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Abstract—The instrumentation of real systems is often designed 
for control purposes and control inputs are designed to achieve 
nominal control objectives. Hence, the available measurements 
may not be sufficient to isolate faults with certainty and diagnoses 
are ambiguous. Active diagnosis formulates a planning problem to 
generate a sequence of actions that, applied to the system, enforce 
diagnosability and allow to iteratively refine ambiguous diagnoses. 
This paper analyses the requirements for applying active diagnosis 
to space systems and proposes ActHyDiag as an effective 
framework to solve this problem. It presents the results of 
applying ActHyDiag to a real space case study and of 
implementing the generated plans in the form of On-Board 
Control Procedures. The case study is a redundant Spacewire 
Network where up to 6 instruments, monitored and controlled by 
the on-board software hosted in the Satellite Management Unit, 
are transferring science data to a mass memory unit through 
Spacewire routers. Experiments have been conducted on a real 
physical benchmark developed by Thales Alenia Space and 
demonstrate the effectiveness of the plans proposed by ActHyDiag. 

Index Terms—Active Diagnosis, On-Board Control Procedures, 
Planning, Spacewire, Space Systems, Hybrid Systems, Automata, 
And-Or Tree 

I. INTRODUCTION 

UTONOMY is defined as the ability of a system to make its 
own decisions and act in a changing environment 
independently of any human intervention. One way to 

improve autonomy is to endow the system with the ability to 
evaluate its own health state. 

In this paper, the targeted systems are satellites. Autonomous 
satellites are able to give relevant information to the ground, 
detect if one of their components is out of order and they can go 
so far as to decide to reboot some component, switch to a 
redundant component, or reconfigure themselves. These 
capabilities require to perform on-line diagnosis (fault detection 
and isolation) and on-line replanning. The on-line diagnosis 
task aims at determining at operating time whether faults have 
occurred or not within the system and which faults relying on 
the available set of observations/measurements1. On-line 
diagnosis methods are usually reactive tasks that take as input 
available measurements provided by the sensors of a physical 
system and return an estimation of the system’s state and its 
health status. However, a diagnosis method has originally been 
defined as a process that couples the estimation of the state and 
the proposal of new specific tests, in particular measurements, 
that can provide additional information [19]. Diagnosis is then 
iteratively refined until returning a non ambiguous state 
estimation. This is a standard procedure in post-mortem 
diagnosis, which is often formulated as a test sequencing 
 

1 These two terms will be used indifferently in the rest of the paper 

problem [15] but very few works combine diagnosis and testing 
tasks in the field of on-line diagnosis. The main reason for this 
is that sensors are often designed for control purposes and 
control inputs are designed to achieve nominal control 
objectives. In this setting, available measurements are not 
designed for health’s monitoring and thus may not be sufficient 
to determine the faults with certainty, resulting in ambiguous 
diagnoses. The performance of the diagnosis process can 
however be improved by acting on the system: this is the active 
diagnosis problem. Active diagnosis problems are automated 
planning problems that aim at designing an admissible 
sequence of actions (also called a plan) whose goal is to refine 
the diagnosis by reducing the ambiguity without radically 
changing or degrading the initial mission plan. 

 

 
 
Fig. 1.  The active diagnosis scheme.  

The needs of an efficient active diagnosis function appear: 
 before the occurrence of a fault to know exactly the health 

status of the satellite,  
 when a fault occurs, if the reconfiguration delay is 

sufficiently long to launch an active diagnosis session, for 
example when a fault occurs on the payload, 

 after the fault, for investigation purposes to get the exact 
source of the problem. 

As illustrated in Fig.1, the active diagnosis scheme interlinks 
diagnosis and planning. It uses an admissible sequence of 
actions (or plan) to refine the diagnosis without degrading the 
initial mission plan. The space domain implies a set of very 
specific constraints that limit the applicability of some 
approaches. In particular, one has to minimize the impact of 
active diagnosis on the satellite operation. To do this, the active 
diagnosis algorithm has to guarantee the availability of 
resources, to maintain the satellite in its current mode, and to 
not disturb the satellite during a given reconfiguration. 
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Moreover, as other permanent on-board diagnosis functions 
already exist, the active diagnosis algorithm has to get along 
with other diagnosis mechanisms. Finally, the computational 
time required by active diagnosis must be consistent with the 
time constraints inherent with autonomous operations in spatial 
systems and resource limitations have to be taken into account. 
 In previous works [5], [3], [7] a formal definition of the 
active diagnosis problem for discrete-event systems (DES) and 
an on-board architecture that integrates a diagnosis planner in 
charge of solving the active diagnosis problem have been 
proposed. An algorithm was sketched, leaving open the 
integration of active diagnosis into an on-board architecture 
including the mission planning process. In [5], [7], this 
algorithm relies on building a so-called active diagnoser that 
results from analyzing fault discriminability and precompiling 
the underlying DES model in order to speed up the on-line 
search for an active diagnosis plan. 

Satellites are complex systems which account for several 
operation modes and hence involve sensors and actuators 
showing continuous and discrete event dynamics so they can be 
typically modelled as hybrid dynamic systems. Hybrid dynamic 
systems indeed have dynamics that combine continuous-time 
evolution (i.e. flow) and discrete-time evolution (i.e. switches 
or jumps) whose description requires merging two 
mathematical fields, namely differential/difference equations 
and event-based models.  

