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This work presents an event-triggered model predictive controller for spacecraft hovering phases. The target is assumed to be inert on its an elliptic orbit whereas the chaser has impulsive thrusters. The main goal is to design a local controller based on event-triggering principle to maintain the spacecraft inside a given hovering region while minimizing fuel consumption and avoiding unnecessary small amplitude firings. Using hybrid impulsive systems theory and reachability analysis, the invariance of the proposed method is studied. Simulation results are shown and discussed.

INTRODUCTION

In the context of spacecraft rendezvous, the hovering phase consists of a chaser spacecraft maintaining its relative position within a bounded region with respect to a target spacecraft. This mission phase is especially relevant for orbit servicing operations with potential application to geostationary satellites servicing, see [START_REF] Barnhart | Phoenix Project status -2013[END_REF], and spacecraft refuelling, see B. [START_REF] Reed | The Restore-L servicing mission[END_REF].

In this paper, the target spacecraft is assumed to be passive and the chaser one is controlled by means of chemical thrusters so that the actuation can be modelled by an impulsive signal. Some relevant works on impulsive control for rendezvous operations include [START_REF] Breger | Safe trajectories for autonomous rendezvous of spacecraft[END_REF]How (2008), Di Cairano et al. (2012) and [START_REF] Yang | A new approach to autonomous rendezvous for spacecraft with limited impulsive thrust: Based on switching control strategy[END_REF] whereas formation flying is addressed by [START_REF] Qi | Impulsive control for formation flight about libration points[END_REF] and [START_REF] Gaias | Impulsive maneuvers for formation reconfiguration using relative orbital elements[END_REF].

The purpose of this study is to design an event-triggered predictive control strategy to maintain the spacecraft within the limits of a defined polytopic zone. Arantes Gilz et al. ( 2017) achieved station-keeping by controlling the spacecraft motion in the set of periodic trajectories included in the zone of interest. However, since the impulse sequence is computed at a fixed period, the obtained controls can be unnecessary or too small to be executed by the thrusters, especially if the system belongs or is close to the admissible set.
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To overcome these drawbacks, an event-triggered model predictive controller is considered in this work for stationkeeping. Event-based control is a control methodology where the commands are asynchronously computed, reducing the communication needs between the sensors, the on-board computer and the actuators in the control loop (see [START_REF] Aström | Analysis and Design of Nonlinear Control Systems[END_REF] for the basics). This methodology can be combined with feedback policies, see [START_REF] Wu | Event-triggered control for linear systems subject to actuator saturation[END_REF] and references therein, and model-predictive schemes, see [START_REF] Pawlowski | Event-Based Generalized Predictive Control[END_REF]. In the context of spacecraft operations, event based controllers are recently attracting the attention of the attitude control community, see [START_REF] Wu | Event-triggered attitude control of spacecraft[END_REF] and [START_REF] Zhang | Multispacecraft attitude cooperative control using model-based eventtriggered methodology[END_REF], whereas some initial work for rendezvous hovering phases can be found in [START_REF] Louembet | Event-triggered model predictive control for spacecraft rendezvous[END_REF].

The main contribution of this paper is the development of a predictive controller using impulsive control in an asynchronous way. Its control objective is to locally stabilize the set of relative trajectories included in a given polytopic subset space. The scientific challenges arise from the linear time-varying dynamics and from the limited capability of the spacecraft thrusters which can only produce thrust of a minimum and maximum magnitude.

The present work extends and completes the initial communication by [START_REF] Louembet | Event-triggered model predictive control for spacecraft rendezvous[END_REF] in several directions. The definitions of the control laws are refined and explicitly detailed. The trigger laws have been redefined to ensure that all possible cases are covered. Additionally, the invariance of the proposed control approach is studied by using hybrid impulsive systems theory [START_REF] Haddad | Impulsive and Hybrid Dynamical Systems, chapter Stability Theory for Nonlinear Impulsive Dynamical Systems[END_REF]).

