Novel Approach for the Assembly of Highly Efficient SERS Substrates
Résumé
In this paper we present the properties of surface-enhanced Raman scattering (SERS) active substrates elaborated by a low-cost approach. Our methodology relying on capillary assembly and soft lithography allows us to generate periodic two-dimensional (2D) matrixes of 100 nm gold nanoparticle patterns in a very precise, cost-efficient, and large-scale manner. For this study, we assembled nanoparticle aggregates of different sizes (one to six particles) in order to determine the influence of the aggregation on the local electric field enhancement. We further demonstrate that this substrate is greatly efficient not only for SERS but also in metal-enhanced fluorescence (MEF) for local enhancement of conventional fluorescence.