To solve the diagnosis problem on hybrid systems, the 
authors of [2] and [4] propose to use the hybrid automata 
formalism that couples differential equations/difference 
equations with finite state machines and sign up an original 
approach based on an abstracted hybrid model in which 
continuous dynamics are present through specific events. The 
proposed approach is based on event abstraction and interlinks 
a standard diagnosis method for continuous systems, namely 
the parity space method, and a standard diagnosis method for 
discrete-event systems (DES), namely the diagnoser method 
[12]. The parity space method provides the means to generate 
residuals and signatures for each operation mode and these are 
abstracted as specific events, called signature-events. These 
events enrich the discrete event model of the system. The 
diagnoser method is applied to the resulting abstract hybrid 
system to build a diagnoser able to follow on-line the behavior 
of the system according to the observable events, including 
signature-events whose observability signs up mode 
discernibility [2, 3]. The approach was successfully tested on 
the ADAPT test bench of NASA Ames with the files of the DX 
competition 2011 [13]. The active diagnosis approach proposed 
in [3] relies on this approach.  

This paper presents a thorough analysis of the needs and 
constraints dictated by the space domain for active diagnosis 
and proposes an effective framework to solve the active 
diagnosis problem: this framework, in line with the ideas of [3, 
5], and [7], is called ActHyDiag. We prove the applicability of 
ActHyDiag to automatically generate diagnosis plans for a 
satellite. The experiment starts with fault detection and 
implements the autonomous application of the generated plan 
translated into On-Board Control Procedures (OBCP).  

The paper is organized as follows. Section II presents some 
related works on active diagnosis for satellites and autonomous 
systems and motivates the proposed active diagnosis approach, 

clarifying the contributions of the paper. Section III presents the 
Spacewire case study. Section IV presents ActHyDiag, the 
active diagnosis framework. Section V applies this framework 
to the case study. Finally, Section VI concludes the paper by 
discussing the results and outlining perspectives for future 
work. 

II. RELATED WORK 

A. Active Diagnosis Frameworks for DES or hybrid systems 

In this paper, actions are of discrete type and can be modelled 
as discrete events but they may require to synthesize 
continuous control inputs when indicating a mode transition in 
a hybrid system. Nevertheless, this latter problem is out of the 
scope of this paper. 

The method presented in this paper is based on proposing 
actions to enforce diagnosability like [3], [5], and [7]. State 
space regions of poor diagnosability are accepted because most 
real systems are designed this way. When the system is in an 
ambiguous diagnosis state, active diagnosis enforces actions to 
drive the system towards regions with improved diagnosability, 
achieving the highest possible diagnosis refinement. This 
approach adopts the perspective that the operation of the system 
can be suspended to run an active diagnosis session. The active 
diagnosis actions hence do not interact with actions dedicated 
to control.  

With the same idea, the method proposed in [20] is based on 
a set of models (one per fault) that are used to predict the future 
output of the system in each situation. At time t, the active 
diagnosis problem is formulated as a mixed integer 
optimization problem using the Mixed Logical Dynamical 
framework. It provides an input sequence that aims at 
distinguishing the behavior of each model. The input is applied 
to the system and the whole procedure is repeated at time t+1 
until the estimated output of the different systems are all 
different. The decision function compares the output and the 
estimated output in order to decide about the fault candidate. 
This approach is not easily applicable to space systems because 
the generated plan interlinks continuous control and discrete 
control actions. It seems more appropriate to separate these two 
control levels as proposed in this paper. The complexity of the 
method also severely limits its applicability on-board.   

Three other main approaches for active diagnosis can be 
found in the literature. The first is based on preventing actions 
to forbid non diagnosable regions [17]; the second claims that 
a combined approach that prevents and proposes actions is 
necessary [14]; the third takes benefit of flexible mission plans 
to select one that is useful for diagnosis purposes. It is also 
known as the pervasive diagnosis approach [11].  

Following the first approach, the authors of [17] use control 
actions to alter the diagnosability properties of a given discrete 
event system. Active diagnosis is formulated as a supervisory 
control problem [16] and the controller is designed so that 
specific actions that may drive the system into non diagnosable 
regions are forbidden. The system is hence maintained 
“actively” diagnosable and its diagnoser produces non 
ambiguous outputs. In other words, active diagnosis is achieved 
by preventing inappropriate control actions. The main 
drawback of this method is that preventing actions is not 
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suitable at all to the space domain. Indeed it is important to 
maintain all actions applicable for the purposes of the mission.  

A combined approach is proposed in [14] as a solution where 
active diagnosis is enabled to avoid ambiguities by selectively 
blocking or executing actions. It is formulated in an event-based 
framework where event-based diagnosers are synthesized and 
they can determine if the system is diagnosable through passive 
or active diagnosis. This method obviously inherits from the 
drawback of the previous method as preventing actions may be 
a problem.  

Pervasive diagnosis has been proposed in [11] to construct 
informative mission plans that simultaneously achieve mission 
goals and provide diagnostic information. A heuristic search 
algorithm has been proposed for generating these informative 
mission plans. In other words, pervasive diagnosis optimally 
achieves as much diagnosis as possible during the mission, 
adding a diagnosis capability without disrupting the mission. 
Active diagnosis and mission can, therefore, take place 
simultaneously, leading to interlinked diagnosis and mission 
planning. This method gives the mission plan a huge impact on 
the diagnosis. This strategy is applicable only when the cost of 
failure is low compared with the cost of stopping the mission to 
perform diagnosis, which is hardly the case for space systems. 
Indeed, failure may result in losing the satellite and canceling 
the mission anyway. Pervasive diagnosis is hence interesting in 
application domains in which failures do not lead to 
catastrophic and non-reversible situations, which is not the case 
in the space domain. 

B. Motivations in relation with current FDIR in Space 
Systems 

The main health management constraint for satellites is to avoid 
the system’s loss at any cost. The on-board Fault Detection, 
Isolation and Recovery (FDIR) strategy aims at detecting faults, 
isolating them and reconfiguring the satellite either in the 
previous operational mode (fail-op), or in one of the safe modes 
(fail-safe) along the following strategy: 

 Level 0 fault: the fault is detected by a device and is 
automatically reconfigured; the system returns to its 
previous operational mode.  