Note that the hybrid systems framework has been recently employed for orbital rendezvous applications. For instance, the recent invited session "A Spacecraft Benchmark Problem for Analysis & Control of Hybrid Systems" that was presented at the 2016 IEEE Conference on Decision and Control focused on this topic. Moreover, [START_REF] Brentari | A hybrid control framework for impulsive control of satellite rendezvous[END_REF] studies the stability of relative orbits. The present paper focuses on the invariance of the set of periodic relative orbits that hover inside a given polytopic subspace. The proposed controller ensures local contractiveness.

The structure of this paper is as follows. Section 2 describes the relative motion model and the set of admissible orbits. Next, Section 3 presents both the control law and the trigger law. Section 4 studies the invariance of the proposed controller. Section 5 shows results for cases of interest. Finally, Section 6 closes this paper with some additional considerations.

PROBLEM STATEMENT

In this section, firstly the relative motion model used to design the control law is explained. Then, the set of the constrained relative orbits for the hovering phase is presented, and a formal description based on envelope functions is provided.

Modelling the relative motion

The relative motion of the chaser spacecraft, denoted by S f , is expressed with respect to the local frame attached to a passive target spacecraft whose position is denoted by S l . The local frame {S l , x, y, z}, denoted Local Vertical/Local Horizontal (LVLH), moves around the inertial Earthcentered frame, {O, I, J , K}, along the target spacecraft orbit. Note that z is the radial position (positive towards the centre of the Earth), y is the cross-track position (opposite to the orbit angular momentum) and x is the in-track position completing a right-handed system.

Under Keplerian assumptions, the relative motion between two spacecraft can be expressed by means of the Tschauner-Hempel equations, see [START_REF] Tschauner | Elliptic orbit rendezvous[END_REF]. Considering that --→ OS l --→ S l S f , these equations can be linearized to obtain the following linear time-varying dynamics Ẋ(t) = A(t)X(t),

(1) where the state vector X represents the relative position and velocity in the LVLH frame X(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)] T . In this work, the transition matrix Φ of the dynamics (1) is exploited. Accordingly to [START_REF] Yamanaka | New state transition matrix for relative motion on an arbitrary elliptical orbit[END_REF], after the change of the time variable to the true anomaly ν, X(ν) = T (ν)X(t),

(2) the transition matrix Φ is obtained such that X(ν) = Φ(ν, ν 0 ) X(ν 0 ), ν 0 ≤ ν.

(3) In particular, the relative position can be explicitly expressed in a convenient manner as

x(ν) = d 1 (1 + ρ)s ν -d 2 (1 + ρ)c ν + d 3 + 3d 0 J(ν)ρ 2 , ỹ(ν) = d 4 c ν + d 5 s ν , z(ν) = d 1 ρc ν + d 2 ρs ν -3ed 0 J(ν)s ν ρ + 2d 0 , (4) 
where c ν = cos(ν), s ν = sin(ν), ρ = (1 + ec ν ), e is the eccentricity of the target orbit and J(ν) is given by

J(ν) := ν ν0 dτ ρ(τ ) 2 = µ a 3 t -t 0 (1 -e 2 ) 3/2 .
(5)

As the orbital elements of a Keplerian orbit, the parameters d 0 to d 5 are integration constants that define the shape and position of the relative orbits, see (Deaconu, 2013, chap. 2). This fact makes the vector D = [d 0 , d 1 ,d 2 ,d 3 ,d 4 ,d 5 ] T the relevant state when aiming to constrain relative orbits. Note that a linear transformation exists between the relative state X and the vector D, X(ν) = F (ν)D(ν). ( 6) Since det F = 1 -e 2 = 0, ∀e ∈ [0, 1), it represents a similarity transformation and D is a proper state vector with its own dynamics D (ν) = A D (ν)D(ν) and its own transition matrix such that D(ν) = Φ D (ν, ν 0 )D(ν 0 ). The details are presented in (Deaconu, 2013, chap 2). Typically, for space hovering operations, the chaser spacecraft is controlled by chemical engines operating at high levels of thrust during short periods of time with respect to the target orbit period. In practice, this fact leads to instantaneous changes of velocities that can be modelled as impulses

X + (t) = X(t) + B∆V (t), with B = [0 3 , I 3 ] T , (7 
) where 0 3 is the square null matrix and I 3 is the identity matrix, both of dimension 3. Applying the changes of variables ( 2) and ( 6), an impulse at instant ν produces a jump in the state from D to D + as

