of temporal distribution is referred to as an Uniform Time Distribution (UTD)
in the following.

This paper extends these models by using an adaptive Non Uniform Time
Distribution (NUTD) for the CP of the B-spline as proposed in [21]. This allows
to globally reduce the number of CP required to model a given trajectory with
the same accuracy compared with the UTD. The NUTD B-Splines are detailed,
alongside a Bundle Adjustment (BA) using this model. The NUTD of the CP
allows to optimize the timestamps of the CP, and we demonstrate how it can be
used to model trajectories on real datasets.

The paper firstly presents existing SLAM algorithms and exhibits problems
arising from the use of images captured with RS cameras. It then presents the
theoretical framework used for the modeling of the RS cameras. First, the cumu-
lative B-splines are introduced to allow the interpolation of 6-dof camera pose in
continuous time. Second, the pinhole camera model using interpolated poses is
derived. Then, the iterative minimization used in the Perspective n-Points and
bundle adjustment algorithm is explained. Two methods are briefly exposed to
efficiently generate the CP, using either an IMU sensor or multiple iterations
of reprojection error minimization. A spatiotemporal optimization approach is
then proposed to determine adequate NUTD for the CP. Finally, the proposed
PnP and BA implementations using the NUTD B-Splines models are evaluated
on synthetic datasets to prove the concept, then the spatiotemporal optimization
is tested on real datasets. Future works are then discussed.

1 RELATED WORK FOR SLAM

1.1 Global Shutter

A monocular visual SLAM algorithm recovers the position and orientation of
a mobile camera and dynamically constructs a model of the environment in
real-time. In the Augmented Reality context, the camera parameters are used
to synthesize images of virtual elements that are rendered coherently over the
acquired image, using the reconstructed model of the environment.

Early real-time methods used to solve the SLAM problem in the literature
were based on Extended Kalman Filter (EKF)[2], [18], [5]. The simplicity of
this method and it’s computing efficiency for small size environment models has
made it the most used SLAM method for the past decade.

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 3

Other robust and real-time methods based on local BA like PTAM [10] have
also been proposed. They minimize the reprojection error over a subset of pre-
viously acquired images, called keyframes [3], [15], or over a sliding window of
frames [14]. They provide improved robustness thanks to the modeling of out-
liers, and [20] proved the superiority of these BA-based methods over filtering
one.

1.2 Rolling Shutter

Using a SLAM method designed for GS camera model with RS camera produces
deviations of the estimated trajectory and reconstructed 3D points. These de-
viations increase with the velocity of the camera. One of the first use of a RS
camera model in the SLAM context was the adaptation of PTAM for smart-
phone [11]. They estimated the angular velocity of the camera at the keyframe
using keypoints tracked between the previous and the next frame. This angular
velocity was then used to correct the measurements of the points in the image
using a first order approximation so they can be used as if they where obtained
by a GS camera.

[8] initially used a similar method, and proposed in [7] a BA using a RS
camera model. To estimate the varying camera pose inside a frame, they inter-
polated independently the rotations (using SLERP) and the translations (using
linear interpolation).

[4] also used B-splines to have a continuous time representation. In their
work, they interpolate rotations and translations by two independent B-splines.
Their Cayley-Gibbs-Rodriguez formulation used for the poses had two major
issues according to [19]:

– The used Rodrigues parameterization has a singularity for the rotation at π
radians.

– The interpolation in this space does not represent the minimum distance
for the rotation group hence the generated trajectories can correspond to
unrealistic motions.

To address these issues,[19] proposed to use a continuous time trajectory
formulation using cumulative B-splines. In precedent works [21], we have shown
that the UTD of the B-Splines control poses (CP) leads either to a smoothing of
the trajectory or to redundancies. We proposed to use a NUTD of the CP and
methods to dynamically generate CP.

This paper is an extension of [21], describing a NUTD B-Spline model suitable
for a BA algorithm and proposing a spatiotemporal optimization of the CP. A
brief summary of used notations and scientific context is given in the next section.

2 NOTATIONS AND SCIENTIFIC CONTEXT

In this article, the 6 degrees of freedom associated to the extrinsic parameters of
the camera are expressed by a matrix 4× 4 corresponding to the transformation

4 P-A. Gohard et al.

from the camera coordinate frame to the world coordinate frame. This matrix
Tw ∈ SE3 is parameterized by a translation vector a and a rotation matrix R:

Tw =

(
R a
0T 1

)
,Tw ∈ SE3,R ∈ SO3,a ∈ R3 (1)

A rigid transformation in the Lie algebra se(3) can be expressed by a 6D
vector ξ = [w,a]T ∈ se(3) where w = [ω0, ω1, ω2]T is the rotation component.
Its 4× 4 associated matrix can be obtained by applying the wedge operator [·]∧
on ξ knowing that [w]× is the skew-symmetric matrix 3× 3 of w:

Ω = [ξ]∧ =

(
[w]× a
0T 1

)
, [w]× =

 0 −ω2 ω1

ω2 0 −ω0

−ω1 ω0 0

 (2)