 Level 1 fault: the fault is detected by a device and is 
reconfigured by the Data Handling Subsystem (DHS) 
(generally the On-Board Computer or OBC), usually by 
using hardware redundancy; the system returns to is 
previous operational mode.  

 Level 2 fault: the fault is detected by the DHS thanks to 
inconsistency of Attitude and Orbit Control System 
(AOCS) sensors. These faults relate to late detections 
of anomalies without the ability to distinguish 
a clear origin. The passivation of these faults relies on 
putting the satellite in one of its safe modes. 

 Level 3 fault: a fault in the onboard software generates 
a watchdog alarm. This type of faults is managed by 
rebooting the on-board software with or without an 
OBC change. The passivation of these faults relies on 
putting the satellite in one of its safe modes. 

 Level 4 fault: these faults trigger external major alarms 
like a too weak battery level, a presence of light in 
unauthorized places, too high angular velocity… The 

passivation of these faults relies on putting the satellite 
in one of its safe modes. 

 According to space experts feedback, at level 0 and 1 faults 
are by definition detectable at the equipment level and diagnosis 
is quite obvious. The associated FDIR strategy is implemented 
either within the equipment itself or within the on-board 
software. Higher-level faults are more problematic because 
their origin is usually unknown and may require improvised, 
ground-based procedures where operators typically conduct the 
tests by switching off each equipment one by one. These are 
exactly the type for faults for which the proposed active 
diagnosis method is useful: instead of switching off each 
equipment one by one on ground-request, the idea is to use an 
OBCP instead. Let us notice that the current FDIR process is 
highly deterministic depending on the analysis of unit failure, 
on the definition of monitoring parameters, isolation and 
reconfiguration processes. Some complex faults (of level 2 to 
4) can only be monitored at system level, which prevents the 
actual identification of the failed unit, and triggers a global 
reconfiguration, often resulting in loss of availability of the 
overall spacecraft from several hours to several days. The 
proposed innovation enables to increase the level of 
investigation to add new means of failure identification and 
therefore to optimize system availability. 
 The main contributions of this paper are the following. First, 
an active diagnosis method is proposed that maintains all 
actions applicable for the purpose of the mission and that does 
not interfere with any control strategy of the system. Second, 
the active diagnosis solution is designed so as to manage non 
trivial types of faults, integrating new criteria, such as cost of 
actions. Third, the active diagnosis function is integrated within 
the existing FDIR strategy via the OBCP mechanism. In the 
case study, the existing FDIR OBCP is implemented as a state 
machine managing both fault detection and reconfiguration of 
the Spacewire Network. The proposed active diagnosis solution 
can be easily translated into the same OBCP format, allowing 
for an easy comparison. Moreover, real time constraints of the 
space system are respected: for example the Spacewire’s 
dynamics impose a frequency of 1Hz for the acquisition of each 
equipment health status. 

III. CASE STUDY 

A. Case Study Choice 

The three main case studies for the active diagnosis 
experimentation that were identified are: instrument monitoring 
through a Spacewire Network, thruster fault diagnosis with 16 
or 24 thrusters, and solar cell calibration methods. Handling 
thruster fault diagnosis and solar cell calibration implies dealing 
with continuous and discrete dynamics. These systems hence 
require a hybrid model coupling differential 
equations/difference equations and finite state machines. We 
decided that this makes complex the experimentation without 
much added value and we opted for the instrument monitoring 
through a Spacewire Network.  On the other hand, the 
instrument monitoring through a Spacewire Network presents 
the following advantages: i) it offers cases where the faulty 
component cannot be easily identified, ii) it remains simple 
which allows to validate the outputs of the process by hand, and 
iii) it can be modelled as a discrete event system, which can also 
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be dealt by ActHyDiag by ignoring continuous dynamics. Last 
but not least, the dynamics and active diagnosis strategies are 
compatible with the OBCP mechanisms. 

This case-study is further described in the next sections 

B. Spacewire Case Study Presentation 

This case-study is based on a redundant Spacewire Network 
topology where up to 6 instruments, monitored and controlled 
by the on-board software hosted in the Satellite Management 
Unit (SMU), are transferring science data to a mass memory 
unit called the Payload Data Handling and Transmission 
(PDHT) through Spacewire routers. The data transferred in the 
PDHT is downloaded later to the ground when possible. This 
architecture is illustrated in Fig. 2. 

The dataflow within the network therefore includes science 
data from instruments to PDHT, telecommands from SMU for 
instrument control, and telemetries from instruments to SMU 
for monitoring and control. An important aspect is the 
configuration of the routers, that binds inputs and outputs 
communication ports for the communications with a specific 
protocol: a router output port is allocated to a transaction until 
this transaction ends, and cannot be used until it is released. 
Spacewire Network relies in flow control token exchanges 
guaranteeing that until the receiver does not read data from its 
reception port, no data can be sent that would overflow the 
communication buffers. Likewise, the routers are relying on 
wormhole (blocking) mechanism and congestions can happen. 
A massive congestion can be especially tricky to solve since 
several causes can generate it and there is no easy mechanism 
to isolate its origin. 

The case study focuses on the nominal part of the network 
(on the left of Fig. 2), and the interest is put on a fault that can 
occur on any instrument, and propagate across the network 
leading to network saturation. Instruments can be ON or OFF. 
In ON mode, the nominal behavior of an instrument is to send 
science data to the mass memory through a reasonable traffic, 
to execute some telecommands coming from the SMU, and to 
send to the SMU some housekeeping telemetries.  
 

The faulty behavior of an instrument is a “babbling idiot” 
behavior. The instrument produces very big science packets that 
will saturate the network: the mass memory will not be able to 
store all incoming science data. When this situation occurs, 
SMU is still able to send commands to instruments (request of 
a healthy status, mode change request, …) but the instruments 
may not respond if their emission buffers are full. 