D + (ν) = D(ν) + B D (ν)∆V (ν), (8) with B D (ν) = F -1 (ν)T (ν)B, (9) and hence B D (ν) = 1 k 2 (e 2 -1)ρ        ρ 2 0 -es ν ρ -2c ν -e(1 + c 2 ν ) 0 s ν ρ -s ν (2 + ec ν ) 0 2e -c ν ρ es ν (2 + ec ν ) 0 ec ν ρ -2 0 -(e 2 -1)s ν 0 0 (e 2 -1)c ν 0        .
Equation ( 8) shows that the influence of a given impulsive control, ∆V , depends on the application instant due to the time dependence of the input matrix B D . Additionally, the thrust magnitude along each axis has to comply with the following conditions on deadzone and saturation ∆V ≤ |∆V | ≤ ∆V .

(10)

Semi-algebraic description of the constrained orbits set

The goal of our predictive controller is to maintain the spacecraft hovering in a predefined polytopic subset of the relative position space. Thereafter, a cuboid is considered without loss of generality:

x ≤ x(t) ≤ x, y ≤ y(t) ≤ y, z ≤ z(t) ≤ z , ∀t ≥ t 0 . (11)
The most economic way to hover in a given zone is that the chaser evolves on periodic orbits due to the absence of natural drift. In [START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF], the necessary and sufficient periodicity condition, namely d 0 = 0, has been established. Inserting the changes of variables ( 2) and ( 6) into (11) and considering the periodicity condition, the admissible set S p D can be formally defined as

S p D :=    D ∈ R 6 d 0 = 0, x ≤ F x (ν)D ≤ x y ≤ F y (ν)D ≤ y z ≤ F z (ν)D ≤ z , ∀ν    , (12) 
where F x , F y and F z are, respectively the first three rows of F divided by ρ. The set S p D is described by linear but time-varying conditions on the state D. In (Arantes Gilz et al., 2017, Section 3), an implicitization method is developed to obtain a semi-algebraic description of the admissible set:

S p D = {D ∈ R 6 | d 0 = 0 | g w (D) ≤ 0, ∀w ∈ {x, x, y, y, z, z}}, (13) 
where the functions g w (D) are polynomials function in d 1 , d 2 and d 3 .

EVENT-BASED ALGORITHM

In this section, the control and trigger laws that constitute the event-triggered controller are designed. One must notice that the trigger law determines when to apply a suitable control law.

Control law

Tschauner (1967) demonstrated that the in-plane and outof-plane control motions are decoupled and thus control problem can be treated separately.

In-plane control The in-plane motion is defined by the state subset

D xz =[d 0 , d 1 , d 2 , d 3 ] T .
As stated earlier, periodicity is a desirable property to hover over a specified region, therefore, the in-plane control strategy aims to steer the system to a periodic orbit with one impulsive control. The in-plane state after an in-plane impulse

∆V xz =[∆V x , ∆V z ] T is given by D + xz (ν) = D xz (ν) + B D,xz (ν)∆V xz (ν) where B D,xz ∈R 4×2 is composed of the in-plane terms of B D . To obtain a periodic orbit, the state d 0 is steered to zero d + 0 (ν) = d 0 (ν) + B d0,xz (ν)∆V xz (ν) = 0, (14) 
where B di,xz with i=0. . .3 is the (i+1)th row of B D,xz . An impulse satisfying ( 14) can be written in general as

∆V xz (ν) = λ xz B ⊥ d0,xz (ν) + ∆V 0 xz (ν), (15) 
where λ xz ∈R, B ⊥ d0,xz ∈R 2 describes the kernel space of B d0,xz and ∆V 0 xz ∈R 2 is any particular solution of ( 14). With this periodicity-pursuing strategy, the effect of an impulse on the current state D is described by

D + xz (ν, λ xz ) =D xz (ν)+ B D,xz (ν)(λ xz B ⊥ d0,xz (ν) + ∆V 0 xz (ν)). ( 16 
)
To maintain the state D xz in the admissible set S p Dxz at time ν, the following program is solved min (Psat,in) where I sat,xz describes the input saturation and deadzone condition as a function of λ xz and ν such that