The logarithmic mapping projects a matrix from SE3 to its tangent space se(3)
defined locally Euclidean, where compositions of rigid transformations are ob-
tained by additions. The exponential mapping, being the inverse operation of
the exponential map, projects back a 6D vector from the tangent space se(3)
towards SE(3). These two applications can be resumed (when the magnitude of
the angle of rotation is lower than π):

Tw = exp(Ω)

Ω = log(Tw) (3)

2.1 Cumulative B-Splines

As a RS camera exposes its lines at different instants, an estimate of the camera
pose for each line is needed to project the 3D points of the observed scene onto
the image. This estimate can be obtained with continuous-time modeling of the
camera trajectory. To interpolate the camera pose associated with one particu-
lar image line, multiple timestamped CP, locally controlling the trajectory, are
required, the first of these CP being timestamped at time ti. The correspond-
ing rigid transformations matrices are defined in the world coordinate system
and abbreviated Tw,i. Various interpolation methods can be considered (linear,
B-Spline, Bézier) according to the final application.

A standard B-spline is defined by constant polynomial basis functions Bi,k
(k − 1 being the degree of the used polynomial) and variable CP pi. This def-
inition is not suitable for the non euclidean space of rigid body transformation
SE(3) where the elements are composed by matrix multiplication.

In [19], the authors suggest the use of the cumulative form of the B-Splines
because of their suitability for the interpolation on the manifold SE(3) [9]. They
chose cubic B-Splines (k = 4) for the interpolation to ensure a C2 continuity of
the trajectory, allowing interpolation of velocities and accelerations.

The cumulative basis functions B̃(t)j used in cubic cumulative B-Splines are

expressed by the jth component of the vector B̃(t), starting at index j = 0:

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 5

B̃(t) =
1

6

6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

1
u(t)
u(t)2

u(t)3

 (4)

where u(t) = t−ti+1

∆t an intermediate time representation such as 0 ≤ u(t) < 1
between the two CP Tw,i+1 and Tw,i+2 with t ∈ [ti+1, ti+2]. ∆t defines the time
interval between the CP, which is considered constant for UTD B-Splines.

Interpolation on the SE3 manifold is defined by a composition of CP varia-
tions Ωj−1,j = log(Tw,j−1

−1Tw,j) weighted by basis functions B̃(t)j applied to
a reference pose Tw,i. Thus, in the case of cumulative cubic B-Spline (k = 4), the
interpolation of the pose Tw(t) between two CP Tw,i+1 and Tw,i+2 requires the
four neighbor CP Tw,i to Tw,i+3. The interpolation function is then expressed
as:

Tw(t) = Tw,i

i+k−1∏
j=i+1

exp(B̃(t)j−iΩj−1,j) (5)

2.2 Non Uniform Time Distribution for B-Splines

This document is an extension of [21], where we suggested to use a NUTD of the
CP in order to adjust the distribution to the camera trajectory dynamic. This en-
ables a more efficient modeling of the trajectory, both in terms of computational
cost and memory usage.

Using NUTD, the time interval ∆t between two CP is not constant anymore.
Instead, the time interval ∆ti−1,i is defined as the difference of timestamps be-
tween the two CP Tw,i−1 and Tw,i.

B-Splines whose CP are non-uniformly sampled in time are named NUTD B-
Splines in the remainder of this document. For such B-Splines, the basis functions
are defined by a recurrence formula slightly different from the standard (UTD)
case [1], see [9] :

Bi,k(t) =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t
ti+k − ti+1

Bi+1,k−1(t) (6)

With the stopping condition defined by:

Bi,1(t) =

{
1 if ti < t < ti+1

0 otherwise
(7)

The recurrence formula allows to compute the basis functions for different
degrees. By developing the formula as in [22] or using Toeplitz matrix [17], the
basis function can be expressed as a matrix product as in [19] for cubic B-
Spline. Unlike the UTD case, the coefficient matrix used in the expression of
basis functions is dependent on the CP timestamps. For cubic B-Splines, four
CP Tw,i to Tw,i+3 and six CP timestamps Tw,i to Tw,i+5 are required to
interpolate at a time t within [ti+2; ti+3[.

6 P-A. Gohard et al.

The intermediate time representation between the two CP of the considered
interpolated section is henceforth given by:

u(t) =
t− ti+2

ti+3 − ti+2
(8)

The matrix form for the NUTD basis functions are thus expressed by:

B(t) = M

1
u(t)
u(t)2

u(t)3

 (9)

Details on coefficient matrix M are given in [22], it is however substantial to
note that M is now relative to the 6 CP timestamps ti to ti+5.

C being the cumulative coefficient matrix from M, the cumulative version of
the basis functions are now given by:

Ci,j =

k∑
l=i

Ml,j , B̃(t) = C

1
u(t)
u(t)2

u(t)3

 (10)

3 4 5 6 7 8 9 10
0

0.5

1

1.5

3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

t

p

B0

B1

B2

B3

Fig. 1. The evolution of the value of the k = 4 cumulative NUTD basis functions
B̃0..k(t)(up) and non cumulative B0..k(t)(down) w.r.t time. Each basis functions is as-
sociated to a color (red, green, blue, cyan), showing the influence of a CP variation(up)
or a CP(down) on the interpolated trajectory over time.