The SMU controlling the network can configure the 
Spacewire router ports one by one. One possible action in case 
of network saturation is therefore to switch OFF and then ON a 
router port associated with a specific data transaction, leading 
to the discard of the packet. 

Health state of the overall system is monitored by the SMU 
and obtained by instrument health status observed via a periodic 
(1Hz) health check request and response between the SMU and 
each instrument. When the network is saturating due to a faulty 
instrument, some or all instruments may not answer to the 
health check request. 

When the network is saturating, diagnosis intuitively 
consists in progressively switching OFF the router ports 
associated to the instruments until the network retrieves a 

healthy status, and health status of the remaining instruments 
are able to reach the SMU node. This active diagnosis plan will 
be generated automatically by ActHyDiag and implemented as 
an OBCP running on the SMU 

IV. ACTHYDIAG: AN ACTIVE DIAGNOSIS FRAMEWORK 

A. Modeling Formalism 

ActHyDiag is an extension of the software HyDiag that 
implements diagnosis for hybrid systems [4, 2, 8]. Hybrid 
systems are modelled as hybrid automata [10]. Formally, a 
hybrid automaton is defined as a tuple 𝑆 ൌ
 ሺ𝜁, 𝑄, 𝛴, 𝑇, 𝐶, ሺ𝑞଴, 𝜁଴ሻሻ where: 
 𝜁 is a finite set of continuous variables that comprises input 

variables 𝑢ሺ𝑡ሻ  ∈  ℝ௡ೠ, state variables 𝑥ሺ𝑡ሻ  ∈ ℝ௡ೣ, and 
output variables 𝑦ሺ𝑡ሻ ∈ ℝ௡೤. 

 𝑄 is a finite set of discrete system states.  
 𝛴 is a finite set of events. 

Fig. 2.  Spacewire Network architecture 

Fig. 3. Example of a hybrid system. 
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.

 𝑇 ⊆  𝑄 ൈ  𝛴 →  𝑄 is the partial transition function between 
states.  

 𝐶 ൌ ⋃ 𝐶௤௤∈ொ  is the set of system constraints linking 
continuous variables. 

 ሺ𝜁଴, 𝑞଴ሻ  ∈  𝜁 ൈ 𝑄, is the initial condition.  
 
Each state 𝑞 ∈  𝑄 represents a behavioral mode 

characterized by a set of constraints 𝐶௤ that model the linear 
continuous dynamics (defined by their representations in the 
state space as a set of differential and algebraic equations). A 
behavioral mode can be nominal or faulty (anticipated faults). 
The unknown mode can be added to model all the non-
anticipated faulty modes. The discrete part of the hybrid 
automaton is given by 𝑀 ൌ  ሺ𝑄, 𝛴, 𝑇, 𝑞଴ሻ, which is called the 
underlying DES. 𝛴 is the set of events that correspond to 
discrete control inputs, autonomous mode changes and fault 
occurrences. The occurrence of an anticipated fault is modelled 
by a discrete event 𝑓௜ ∈  𝛴௙ ⊆  𝛴௨௢, where 𝛴௨௢ ⊆  𝛴 is the set of 
unobservable events. 𝛴௢  ⊆  𝛴 is the set of observable events. 
Transitions of 𝑇 model the instantaneous changes of behavioral 
modes. The continuous behavior of the hybrid system is 
modelled by the so called underlying multimode system 𝛯 ൌ
 ሺ𝜁, 𝑄, 𝐶, 𝜁଴ሻ. The set of directly measured variables is denoted 
by 𝜁ை஻ௌ ⊆  𝜁. An example of hybrid system modelled by a 
hybrid automaton is shown in Fig. 3. Each mode 𝑞௜ is 
characterized by state matrices 𝐴௜, 𝐵௜, 𝐶௜, and 𝐷௜.  

B. Architecture and Principles 

ActHyDiag operates via the following steps represented in 
Fig. 4: the first step is the input model that requires to fill out 
the fields previously explained (modes, events). A file that 
indicates the events of 𝑆 that are actions, as well as their 
respective cost is added. This is called the enriched hybrid 
model. ActHyDiag then generates Analytical Redundancy 
Relations (ARR) for each mode using the well-known parity-
space approach [9] to build the Behavior Automaton (BA). The 
 

2 DIADES is a software from LAAS-CNRS, Toulouse, France. 
Documentation and download available on 
http://homepages.laas.fr/ypencole/DiaDes/. 

idea is to capture both the continuous dynamics and the discrete 
dynamics within the same mathematical object BA. The 
enriched model is completed with specific observable events, 
called signature-events that are generated from the mode 
signatures provided by the corresponding ARRs, or directly by 
an expert. A specific transition labelled with a specific 
signature-event is introduced between two modes when they 
have different signatures. The resulting automaton is 𝐵𝐴ሺ𝑆ሻ ൌ
ሺ𝑄௕௘௛, Σ஻஺, 𝑇௕௘௛, 𝑞஻஺

଴ ሻ, where 𝑄௕௘௛ is the union of the finite set 
of discrete system states and the states that model the 
continuous reaction after the occurrence of a discrete event, Σ஻஺ 
is the alphabet that contains discrete events and events 
modelling the signature switches, 𝑇௕௘௛ the partial transition 
function and 𝑞஻஺

଴  the initial state.  
Diagnosis is performed thanks to a specific finite machine 

called a diagnoser. The diagnoser is built from the BA 
following the approach described in [12]. The task of building 
such diagnoser is not easy because it requires to browse the 
entire graph representing the BA automaton. To this end, the 
tool DiaDES2 is used and allows us to generate the diagnoser 
automatically. The user can run in parallel a simulation of the 
system and he/she can display the following data: inputs, 
outputs, events, belief state of the diagnosis, etc.  