λxz ∆V xz (ν, λ xz ) 1 , s.t. D + xz (ν) ∈ S p Dxz , λ xz ∈ I sat,xz (ν),
I sat,xz = {λ xz ∈ R s.t. ∆V ≤ |λ xz B ⊥ d0,xz (ν) + ∆V 0 xz (ν)| ≤ ∆V } = [l -, l -] ∪ [l + , l + ], (17) 
where

l -=(B d ⊥ 0,xz ) + (-∆V -∆V 0 xz ), l -=(B d ⊥ 0,xz ) + (-∆V - ∆V 0 xz ), l + =(B d ⊥ 0,xz ) + (∆V -∆V 0 xz ) and l + =(B d ⊥ 0,xz ) + (∆V - ∆V 0 xz ).

Out-of-plane control

The out-of-plane motion, represented by D y = [d 4 , d 5 ] T , is naturally periodic and any out-of-plane impulse ∆V y =λ y produces a periodic orbit where I sat,y describes the input saturation and deadzone conditions such that

D + y (ν, λ y ) = D y (ν) + λ y B D,y (ν), (18) 
I sat,y = [-∆V , -∆V ] ∪ [∆V , ∆V ]. ( 19 
) Note that I sat,y does not depend on ν.

Instantaneous reachability conditions

To design the trigger rules, instantaneous S p D reachability conditions needs to be set at a given time instant ν. Note that, for the sake of clarity, the time dependence is omitted in this section. First, let the set ∆ + be the reachable set from a given state D with one control. ∆ + is a twodimensional plane on the D space, defined by the lines ∆ + xz and ∆ + y

∆ + xz = {D + xz ∈ R 4 s.t. (16), λ xz ∈ R}, ( 20 
) ∆ + y = {D + y ∈ R 2 s.t. (18), λ y ∈ R}. (21) 
A necessary condition for the admissible set S p D to be reachable is that the following sets Λ + xz and Λ + y are nonempty:

Λ + xz = [l xz , l xz ], (22) 
Λ + y = [l y , l y ]. ( 23 
)
The intervals [l xz , l xz ] and [l y , l y ] are computed such that at a given fixed instant ν

∀λ xz ∈ [l xz , l xz ] :{g x (λ xz ) ≤ 0, g x (λ xz ) ≤ 0, g z (λ xz ) ≤ 0, g z (λ xz ) ≤ 0}, ( 24 
)
∀λ y ∈ [l y , l y ] : {g y (λ y ) ≤ 0, g y (λ y ) ≤ 0}. ( 25 
)
Note that the univariate polynomials g w (•) are obtained by introducing ( 16) and ( 18 

These variables will be used as indicators for the S p D instantaneous reachability in the trigger rules of Section 3.4.

Reachability conditions over one period

In the previous section, instantaneous reachability conditions on S p D are found for a given instant ν. This section establishes that S p D is reachable over the next 2π-period (a complete revolution) if D ∈ D c being D c the invariant set of current D states, assuming that D is an equilibrium point (d 0 = 0), from which S p D can be reached in less than one period by applying a constrained impulse. Recalling that the control matrix B D is 2π-periodic, computing the reachable set from a given state over a 2π-period can be done through implicitization techniques. In order to simplify the notation, the state increment is introduced as

∆D(ν) = D + (ν) -D(ν) = B D (ν)∆V (ν) = [∆d 0 , ∆d 1 , ∆d 2 , ∆d 3 , ∆d 4 , ∆d 5 ] T . (32)
Considering the out-of-plane motion, the state increment is represented by ∆D y = [∆d 4 (ν), ∆d 5 (ν)]. The incremental reachable set over an orbital period depends on the control effort λ y and is implicitly described by

f y (∆D, λ y ) = ∆d 2 4 λy k 2 √ 1-e 2 2 + ∆d 5 + eλy k 2 (1-e 2 ) 2 λy k 2 (1-e 2 ) 2 -1 = 0. (33)
Note that ( 33) is an ellipse in the ∆d 4 -∆d 5 plane. Its semiaxes and center are both affected by the control parameter, λ y . Hence, for given deadzone and saturation conditions λ y ∈ I sat , the out-of-plane incremental reachable set is described by