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 7

The figure 1 shows the value of the 4 NUTD cumulative and non cumulative
basis over time. Unlike the UTD case, the basis functions are different for each
interpolation section because of the varying time interval between the CP.

The cumulative coefficient matrix C is invariant with respect to the interpo-
lation time t. For clarity, we redefine Ωj := Ωj−1,j . The derivative of the basis
functions with respect to t can be retrieved in the same way as UTD B-Splines:

˙̃B(t) =
1

∆ti+2,i+3
C

0
1

2u
3u2

 , ¨̃B(t) =
1

∆t2i+2,i+3

C

0
0
2

6u

 (11)

The first and second derivatives of the interpolated trajectory are then ex-
pressed by:

Ṫw(t) = Tw,i(Ȧ1A2A3 + A1Ȧ2A3 + A1A2Ȧ3) (12)

T̈w(t) = Tw,i

(
Ä1A2A3 + A1A2Ä3 + A1A2Ä3)+

2 ∗ (Ȧ1Ȧ2A3 + Ȧ1A2Ȧ3 + A1Ȧ2Ȧ3)

)
(13)

Aj = exp(B̃(t)jΩj+i) (14)

Ȧj = Aj
˙̃B(t)jΩj+i (15)

Äj = Ȧj
˙̃B(t)jΩj+i + Aj

¨̃B(t)jΩj+i (16)

3 ROLLING SHUTTER CAMERA MODEL

An image from a RS camera can be seen as the concatenation of one dimensional
images (rows) exposed at different times as seen in the figure 2.

For a static scene and camera, there is no geometric difference between the
GS and RS cameras. But when there is a relative motion between the camera
and the scene, each line is a projection from a different camera viewpoint. While
the camera pose T ∈ SE3 is common to all the pixels in a GS image, it varies
as T(t) for each individual line in the RS case.

The pinhole camera perspective projection model is derived below. Let P be
a 3D point defined in homogeneous coordinates in the world coordinate system
w. Let Tc,w = T−1w,c = T−1w be the transformation matrix from world w to
camera c coordinate frame. Let K be the camera matrix containing the intrinsic
parameters and π(.) be the perspective projection (mapping from P2 to R2). The

pinhole model projects P onto the image plane to p =
[
pu pv

]T
by:

p =

[
pu
pv

]
:= π([K|0]Tc,wP) (17)

To model the varying pose, Tc,w is parameterized by t as Tc,w(t). The spline
being defined by eq.(5) in the spline coordinate frame s (attached to the IMU for

8 P-A. Gohard et al.

Fig. 2. RS cameras expose the image lines sequentially, thus if the first line is exposed
at instant t0, then the nth line is exposed at t0 + n.tr with tr the readout time of a
line. The time taken by the camera to fully expose an image is called the readout time
tm [13]. Image from [21].

instance) different from c, a (constant over time) transformation Tc,s is required
to obtain Tc,w(t):

Tc,w(t) = Tc,sTs,w(t) (18)

The projection is obtained by:

p(t) =

[
pu(t)
pv(t)

]
:= π([K|0]Tc,w(t)P) = ω(P,Tc,w(t)) (19)

This model does not yet represent the fact that at a given time t corresponds a

single line exposure. So the projection
[
pu(tj) pv(tj)

]T
of P at time t = tj will

actually be obtained only if the line pv(tj) is exposed at time tj .
[19] expressed the line exposed at a time t as a function of s being the frame

start time, e being the end frame time, and h being the height of the image in
pixels by:

pv(t) = h
(t− s)
(e− s)

(20)

The figure 3 shows plotted in blue the image projections
[
pu(t) pv(t)

]T
of

a single 3D point obtained by eq.(19) using interpolation of the poses defined
in eq.(5). The value of t is sampled to the different exposure time of each
individual row. The green line indicates the row that is actually exposed when
the pv(t) corresponds to the row number and the red cross at the intersection is
the resulting projection. For highly curved trajectories, multiple projections of
a single 3D point can be observed in a single image.

The projection(s)
[
pu(t) pv(t)

]T
that is(are) effectively observed by the RS

camera is(are) obtained by intersecting the curves corresponding to eq.(19) and
eq.(20). Determining t is an optimization problem that [19] solves iteratively
using first order Taylor expansion of the 2 equations around a time t:

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 9

566 568 570 572 574 576 578 580 582 584

414

416

418

420

422

424

426

428

column

ro
w

s

Fig. 3. Projections of a 3D point (in blue) in one image for poses associated to different
lines, in the case of a moving camera. The green line shows the exposed rows at the
time the 3D point is projected to it. Image from [21].

pv(t+ δt) = h
(t+ δt− s)

(e− s)
(21)

[
pu(t+ δt)
pv(t+ δt)

]
= ω(P,Tc,w(t)) + δt

dω(P,Tc,w(t))

dt
(22)

This system of equations is reorganized as:

δt = −ht+ s(pv(t)− h)− epv(t)
h+ (s− e)dωpv (P,Tc,w(t))

dt

(23)

By updating t as t = t + δt and iterating, t converges generally in approxi-
mately 3 or 4 iterations. Once t is determined, the corresponding projection is
obtained using eq.(19). For slow motions, the initial value for t can be set at the
time corresponding to the middle row of the image and the iterative algorithm
is very likely to converge. However, for high dynamic motions, the initial value
has to be set wisely, as different initial values could lead to different projections
that correspond indeed to different actual projections.