Active diagnosis is performed thanks to an active diagnoser. 
Based on the BA, ActHyDiag computes an active diagnoser that 
is able to predict whether or not a fault can be diagnosed with 
certainty by applying an action plan from a given ambiguous 
situation [7]. From this active diagnoser, a planning domain in 
the form of an AND/OR graph can be extracted.  

At runtime, the diagnosis might be ambiguous. An active 
diagnosis session can be launched as soon as the active 
diagnoser can assess that the current faulty situation is 
discriminable by applying some actions. If the active diagnosis 
session is launched, an AO∗ algorithm starts and computes a 
conditional plan from the AND-OR graph that optimizes an 
action cost criterion. It is important to notice that the active 

Fig. 4 ActHyDiag architecture 



6 
 

diagnosis plan issued by ActHyDiag only displays discrete 
actions. In particular, it is assumed that if it is necessary to guide 
the hybrid system towards a state based on continuous control, 
the synthesis of control laws must be performed independently. 
However, this feature is not required for the selected case study.  

C. Active Diagnoser 

This section describes the construction of the so-called 
active diagnoser. The early principles of the active diagnoser 
were introduced in [3][5]. The aim of this data structure is to 
precompile the knowledge that is necessary for the generation 
of the active diagnosis plans from the behavioral automaton 
(BA) described in the previous section [6]. Here we recall the 
definition of the active diagnose and provide the details that are 
necessary to understand how to effectively compute it.  

The active diagnoser is an automaton whose transitions are 
labeled with an observable event 𝑜 ∈ 𝛴௢

஻஺  from the BA. The 
active diagnoser is deterministic and complete, i.e. each state 
contains exactly |𝛴௢

஻஺| output transitions and any event of 𝛴௢
஻஺ 

is the label of one of them. Formally speaking, the active 
diagnoser Δ is the automaton Δ ൌ ሺ𝑄௱, 𝛴௢

஻஺, 𝛿, 𝑞௱
଴, 𝜏ሻ where: 

 𝑄௱ is a finite set of states; 
 𝛴௢

஻஺ is the diagnoser alphabet, i.e. the observable events 
from the BA; 

 𝛿: 𝑄௱ ൈ Σ௢ → 𝑄௱ is the transition function; 
 𝑞௱

଴ ∈ 𝑄௱ is the initial state; 
 𝜏: 𝑄௱ ൈ  Σ௙ → 𝑡𝑎𝑔𝑠ሺ𝛴௙ሻ is the tag function. 
The set of states 𝑄௱ and the transition function 𝛿 are defined as 
follows. Let 𝑝𝑎𝑡ℎ𝑠ሺ𝑄ଵ, 𝜎, 𝑄ଶሻ denote the set of transition paths 
of the BA such that the source is in 𝑄ଵ, the target is in 𝑄ଶ, the 
observable part is exactly the sequence 𝜎 and the last transition 
is observable, which therefore means that so is the last event of 
𝜎. Each state 𝑞 of the active diagnoser is mapped with a couple 
ሺ𝐵𝐴ሺ𝑞ሻ, 𝑇𝑎𝑔𝑠ሺ𝑞ሻሻ: 

1. the set 𝐵𝐴ሺ𝑞ሻ is a subset of states of BA; 
2. the vector  𝑇𝑎𝑔𝑠ሺ𝑞ሻ ∈ ∏ 𝑡𝑎𝑔𝑠ሺ𝑓௜ሻ௡

௜ୀଵ  with 𝑡𝑎𝑔𝑠ሺ𝑓௜ሻ, 
𝑓௜ ∈ 𝛴௙ ൌ ሼ𝑓ଵ, … , 𝑓௡ሽ, being the set of following tags: 
ሼ𝑓௜ െ 𝑠𝑎𝑓𝑒, 𝑓௜ െ 𝑠𝑢𝑟𝑒, 𝑓௜ െ 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑙𝑒, 𝑓௜

െ 𝑛𝑜𝑛𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑙𝑒, 𝑓௜
െ 𝑛𝑜𝑛𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒ሽ. 

The set of states 𝑄௱ and the transition function 𝛿 are then 
defined by induction as follows.  

1. Let 𝑄௱
଴ ൌ ሼ 𝑞௱

଴ ሽ where 𝑞௱
଴ is associated with 𝐵𝐴ሺ𝑞௱

଴ሻ ൌ
ሼ𝑞஻஺

଴ ሽ where 𝑞஻஺
଴  denotes the initial state of the BA and 

𝑇𝑎𝑔𝑠ሺ𝑞௱
଴ሻ = (𝑓ଵ– 𝑠𝑎𝑓𝑒, … , 𝑓௡– 𝑠𝑎𝑓𝑒ሻ.  

2. Let 𝛿௜: 𝑄௱
௜ ൈ Σ௢ → 𝑄௱

ఋ௜ for any 𝑖 ൒ 0 be such that, if 
𝐵𝐴ሺ𝑞ሻ ൌ ∅ then 𝛿௜ሺ𝑞, 𝑜ሻ ൌ 𝑞 for any event 𝑜 and  
𝑇𝑎𝑔𝑠ሺ𝑞ሻ = 
(𝑓ଵ– 𝑛𝑜𝑛𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒, … , 𝑓௡– 𝑛𝑜𝑛𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒ሻ. 
Otherwise 𝛿௜ሺ𝑞, 𝑜ሻ ൌ 𝑞 and 𝐵𝐴ሺ𝑞ᇱሻ, q’≠q, is defined 
as the set of BA states such that 
𝑝𝑎𝑡ℎ𝑠ሺ𝐵𝐴ሺ𝑞ሻ, 𝑜, 𝐵𝐴ሺ𝑞ᇱሻሻ is maximal. Note that 
𝐵𝐴ሺ𝑞ᇱሻ might be empty (in that case 
𝑝𝑎𝑡ℎ𝑠ሺ𝐵𝐴ሺ𝑞ሻ, 𝑜, 𝐵𝐴ሺ𝑞ᇱሻሻ is also empty), due to the 
completeness of the diagnoser. For any fault event 𝑓௜, 
let 𝑇𝑎𝑔𝑠ሺ𝑞, 𝑖ሻ denote the i-th element of the vector 
𝑇𝑎𝑔𝑠ሺ𝑞ሻ. 