D fy = D fy,-∪ D fy,+ , ( 34 
) where D fy,-:= {∆D ∈ R 6 :f y (∆D, -∆V ) ≥ 0, f y (∆D, -∆V ) ≤ 0}. ( 35 
) D fy,+ := {∆D ∈ R 6 :f y (∆D, ∆V ) ≥ 0, f y (∆D, ∆V ) ≤ 0}. ( 36 
)
Finally, the out-of-plane invariant set D c,out is obtained computing the Minkowski sum of S p Dy , the admissible set, with the out-of-plane incremental reachable set (34), D c,out := S p Dy ⊕ D fy .

(37)

Regarding the in-plane motion, both in-track (x) and radial (z) constraints have to be addressed. The in-plane control action, ( 16), can be implicitized for d 0 ≈0 using a Gröbner basis as in [START_REF] Fix | Implicitization of rational parametric surfaces[END_REF] 4∆d 2 1 + (-e 2 + 4)∆d 2 2 + 2e∆d 2 ∆d 3 -∆d 2 3 = 0. (38) Note that ( 38) is the equation of a cone representing the unconstrained in-plane incremental reachable set over a target orbital period. The control constraints ( 17) can be considered numerically by computing the instantaneous reachability at discrete times over one period for a large number of discrete points. The set of points with any

L xz (ν p ) = 0 for ν p ∈ [ν, ν + 2π] define D c,in .
In conclusion, S p D is reachable over a 2π-period if and only if D ∈ D c = D c,in × D c,out .

Trigger law

The trigger law is designed to achieve a threefold objective. Firstly the programs (Psat,in) and (Psat,out) have to be feasible when executed. Secondly, unnecessary controls must be avoided. Finally, Zeno phenomena should be precluded.

This trigger law is defined by Algorithm 1 which induces the computation and execution of a control impulse based on given conditions. Each time the spacecraft leaves the admissible set S p D based on ( 13), the trigger variables L xz and L y are checked. If they are diminishing and below a threshold δ an impulse is commanded, whereas if they are null (S p D ∩∆ + sat =∅) the reachability over one period, D c , is computed to check the existence of future comeback opportunities. In the disfavourable case that these opportunities vanish the global stabilizing controller of Arantes Gilz et al. ( 2019), which ensures the return of the vehicle to S p D by applying three impulses, is commanded.

Algorithm 1 (Trigger rules)

Input: ν, D Output: control decision if D ∈ S p D then Wait. else if D /
∈ S p D and D ∈ Dc then if Lxz(ν) < δ and Lν,xz(ν) < 0 and Ly(ν) < δ and Lν,y(ν) < 0 then Solve (Psat,in) and (Psat,out), apply ∆Vxz and ∆Vy. else if Lxz(ν) < δ and Lν,xz(ν) < 0 then Solve (Psat,in) and apply ∆Vxz. else if Ly(ν) < δ and Lν,y(ν) < 0 then Solve (Psat,out) and apply ∆Vy. 

INVARIANCE OF THE SINGLE-IMPULSE APPROACH

In this section, the invariance of the proposed event-based predictive controller is studied. Firstly, some fundamental results of invariance for hybrid impulsive systems are summarized. Then the out-of-plane and in-plane invariance are analyzed.

The relative motion between target and chaser is equivalent to an hybrid impulsive system composed of the continuous dynamics of (1) and the resets of (8). Therefore, the main results of [START_REF] Haddad | Impulsive and Hybrid Dynamical Systems, chapter Stability Theory for Nonlinear Impulsive Dynamical Systems[END_REF] regarding invariance principles for hybrid impulsive systems apply. Consider the following dynamical system G ẋ

(t) = f c (x(t)), x(0) = x 0 , x 0 ∈ D, x(t) / ∈ Z, ∆x(t) = f d (x(t)), x(t) ∈ Z, (G)
where ∆x denotes the instantaneous change on the state x due to an impulse f d . Now, consider the following assumption over the hybrid system G.