3.1 Rolling Shutter PnP

The PnP (perspective-N-Points) algorithm allows to estimate the pose of one or
many cameras from n 2D-3D matching between 3D points of the scene Pk and
their observations in the images pi,k.

Having an initial estimate of the camera pose Tw and a set of 2D-3D match-
ing, a reprojection error can be computed as a function of the image i and point
k:

Err(i, k) = pi,k − π([K|0]Tw
−1Pk) (24)

10 P-A. Gohard et al.

This PnP reprojection error function can be extended to RS camera, taking
into account the exposure time of the line where the 3D point is projected:

Err(i, k) = pi,k − π([K|0]Tw(t)−1Pk) (25)

In that case, the parameters to optimize θ are the complete set of CP for the
B-spline instead of independent camera pose for each image i. Refined parameters
θ̂ are obtained by minimizing the sum of squared reprojection error:

θ̂ = argmin
θ

∑
i

∑
k

Err(i, k)2 (26)

3.2 Rolling Shutter Bundle Adjustment

Similarly to the PnP, the BA is an optimization problem that aims to refine
a set of parameters by minimizing a cost function but unlike the PnP, it also
integrates the 3D points of the scene to the optimization. The parameters to
optimize are then defined by θb = [θ, P0..PM], and are refined by minimizing the
following reprojection error:

θ̂b = argmin
θb

∑
i

∑
k

Err(i, k)2 (27)

The minimization can be achieved through Levenberg-Marquardt algorithm,
the initial value for θb being initialized for instance from a SLAM using a GS
camera model. In that case, the CP θ may be initialized directly on the interpo-
lated trajectory.

3.3 Graph representation

Tw,i+1

Tw,i

Tw,i+2

Tw,i+3

Xw

ti ti+1 ti+2 ti+3 ti+4 ti+5

Fig. 4. Graph representation of an observation of a 3D Point Xw on an image line
exposed at time ti+2 < t < ti+3. The camera pose associated to this line is constrained
by the 4 CP Tw,i to Tw,i+3 and by the 6 timestamps ti to ti+5.

We chose to use a graph representation for the optimization problem and used
the g2o library[12] as an open source graph optimization tool and we developed a

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 11

dedicated C++ solver for both the PnP and BA. The graph representation had to
be adapted for the continuous time trajectory model because it is different from
the standard formulation where each keyframe corresponds to a single camera
pose. In both cases, the observations (2d projections) are represented as edges
that connect nodes representing the unknown variables (camera poses and 3D
features of the map). In the standard formulation for global shutter cameras, the
edges connect two nodes whereas the continuous-time modeling of the camera
trajectory requires an observation to be dependent of the 4 neighboring CP and
the 6 neighboring timestamps as represented in the figure 4. Thus, a multi-edge
is used in the graph to model these dependencies between multiple nodes.

Using this multi-edge representation, a single graph for the PnP and BA is
created, the values for the XW parameters being fixed for the PnP while all the
parameters have to be estimated for the BA. g2o offers the numeric evaluation
of the jacobians by finite differences.

4 NON UNIFORM TIME DISTRIBUTION OF THE
CP

4.1 CP Generation Methods

As our approach uses varying time intervals adapted to the local properties of the
motion, it requires the generation of the CP at the right time. We investigated
two different approaches involving either an IMU sensor or the analysis of the
reprojection error in the images. The first one is better fitted for real-time appli-
cations as the CP can be generated online using IMU measurements while the
second involves an iterative process that predisposes it for offline computation.

Before providing the details of the CP generation methods, it is worth noting
that the NUTD provides the ability to create locally multiple CP inside a single
image. This leads to many CP quartets required to interpolate the pose inside
different portions of the image (see Figure 5). As retrieving the CP associated
to a time t is an operation that is done thousands of times per frame, some care
is required to avoid wasting time searching over all the CP. This is achieved by
storing CP indices in a chronologically ordered list and using hash tables for fast
access.

CP Generation based on IMU
An IMU sensor is generally composed of gyroscopes and accelerometers that
respectively measure the angular velocities and linear accelerations. On current
tablets and smartphones, it generally delivers measurements at about 100Hz,
which is a higher frequency than the frame rate of the camera.