a. 𝑇𝑎𝑔𝑠ሺ𝑞ᇱ, 𝑖ሻ=𝑓௜– 𝑠𝑎𝑓𝑒 if for any observable 
sequence 𝜎 such that 
𝑝𝑎𝑡ℎ𝑠ሺ𝐵𝐴ሺ𝑞௱

଴ሻ, 𝜎, 𝐵𝐴ሺ𝑞ᇱሻሻ is not empty then 
none of these paths contains the event 𝑓௜. 

b. 𝑇𝑎𝑔𝑠ሺ𝑞ᇱ, 𝑖ሻ=𝑓௜– 𝑠𝑢𝑟𝑒 if all of the paths in 
𝑝𝑎𝑡ℎ𝑠ሺ𝐵𝐴ሺ𝑞௱

଴ሻ, 𝜎, 𝐵𝐴ሺ𝑞ᇱሻሻ contain the event 
𝑓௜.  

c. If only part of the paths in 
𝑝𝑎𝑡ℎ𝑠൫𝐵𝐴ሺ𝑞௱

଴ሻ, 𝜎, 𝐵𝐴ሺ𝑞ᇱሻ൯ contain the event 
𝑓௜ then 𝑇𝑎𝑔𝑠ሺ𝑞ᇱ, 𝑖ሻ=𝑓௜– 𝑛𝑜𝑛𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑙𝑒 
if there is no observable sequence 𝜎𝜎ᇱ such 
that: 

i.  there exists a subset 𝑄′ of the BA’s 
states that maximizes the set 
𝑝𝑎𝑡ℎ𝑠ሺ𝐵𝐴ሺ𝑞௱

଴ሻ, 𝜎𝜎ᇱ, 𝑄′ሻ, and 
ii. the set 𝑝𝑎𝑡ℎ𝑠ሺ𝐵𝐴ሺ𝑞௱

଴ሻ, 𝜎𝜎ᇱ, 𝑄′ሻ is 
not empty, and  

iii. either any of these paths contain the 
event 𝑓௜ or none of them contains it.  

Finally, 𝑇𝑎𝑔𝑠ሺ𝑞ᇱ, 𝑖ሻ=𝑓௜– 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑙𝑒 if 
𝑇𝑎𝑔𝑠ሺ𝑞ᇱ, 𝑖ሻ is not 𝑓௜– 𝑛𝑜𝑛𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑙𝑒. 

3. Let  𝑄௱
௜ାଵ ൌ 𝑄௱

௜ ∪ 𝑄௱
ఋ௜. 

If 𝛿௜, 𝑖 ൒ 0, is recursively applied from 𝑄௱
଴, as the BA is finite, 

there exists a step 𝑛 such that 𝑄௱
௡ାଵ ൌ 𝑄௱

௡. The set of active 
diagnoser states is finally defined as 𝑄௱ ൌ 𝑄௱

௡ and the transition 
function is 𝛿 ൌ  𝛿௡. Finally, for any state q and any fault 𝑓௜, 
𝜏ሺ𝑞, 𝑓௜ሻ ൌ  𝑇𝑎𝑔𝑠ሺ𝑞, 𝑖ሻ. 

To sum up, the precompilation of the BA into the active 
diagnoser computes a tag associated to each diagnoser state for 
each fault 𝑓௜. The tag determines whether an active diagnosis 
plan exists to disambiguate between the presence and the 
absence of each fault 𝑓௜. This is summed up in Table 1.  

D. Generation of diagnosis plans 

For finding the optimal plan, a best-first search algorithm 
that explores a graph built on-the-fly from the active diagnoser 
is used. This graph is an AND-OR tree (Nilsson,1998), where 
OR nodes correspond to a sequence of observations and AND 
nodes correspond to a sequence of actions. The algorithm tries 
to avoid as much as possible building the entire AND-OR tree 
because it may require too much memory and computation time 
resources. 

In the main algorithm (AO) sketched in Fig. 5, the 
RootNode is an ambiguous state where the active diagnosis 
starts. It has to be tagged as 𝐹 െ 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑙𝑒 at least for one 
fault for being considered as solvable. The active diagnoser is 
enriched by costs associated to each action. Observations are 
supposed to have 0 cost. Several criteria and exploration 
options are defined. It is possible to explore all possible AND 
nodes or to explore only one branch of the tree (by depth-first 
search). It is also possible to explore only the “cheapest” AND 
nodes. These solutions are useful when the solution space is 
very large.  

The AO_Algorithm used to find an optimal conditional 
plan for refining the diagnosis is detailed in Fig. 6 [15]. As said 
before, functions CreateANDSuccessors and 
CreateORSuccesors create the AND-OR graph on-the-fly 
knowing the CurrentNode and the active diagnoser. Infinite 
or too expensive branches are pruned during the search. 
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Tag Meaning Interest for active diagnosis 

𝑓௜– 𝒏𝒐𝒏𝒅𝒊𝒔𝒄𝒓𝒊𝒎𝒊𝒏𝒂𝒃𝒍𝒆 
It is impossible to determine if fault 𝑓௜  has 

occurred or not, even if we act and wait for more 
observations.  

NO: the active diagnosis problem has 

no solution for 𝑓௜ . 

𝑓௜– 𝒅𝒊𝒔𝒄𝒓𝒊𝒎𝒊𝒏𝒂𝒃𝒍𝒆 

From the current state, it exists at least some 
potential future observable sequences that can 

decide with certainty whether 𝑓௜  has occurred or 
not. 