Assumption 1 [START_REF] Haddad | Impulsive and Hybrid Dynamical Systems, chapter Stability Theory for Nonlinear Impulsive Dynamical Systems[END_REF]): assume f c (•) is locally Lipschitz continuous on D, Z is closed, and

f d (x) =0 for x∈Z\∂Z. If x∈∂Z is such that f d (x)=0, then f c (x)=0. If x∈Z is such that f d (x) =0, then x+f d (x) / ∈Z.
If Assumption 1 holds, then the following theorem applies. Theorem 1 [START_REF] Haddad | Impulsive and Hybrid Dynamical Systems, chapter Stability Theory for Nonlinear Impulsive Dynamical Systems[END_REF]): consider the system G, assume D c ⊂D is a compact positively invariant set with respect to G, and assume that there exist a continuously differentiable function Initial relative velocity: [0, 0, 0] m/s [x, x, y, y, z, z]= [50, 150, -25, 25, -25, 25] m Table 1. Scenario parameters that Proposition 1 holds since M out ⊂ D c,out and ∂M out ∩ ∂D c,out =∅ as it can be deduced from (37) which is the Minkowski sum of a convex bounded set with an ellipse having a hole on its interior.

V :D c →R such that V (x)f c (x) ≤0, x ∈ D c , x / ∈ Z, (39) V (x + f d (x)) ≤V (x), x ∈ D c , x ∈ Z. ( 40 
) Let R ∆ ={x ∈ D c : x / ∈ Z, V (x)f c (x) = 0}∪{x ∈ D c : x ∈ Z, V (x + f d (x)) = V (x)
For the in-plane case, the invariance is demonstrated, mutatis mutandi, in the same manner by using the following candidate functions for Theorem 1,

V xm = ĝxm = 4 i=0 θ xm,i (d 1 , d 2 )d i 3 , V zm = g zm = d 2 1 + d 2 2 -z 2 m .
The necessary and sufficient conditions M in ⊂D c,in and ∂M in ∩∂D c,in =∅ are verified with the numerically obtained set D c,in so that Proposition 1 holds for given values of deadzone ∆V and saturation ∆V .

SIMULATION RESULTS

To assess the performance of the proposed event-triggered predictive controller, a hovering phase scenario described in Table 1 is run. The simulation is done in MAT-LAB/Simulink using a non-linear relative motion simulator from Arantes Gilz (2016). Note that non-Keplerian forces such as the J2 effect and atmospheric drag are introduced as disturbances to both chaser and target vehicle. J are τ I =τ E =5 • and τ S =60 • . For the considered scenario, the event-triggered controller improves the performance criteria in terms of fuel consumption, J= N i=1 ∆V i 1 , number of impulses N and the amount of time X is in the hovering box. The fuel consumption only accounts for applied impulses control. For instance, when the global controller computes impulses that fall within the deadzone, they are set to zero and are not considered in the cost J. The criterion "X ∈ box" indicates the percentage of time that the chaser spacecraft lays inside the hovering box which is the primary goal of the hovering phase.

CONCLUSIONS

In this paper, an event-triggered predictive controller is employed to locally maintain the spacecraft within the limits of the hovering zone, under both deadzone and saturation in the actuation. An invariance analysis for the proposed approach has been done by using impulsive hybrid systems theory combined with reachability techniques. The outcome of the invariance study is that the proposed controller guarantees the return of the spacecraft to the hovering zone under the presence of continuous perturbations that may expel the vehicle out of the admissible set. A numerical simulation has been carried out for a typical hovering scenario which shows the potential benefits of the event-triggered approach when compared with a periodic controller. The main drawback of the proposed algorithm is that the robustness of the method under impulse misexecution has not been addressed yet. Future work may include a more formal analysis of the inplane invariance and the robustification of the controller under impulses mishaps.