We propose a simple analysis of the measurements done by the IMU to de-
termine when the CP are required. The figure 6 shows a generated trajectory
(in the two top plots). The left (resp. right) plots corresponds to the translation
(resp rotation) components. The data provided by the IMU are plotted in the

12 P-A. Gohard et al.

Fig. 5. An example of multiple CP inside a single image, and their influence for in-
terpolating the pose for different rows. 3 CP are time-stamped between the beginning
and the end of the image N : Ti+1, Ti+2 and Ti+3. The quartet of CP used for the
interpolation of the pose at each row changes three time during the image exposure.
Image from [21].

middle plots. The bottom plots show respectively the norm of the linear acceler-
ations and angular velocities. Different thresholding values (shown in red, blue
and black) are used to determine when more CP are required. These threshold
values thi are stored in two (for acceleration and angular velocity) look up ta-
ble providing n(thi), the number of CP required per unit of time. These lists of
threshold values are generated empirically as a trade-off between accuracy of the
motion modeling and computational cost. For instance, if the angular velocity
norm is below the threshold th1, n(th1) CP per unit of time are used while if its
norm rises above th1 but below th2, n(th2) CP per unit of time are used and so
on. Once the CP are created, their parameters are optimized using eq.(26).

CP Generation based on Reprojection Error We propose a second
method to determine the temporal location of the CP when an IMU in not
available or as a post processing step after the application of the IMU based
method. This method involves an iterative estimation of the trajectory using
initial CP (set for instance with an UTD or with an NUTD obtained from the
IMU based method) as shown in eq.(26). Let rest1,∆t

be the mean of the resid-
uals Err(i, k) defined in eq.(25) between times t1 and t1 + ∆t. The proposed
method uses an iterative scheme consisting of the following two steps:

– The residuals are computed along the trajectory and analyzed using a sliding
window to measure locally rest1,∆t for varying t1. Maxima are detected
and additional CP are generated at the middle of the two corresponding
neighboring CP for time t1 + ∆t

2 .
– An iterative estimation of the trajectory eq.(26) is achieved with the added

CP to refine the whole set of CP.

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 13

0 0.5 1
−0.2

0

0.2
Translation

0 0.5 1
−0.5

0

0.5
Orientation

0 0.5 1
−100

0

100
Acceleration

0 0.5 1
−4

−2

0

2
Angular Velocity

0 0.5 1
0

100

200
Acceleration norm

0 0.5 1
0

2

4
Angular velocity norm

Fig. 6. Determination of the number of required CP per unit of time using IMU mea-
surements analysis (See the text for details). International system of units are used for
the axes. Image from [21].

The process is iterated until ∀t1 : rest1,∆t < threshold.
These two methods allow to generate new CP specifically on sections of

the trajectory that exhibit high dynamic. Despite the fact that the IMU based
method is more intuitive because it is based on a physical measurement of the
trajectory, the reprojection based method is generally preferable for two main
reasons: First, the thresholds in the IMU based method are required to be set
cautiously, which is not the case of the reprojection error based method for which
the threshold is just expressed in pixel unit. Second,the reprojection error based
method uses the same metric than the PnP or BA algorithms, hence it can be
efficiently integrated in those contexts.

The figure 7 shows one translation component w.r.t time of a simple simulated
ground truth trajectory (a) on which the reprojection error method is tested.
The UTD interpolation gives poor results (b) and the associated reprojection
error (c) is significant when the high dynamic motion occurs (t ≈ 0.5). By
adding a single CP at the right time, the proposed method accurately models
the trajectory (d), dividing the reprojection error by approximately fifteen (e)).

4.2 Spatiotemporal Optimisation of the Control Poses

The NUTD B-Splines permit the optimization of the CP timestamps, who only
operate on the cumulative coefficient matrix C (eq. 10). However, these added
parameters have to respect the following constraints to forbid the optimization to

14 P-A. Gohard et al.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.02

0.04

0.06

a

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.02

0.04

0.06

d

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.02

0.04

0.06

b
0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

10

20

30

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

e

Fig. 7. Results for the reprojection error based method (see text for details).

diverge, ∆tmin being the minimum temporal distance between two timestamps
and ttotal being the duration of the whole trajectory:

∀i : ∆ti−1,i > ∆tmin > 0 (28)∑
i

∆ti−1,i = ttotal (29)

Starting from a poor estimate, simultaneous optimization of the CP and their
timestamps can converge to an erroneous local solution, due to local minima.
Trying to overcome this problem, we propose to firstly alternate spatial and
temporal only optimizations. A complete spatiotemporal optimization can then
be applied to refine the estimated trajectory and adapt the CP time distribution
to its actual dynamic.

5 RESULTS

5.1 Synthetic Datasets

Results on simulated dataset are firstly presented to avoid noise induced by image
processing (such as corner extraction) and problems arising from erroneous data
association (between the extracted corners and 3D map points).

Initially, a set of CP is generated to model different types of reference trajec-
tories and a simple 3D point cloud is used as geometric model of the environment.
The figure 8 shows an example of generated data. Gaussian noise is added both
to these CP and 3D points. The time intervals between the CP are randomly
generated to obtain a NUTD and validate the model.

The camera frequency is arbitrary chosen (fps = 3), and the start and end
exposure time of each image is set accordingly. The camera poses are interpolated
using these parameters and the 3D points are projected to the images using
the RS projection model. Gaussian noise is then added to these projections to
generate the measurements used for the optimization.

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 15

−3

−2

−1

0

1

2

3 −2.5

−2

−1.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 8. Example of CP along a circular trajectory, the viewing direction being aligned
with the tangent to the circle. An additional sinusoidal translation component is added
perpendicularly to the circle plane. The point cloud is displayed in red.