YES : from the current state, there 
might exist an action plan that will produce 
one of the expected future observable 
sequences that can assert the presence or the 

absence of the fault 𝑓௜. 

𝑓௜– 𝒔𝒂𝒇𝒆 𝑓௜  has not occurred. NO: the diagnosis is not ambiguous 

𝑓௜– 𝒔𝒖𝒓𝒆 𝑓௜  has occurred. NO: the diagnosis is not ambiguous 

Table 1. Tags, meanings and interest for active diagnosis 

 

 

Fig. 5: AO main Algorithm flowchart
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Fig. 6: AO_Algorithm 

V. APPLICATION TO THE SPACEWIRE 

A. Model of the SpaceWire 

SpaceWire components are modeled as automata and 
implemented in the Supremica software [1]. Supremica is an 
integrated environment for verification, synthesis and 
simulation of discrete event systems. We only use it to 
synchronize the SpaceWire component models.  

The models of the 3 instruments and the associated router 
ports are illustrated in Fig. 7 Switch on and switch off actions 
were removed from the model. Indeed, for active diagnosis, the 
only actions required are closing and opening the flows 
associated to instruments. The global model is obtained by 
synchronization. One difficulty is the number of transitions 
resulting from synchronization. 

Fig. 7: Supremica automata for instruments and SpaceWire router 

The model of the full case study excluding the actions 
corresponding to RMAP requests for verifying the health status 
(“check” events) includes 64 states, 9 events and 288 
transitions. Once the complete model is generated with 
Supremica, it is necessary to import it in ActHyDiag. A Matlab 
function has been developed to import the .xml file generated 
by Supremica into a .mat file understandable by ActHyDiag. 
Then the cost of each action must be added before launching 
the active diagnosis plan search algorithm. The “check” 
operation (2 transitions and one state) is added to the model for 
each relevant state. The strategy for active diagnosis is to 
consider the overall state of the network as saturated or 
unsaturated. The overall status is determined from responses to 
the health status returned by the instruments whose ports are 
open. 

Our experiment aims not only to provide solutions for the 
SpaceWire benchmark, but also to study the feasibility of 
applying active diagnosis in cases where the number of 
components is increased. In this context, our goal has been to 
develop a method for generic modelling. This method can be 
summarized with the following steps: 1) model components in 
Supremica, 2) synchronize component automata, 3) export .xml 
file then create .mat file and import it in ActHyDiag, 4) add 
costs, 5) generate active diagnosis plans from relevant nodes in 
the diagnose. 

B. Active Diagnoser 

The models were imported into Matlab and the diagnosers 
were generated up to 6 instruments. 

The particularity of the active diagnoser for the SpaceWire 
is that nodes are tagged either F-discriminable or F-sure, i.e. 
nodes tagged F-nondiscriminable or F-safe do not exist. For the 
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example of 3 instruments, the active diagnoser has 304 nodes; 
for 4 instruments it has 5344 nodes. The objective is to find the 
most relevant node for an active diagnosis session. A priori, it 
is the node where all the flows are open and in which the 
network is detected saturated. For the active diagnosis tests, we 
launched the active diagnosis algorithm when the diagnoser 
was in that node.  

C. Translation into OBCP 

In order to validate experimentally the conditional plans 
obtained by the proposed active diagnosis method, it is 
necessary to derive corresponding OBCP procedures. Two 
aspects are considered during this step: 
 Adding system dynamic aspects: they are taken into 

account by adding some delays as time was not modelled 
in the plan generation, 

 Translation into the target language: the conditional plan is 
defined as pseudo code and needs to be translated into Java, 
using the available services. 

For the Spacewire case-study, the entire conditional plan is 
contained in a Java function called diagnose_network() 
that inherits from the plan structure, with each action or 
observation translated as a call to an external service. Examples 
of translation of conditional plan lines and java service calls are 
given in Table 2. 
 

Conditional Plan Java service call 

close_flow1 monitor_port_state(1, false); 

open_flow3 monitor_port_state(3, true); 

Check monitor_scan(); 

if check OK if (monitor_failing_nb == 0) 

if check KO if (monitor_failing_nb != 0)  

fault1 sure and fault2 sure and fault3 
sure END 

diag_result = 111; 

return diag_result; 

[missing timing info] monitor_tempo(); 

Table 2. Conditional plan into java service call translation 

The global function diagnose_network()returns an 
integer value containing the result of the diagnosis as presented 
in Table 3. 
 

Diag_result value Result 

111 fault1 sure and fault2 sure and fault3 sure 

11 fault1 unsolvable and fault2 sure and fault3 
sure 

101 fault1 sure and fault2 unsolvable and fault3 
sure 

110 fault1 sure and fault2 sure and fault3 
unsolvable 

100 fault1 sure and fault2 unsolvable and fault3 
unsolvable 

1 fault1 unsolvable and fault2 unsolvable and 
fault3 sure 

10 fault1 unsolvable and fault2 sure and fault3 
unsolvable 

Table 3. Result of diagnosis 

 

Fig. 8: Original statechart for the Spacewire Network FDIR 

The objective was then to inject this java active diagnoser 
function within the existing prototype of the case-study that 
already implements an FDIR strategy based on OBCP. The 
original OBCP was in the form of a state machine implementing 
both fault detection and reconfiguration of the Spacewire 
Network, as illustrated in Fig. 8. 

D. Scenarii and Results 

The system starts in a healthy state where the network is not 
yet saturated. The FDIR OBCP performs periodic monitoring 
of the network by sending health check requests to the 
instruments that have to answer subsequently. When a faulty 
instrument produces a huge packet, all the instruments data 
flows towards the mass memory are suspended and the entire 
network gets saturated, preventing health check responses to be 
sent by the instruments. As soon as several responses are 
missing, the OBCP goes to the “congestion” state. In this state, 
the router ports corresponding to the instruments that did not 
answer the health check request are closed. In fact all ports need 
to be closed as the full network is saturating very quickly due 
to the high data rates. After full closure of the ports, the OBCP 
enters in the “stabilized” mode where router ports are re-open 
one by one. As the simulated fault is transient, there is no more 
faulty instrument in this phase. However, because of a bug in 
the hardware used for the demonstration (Spacewire router 
USB connexion misbehavior), the confirmation that the 
network is OK may require up to three retries.  