  Apply the controller of Arantes Gilz et al. (2019) end if

  } and let M denote the largest invariant set contained in R. If x 0 ∈D c , then x(t)→M as t→∞. Considering Assumption 1 and Theorem 1, let us prove this proposition. Proposition 1: under the trigger law of Algorithm 1, consider x∈M with M an invariant set such that M⊂D c and ∂M∩∂D c =∅. Then, if y 0 =x+δx / ∈M, y(t)→M as t→∞. Proof : if both Assumption 1 and Theorem 1 are verified, as soon as x+δx is outside M it can be guaranteed that the trigger law activates and will always command, through Algorithm 1, a single impulse steering back the state to the admissible set, y∈S p D , S p D ⊂M if and only if M⊂D c and ∂M∩∂D c =∅. Note that Proposition 1 implies a sufficient condition for the invariance of the set S p D in the presence of continuous disturbances. In the sequel, Proposition 1 conditions are checked for the proposed event-triggered controller. Assumption 1 hypothesis are easily verified since (1) is Lipschitz continuous for e∈[0, 1) and the trigger signal is based on a closed domain S p D . Demonstrating the fulfillment of Theorem 1 needs more elaboration by proposing suitable V functions for each constraint defining S p D . Regarding the invariance of the out-of-plane admissible set S p Dy , the following continuously differentiable function is proposed V ym = g ym = (d 4 -ey m ) 2 + d 2 5 -y 2 m , (41) which is the same expression of the out-of-plane constraint described by g y and g y . Note that for both y and y constraints, Theorem 1 is fulfilled as ∂V ym (D) ∂D D (ν) =0, D ∈ D c,out , D ∈ S p Dy , (42) V ym (D + ) ≤V ym (D), D ∈ D c,out , D / ∈ S p Dy , (43) where D c,out has been obtained in (37). On the other hand, M out =S p Dy ∪D c,out is the union of the out-of-plane admissible set and the deadzone set D c,out := {D ∈ D c,out , s.t. V ym (D + ) = V ym (D), D / ∈ S p Dy }. Finally, note a = 8750 km, e=0.2, ν 0 =0, ∆V =1•10 -3 m/s, ∆V =0.1 m/s Initial relative position: [400, 300, -40] m

  Fig. 1. Spacecraft trajectory.
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 12 Fig.1, the event-triggered predictive controller achieves its purpose of maintaining the spacecraft close to the hovering zone. The commanded impulses, the trigger variables, L xz and L y , and the commanded control are shown in Fig.2. The limitation imposed by the deadzone condition can be observed in the out-of-plane control as well as the more consuming in-plane control. Table 2 compares the local controller of this work with the global controller from Arantes Gilz et al. (2019). The comparison begins when the hovering zone is reached and is carried out over 10 orbits. The considered parameters for the global controller

  where B D,y ∈R 2 is composed of the out-of-plane terms of B D . Consequently, to steer the state D y to the admissible set S p Dy at time ν, the following program is solved min

	λy	∆V y (ν, λ y ) 1 ,	
	s.t.	λ y ∈ I sat,y , D + y (ν) ∈ S p Dy ,	(Psat,out)

  ) respectively in polynomial expressions gx (d 1 , d 2 , d 3 ) and g x (d 1 , d 2 , d 3 ), g z (d 1 , d 2) and g z (d 1 , d 2 ), g y (d 4 , d 5 ) and g y (d 4 , d 5 ) from Arantes Gilz et al. (2017). Moreover, accounting for the saturation and deadzone conditions (10), S p

	Note that the sets of reachable admissible states, ∆ + sat,xz
	and ∆ + sat,y , are given by			
	∆ + sat,xz = {D + xz ∈ R 4 s.t. (16), λ xz ∈ Λ + sat,xz },	(28)
	∆ + sat,y = {D + y ∈ R 2 s.t. (18), λ y ∈ Λ + sat,y }.	(29)
	Let us define the following variables that measure the
	length of the intervals Λ + sat,xz and Λ + sat,y and its time
	derivative				
	L xz = len(Λ + sat,xz ), L y = len(Λ + sat,y ),	(30)
	L ν,xz =	dL xz dν	, L ν,y =	dL y dν	.
						(27)

D is reachable if and only if the sets Λ + sat,xz and Λ + sat,y are non-empty: Λ

+ sat,xz = [l xz , l xz ] ∩ I sat,xz = ∅,

(26)

Λ + sat,y = [l y , l y ] ∩ I sat,y = ∅.

  [cm/s] N [-] X ∈ box[%]

	Local	4.375	7	98.26
	Global	6.336	15	94.44
	Table 2. Comparison between local and global
		controllers.