To demonstrate the PnP, the interpolated camera poses using the noisy CP
are used as initial estimates for the CP to optimize. A hundred camera poses
are interpolated from 60 CP and are used to project the 3D point cloud. The
PnP is achieved by our C++ solver and example of results are shown in the
figure 9. Initial camera poses (green) converge toward the ground truth (red)
after optimization (blue). Only 5 iterations were sufficient to refine those camera
poses despite significantly noisy initial estimates.

The BA is demonstrated with the same synthetic trajectories, but using the
noisy point cloud as initial estimate for the map, which is to be refined by
optimization. The results are shown in the figures 10 and 11.

5.2 Real dataset

To motivate the proposed model, we first validate that it can be used to inter-
polated the trajectory of a real hand-held camera. This camera is equipped with
motion capture markers and tracked by a VICON MOCAP providing the cam-
era poses at 200 Hz which are used as a ground truth. Distinct images sequences
and associated ground truth trajectories are captured, with different dynamics
in translation and rotation.

We seek to fit interpolated trajectories to the ground truth ones with UTD
and NUTD B-Splines model following different optimization schemes. The initial
CP are set onto the MOCAP trajectory using UTD. Error ErrT ∈ R6 between
interpolated poses Tw(t) and the ground truth TGT(t) is minimized for all
timestamps tj of the samples acquired by the MOCAP:

16 P-A. Gohard et al.

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 9. Illustration of the PnP optimization on a synthetic dataset. Camera poses
interpolated from initial CP (green), optimized CP (blue) and the ground truth (red).

ErrT =
∑
j

log(TGT(tj)
−1Tw(tj)) (30)

The minimization is achieved using the Levenberg-Marquardt algorithm and
jacobians computed by finite differences. This optimization allows to refine spa-
tially the CP. As described earlier, additional CP are iteratively generated be-
tween the two CP where surrounding the highest error after each optimization
step.

The figure 12 shows the mean translation error after spatial optimization
with respect to the number of CP, for a UTD (red) and a NUTD (green). As
expected, at equal number of CP, the NUTD allows a more accurate modeling of
the trajectory than with a UTD, because the algorithm adds CP where required.
For a greater number of CP, the UTD and NUTD tend to produce similar results
as seen in the left plot, due to the fact that with a sufficient amount of CP, even
a UTD accurately represents the trajectory.

It is also important to note that for a greater number of CP, the error (mainly
for UTD but also for NUTD) can increase as it is shown in the right plot, because
the initial estimates of the CP can be set such that the trajectory cannot be
correctly approximated.

The CP generation method adds CP at arbitrary time between the times-
tamps of the two neighboring CP, basically at ti+2+ti+3

2 . The time distribution
is then refined by optimizing the timestamps of the CP.

The spatiotemporal optimization offers in the majority of the cases a sig-
nificant reduction of the error. However, better results have been observed by
following an alternate optimization scheme. A first spatial optimization is done
until it converges. Then these 3 steps are applied n times:

– Temporal optimization
– Adding a CP where the error is maximal
– Spatial optimization

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 17

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

−4

−3

−2

−1

0

1

2

3

4

−3

−2

−1

0

1

2

3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 10. Different views for the BA using the NUTD model: The initial CP (green),
the CP after optimization (blue) and the ground truth (red) are displayed alongside
the optimized point cloud (using the same color coding).

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

Fig. 11. Different views of the point cloud before (green) and after BA (blue). The
ground truth is displayed in red. Only the 3D points that have been observed in the
images have been optimized, hence the blue dots do not cover the whole scene.

18 P-A. Gohard et al.

12 14 16 18 20 22

1

2

3

4

5

6

x 10
�3

nb Control Poses

E
rr

o
r
in

 m
e
te

rs

9 10 11 12 13 14
1

2

3

4

5

6

7

8

9
x 10

−3

nb Control Poses

E
rr

o
r

in
 m

e
te

rs

Error

Error Nn Uniform

Fig. 12. The mean translation error with respect to the number of CP for two different
trajectories (left and right) with a UTD (red) and NUTD (green) for the CP.

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

X

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

2.4

2.6

2.8

3

Y

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

0.5

1

1.5

2

Z

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

−0.2

0

0.2

0.4

X

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

−0.6

−0.4

−0.2

0

0.2

0.4

Y

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

1

1.5

2

2.5

3
Z

Uniform CP

Uniform Traj

Ground Truth

Non−Uniform Traj

Non Uniform CP

Fig. 13. X, Y, et Z translation (left) and rotation (right) components of the interpo-
lated trajectories after spatial optimization only (green) compared with the interpo-
lated trajectories after 3 iterations of the spatiotemporal optimization scheme (blue)
with respect to time. The ground truth is shown in red and is better approximated by
the NUTD interpolation (blue) than by the UTD one (green).