In order to validate the active diagnosis elaborated as a 
conditional plan, the OBCP is modified as follows. When the 
congestion of the network is detected, the active diagnosis 
function is called. When the active diagnosis function has 
identified the faulty instrument, it relies on the original FDIR 
OBCP processes to proceed with the network reconfiguration 
(the active diagnosis does not include reconfiguration aspects).  

The new OBCP can easily be loaded into the prototype, and 
several fault injection scenarios can be run. Two of them are 
reported below. 

In Scenario 1, a transient fault on instrument 3 was tested. 
The active diagnosis OBCP was tested, but the diagnosis result 
was not correct: instrument 3 was the faulty one, but the 
diagnose_network function indicated that instrument 1 was 
faulty. A deep analysis of the packets exchanged showed that 
the mismatch was related to the limitation of the prototype and 
lack of observables on the Spacewire Network. This constitutes 
a perfect illustration of the difficulty to find root causes of 
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Spacewire Network saturation and also an illustration of the 
difficulty to model reality.  

In Scenario 2, a persistent fault on instrument 3 was tested. 
This fault was simulated physically, preventing the faulty 
instrument to provide a health check response after emission of 
the big packet. In this case, the active diagnosis OBCP 
identified correctly the instrument 3 as the faulty one.  

In its current state, the testbed does not allow us to 
experiment multiple faults in the instrument set. It has to be 
improved for testing multiple faults. However, the algorithm 
considers that multiple faults are possible: active diagnosis 
plans are then more complex than those intuitively expected by 
someone assuming simple faults.  

Concerning the reconfiguration step, this approach adopts 
the perspective that the operation of the system is suspended to 
run the active diagnosis session. The active diagnosis actions 
hence do not interact with actions dedicated to control. Note 
also that active diagnosis is designed to isolate ambiguous 
diagnoses, not to be fault tolerant. The proposed solution 
enables to recover a failed system after a transient failure. This 
transient effect might result in data loss. Since the proposed 
innovation is external to the communication system, it cannot 
compensate for the data loss. This could only be achieved 
through an increase in QoS (Quality Of Service) for the overall 
communication either from the communication system itself 
(through hot redundancy or retry processes) or at higher level 
through packet acknowledgement at transport level (like TCP 
for instance) or higher (applications monitoring the effect of 
commands, like PUS (Packet Utilisation Standard) services for 
instance in space applications). A perspective of this work is 
then a higher use of deterministic communication protocols in 
networks that allocate good bandwidths with guaranteed quota. 

VI. CONCLUSION AND FUTURE WORK 

This article highlights the interest of active diagnosis 
encoded as an OBCP. The tools implemented can handle 
complex nontrivial cases for system engineers, incorporating 
interesting dimensions such as cost criteria. Interestingly, the 
translation of the generated conditional plan as an OBCP is 
quick and easy (search / replace text). The OBCPs therefore are 
an ideal format for this type of functionality, and the proposed 
concepts perfectly meet the needs of active diagnosis. 

Three industrial obstacles are highlighted in this study: i) the 
length of the conditional plan can become very large depending 
on the number of instruments, making it impossible for the 
implementation as an OBCP as it would be too expensive in 
terms of on-board memory. ii) the modelling of the considered 
system may be tedious. iii) validation of the generated plans can 
be complex and require a large number of test cases. This later 
issue can be made easier by analyzing behavioral symmetries 
of the considered system. In any case, theoretical validation is 
an issue that should be addressed in the future.  

Another issue concerns real-time aspects. For the case study, 
the execution performance of the OBCP is compatible with the 
dynamics of the Spacewire Network (health status at 1 Hz). In 
the testbed, the OBCP is the only procedure run in the node 
hosting the flight software. There is no conflict between the 
OBCP and critical functions. Recommended principles and 
mechanisms have therefore not been experienced through the 

testbed. This remains a major point which will determine the 
feasibility of the implementation of the active diagnosis on-
board. This issue could ultimately be resolved by system 
choices. Tests that have been done during the study are not 
representative of a real embedded target, so the results aspects, 
like processing power/time or memory required are not 
relevant. We are currently working on a more representative 
testbed. It will be used for demonstrating real-time aspects of 
the implementation. The proposed evolution in on-board FDIR 
handling contains several steps of system optimization. 
Through these steps, a progressive implementation is possible 
depending on the on-board capabilities. During the study it has 
been demonstrated that a subset of the active diagnostic 
processes can already be successfully implemented to manage 
complex communication networks. Further subsystems could 
also benefit from this innovation in future avionics with 
enhanced processing capabilities, for example thruster faults or 
faults in the calibration of the flexible modes of solar panels.  

Future work will enable to process and experience the 
deterministic aspects of active diagnosis by OBCP 
(performance runtime, characterization of the worst cases, 
integration into the complete flight software...). The scaling 
issues will also be addressed: an interesting solution may be to 
consider the distribution of the generation of the conditional 
plan in a distributed monitoring framework.  
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Figure captions:  
Fig. 1.  The active diagnosis scheme.  
Fig. 2.  Spacewire Network architecture 
Fig. 3. Example of a hybrid system. 
Fig. 4 ActHyDiag architecture 
Fig. 5: AO main Algorithm flowchart 
Fig. 6: AO_Algorithm 
Fig. 7: Supremica automata for instruments and SpaceWire router 
Fig. 8: Original statechart for the Spacewire Network FDIR 
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