The figure 13 shows the interpolated trajectory components after spatial
optimization (green), and after n = 3 spatiotemporal optimization cycles (blue),
alongside the ground truth (red). The temporal and spatial distributions of the
CP are adapted automatically to the trajectory dynamic. This is noticeable on
the rotation components (right) and the translation z component (lower left) of
the trajectories, where the UTD model fail to model fast oscillations.

Close-up view on different trajectories are given in figures 14 and 15 illustrat-
ing the final CP distributions. For the NUTD, more CP are used and optimized
both temporally and spatially to accurately model fast motions, while less sig-
nificant motions are smoothed. Note that with additional optimization and CP
addition cycles, the CP distribution would adapt to the whole trajectory, how-
ever the error reduction would be less significant. There is obviously a trade-off
between the increase in accuracy and the induced increase in terms of computa-
tional cost.

The figure 16 highlights the evolution of the error (red) during the optimiza-
tion iterations. It is important to note that the plots begin after the convergence
of a first spatial optimization. Hence, without the proposed approach, the mini-
mum achievable error through standard spatial optimization corresponds to the

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 19

8.381 8.3811 8.3812 8.3813 8.3814 8.3815 8.3816 8.3817 8.3818

x 10
4

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

a

8.381 8.3811 8.3812 8.3813 8.3814 8.3815 8.3816 8.3817 8.3818

x 10
4

2.96

2.97

2.98

2.99

3

3.01

3.02

3.03

b

Ground Truth
Uniform trajectory
Non uniform trajectory

8.381 8.3811 8.3812 8.3813 8.3814 8.3815 8.3816 8.3817 8.3818

x 10
4

−0.35

−0.3

−0.25

−0.2

−0.15

c

8.381 8.3811 8.3812 8.3813 8.3814 8.3815 8.3816 8.3817 8.3818

x 10
4

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

d

Fig. 14. X translation (a), Y translation (b), X rotation (c) and Y rotation (d) com-
ponents of the interpolated trajectories in sequence 1.

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

a

Ground Truth
Uniform Trajectory
Non uniform Trajectory

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

−0.1

0

0.1

0.2

0.3

0.4

b

8.389 8.3895 8.39 8.3905 8.391 8.3915

x 10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

c

Fig. 15. Z translation (a), X rotation (b) and Y rotation (c) components of the inter-
polated trajectories in sequence 4.

20 P-A. Gohard et al.

1 2 3 4 5 6 7 8 9 10 11
44

46

48

50

52

54

56

58

60

62

64

a

0 5 10 15 20 25 30
25

30

35

40

45

50

55

b

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

c

Reprojection Error
Spatial iteration
Temporal iteration

Fig. 16. Evolution of the translation error (red) as a function of space (green) and
time (blue) optimization iterations. The optimization follows temporal then spatial
optimization steps with without addition of CP in two first cases (a,b) whereas it
required additional CP in the third case (c). In this test, the non optimal initial values
for the added CP at iterations 16,24 and 35 are the reason of the temporarily increased
error. The error is then minimized, taking into account these added CP.

first error displayed in the plots. The temporal optimization allows to reduce
this error by a significant factor using either no (a,b) or a low number (c) of
additionnal CP.

6 FUTURE WORKS

The conducted experiments demonstrated that it is possible to adapt the spa-
tiotemporal distribution of the CP to the dynamic of real trajectories through
the proposed optimization process. The used cubic interpolation model allows
an accurate modeling of the trajectory. Quadratic or even linear models can be
sufficient depending on the type of trajectory, however the availability of inter-
polated velocities and accelerations can be useful for applications using inertial
measurements. The cost function used in our experiments on real datasets is
relative to a ground truth that is not available in the case of a SLAM process
whereas the available inertial measurements would be compared with the deriva-
tives of the interpolated trajectory. Hence it could be possible to integrate the
inertial measurments to the optimization as done in [19], which would allow to
recover the metric scale of the scene and to perform auto-calibration.

The presented work is still an early work, and new tests within a complete
SLAM process using the NUTD model must be driven on real datasets, involving
the complete image processing pipeline. We also plan to integrate other geometric

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 21

features such as segments, lines and planar patches to describe the environment
and adapt their observation models to the RS cameras.

CONCLUSION

A NUTD cumulative B-Spline model maintaining the C2 continuity of the in-
terpolated trajectory have been presented. This model have been tested to fit
interpolated trajectories to real and synthetic ones using different optimization
schemes.The improvement offered by the optimization of the CP timestamps
have been demonstrated for both simulated datasets and real trajectories. The
integration of the model within a BA have been shown for simulated datasets
only as it did not involved to operate image processing and because the ground
truth for the environment was directly available.

The continuous-time trajectory model using a NUTD for the CP allows a
reduction of both the memory usage and the computational cost. For trajectories
with large partially linear parts, as encountered in automotive applications, a
large amount of camera poses can be efficiently parameterized by a small number
of CP. For trajectories with varying dynamics, it is possible to accurately model
the high speed motion by locally increasing the CP density.

References

1. de Boor, C.: On calculating with b-splines. Journal of Approximation Theory
6(1), 50 – 62 (1972). https://doi.org/https://doi.org/10.1016/0021-9045(72)90080-
9, http://www.sciencedirect.com/science/article/pii/0021904572900809

2. Davison, A.J.: Real-time simultaneous localisation and mapping
with a single camera. In: 9th IEEE International Conference on
Computer Vision (ICCV 2003), 14-17 October 2003, Nice, France.
pp. 1403–1410 (2003). https://doi.org/10.1109/ICCV.2003.1238654,
http://dx.doi.org/10.1109/ICCV.2003.1238654

3. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular
SLAM. In: ECCV (September 2014)

4. Furgale, P., Barfoot, T.D., Sibley, G.: Continuous-time batch estimation
using temporal basis functions. In: Robotics and Automation (ICRA),
2012 IEEE International Conference on. pp. 2088–2095 (May 2012).
https://doi.org/10.1109/ICRA.2012.6225005

5. Gonzalez, A.: Localisation par vision multi-spectrale. Application aux systèmes em-
barqués. Theses, INSA de Toulouse (Jul 2013), https://tel.archives-ouvertes.fr/tel-
00874037

6. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518, second edn. (2004)

7. Hedborg, J., Forssn, P.E., Felsberg, M., Ringaby, E.: Rolling shutter bundle adjust-
ment. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on. pp. 1434–1441 (June 2012). https://doi.org/10.1109/CVPR.2012.6247831

8. Hedborg, J., Ringaby, E., Forssn, P.E., Felsberg, M.: Structure and motion es-
timation from rolling shutter video. In: Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on. pp. 17–23 (Nov 2011).
https://doi.org/10.1109/ICCVW.2011.6130217

22 P-A. Gohard et al.

9. Kim, M.J., Kim, M.S., Shin, S.Y.: A general construction scheme for unit
quaternion curves with simple high order derivatives. Proceedings of the
22nd annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’95 pp. 369–376 (1995). https://doi.org/10.1145/218380.218486,
http://portal.acm.org/citation.cfm?doid=218380.218486

10. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR’07). Nara, Japan (November 2007)

11. Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. In: Proc.
Eigth IEEE and ACM International Symposium on Mixed and Augmented Reality
(ISMAR’09). Orlando (October 2009)

12. Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A gen-
eral framework for graph optimization. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp. 3607–3613. Shanghai, China
(May 2011). https://doi.org/10.1109/ICRA.2011.5979949

13. Li, M., Kim, B., Mourikis, A.I.: Real-time motion estimation on a cellphone us-
ing inertial sensing and a rolling-shutter camera. In: Proceedings of the IEEE
International Conference on Robotics and Automation. pp. 4697–4704. Karlsruhe,
Germany (May 2013)

14. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Real time lo-
calization and 3d reconstruction. In: 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06). vol. 1, pp. 363–370 (2006).
https://doi.org/10.1109/CVPR.2006.236

15. Mur-Artal, R., Montiel, J.M.M., Tards, J.D.: Orb-slam: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics 31(5), 1147–1163 (Oct
2015). https://doi.org/10.1109/TRO.2015.2463671

16. Patron-Perez, A., Lovegrove, S., Sibley, G.: A spline-based trajectory rep-
resentation for sensor fusion and rolling shutter cameras. Int. J. Comput.
Vision 113(3), 208–219 (Jul 2015). https://doi.org/10.1007/s11263-015-0811-3,
http://dx.doi.org/10.1007/s11263-015-0811-3

17. Qin, K.: General matrix representations for B-splines. The Visual Com-
puter 16(3), 177–186 (2000). https://doi.org/10.1007/s003710050206,
https://doi.org/10.1007/s003710050206

18. Roussillon, C., Gonzalez, A., Solà, J., Codol, J., Mansard, N., Lacroix, S., Devy,
M.: RT-SLAM: A generic and real-time visual SLAM implementation. CoRR
abs/1201.5450 (2012), http://arxiv.org/abs/1201.5450

19. Steven Lovegrove, Alonso Patron-Perez, G.S.: Spline fusion: A continuous-time
representation for visual-inertial fusion with application to rolling shutter cameras.
In: Proceedings of the British Machine Vision Conference. BMVA Press (2013)

20. Strasdat, H., Montiel, J., Davison, A.J.: Real-time monocular slam: Why filter?
In: Robotics and Automation (ICRA), 2010 IEEE International Conference on.
pp. 2657–2664. IEEE (2010)

21. Vandeportaele, B., Gohard, P.A., Devy, M., Coudrin, B.: Pose interpola-
tion for rolling shutter cameras using non uniformly time-sampled b-splines.
In: Proceedings of the 12th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications - Volume
6: VISAPP, (VISIGRAPP 2017). pp. 286–293. INSTICC, SciTePress (2017).
https://doi.org/10.5220/0006171802860293

22. Yang, H., Yue, W., He, Y., Huang, H., Xia, H.: The Deduction
of Coefficient Matrix for Cubic Non-Uniform B-Spline Curves. 2009

Spatiotemporal Optimization for Rolling Shutter Camera Pose Interpolation 23

First International Workshop on Education Technology and Computer
Science (3), 607–609 (2009). https://doi.org/10.1109/ETCS.2009.396,
http://ieeexplore.ieee.org/document/4959111/

