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Abstract. In this paper, we analyze the network attacks that can be
launched against IoT gateways, identify the relevant metrics to detect
them, and explain how they can be computed from packet captures. We
also present the principles and design of a deep learning-based approach
for the online detection of network attacks. Empirical validation results
on packet captures in which attacks were inserted show that the Deep
Neural Network correctly detects attacks.
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1 Introduction

With the rise of the Internet of Things (IoT), the number and diversity of con-
nected devices is expected to increase exponentially. While this promises signif-
icant benefits to users, who will have access to a broad range of new applica-
tions, it also opens the doors for a number of new security, privacy and safety
threats, including physical safety and personal security threats. Tight limitations
on hardware cost, memory use and power consumption of IoT devices have given
rise to a number of security vulnerabilities4, which can usually be dealt with tra-
ditional cyberattack countermeasures. However, as discussed in [23], protecting
collections of smart devices poses new challenges that go far beyond securing each
of the individual devices. These new challenges stem partly from the ability of
smart devices to control physical aspects of their environment, and partly from
their interactions with each other and with the Cloud. As a consequence, there
is a wide consensus that security is one of the most challenging requirements for
future IoT systems.

In this paper, we analyze the cybersecurity threats against an IoT-connected
home environment and present the principles and design of a learning-based
approach for detecting network attacks. In an IoT-connected home environment,
there may be dozens or even hundreds of sensors with various functions (e.g.,
measuring temperature, light, noise, etc), in addition to actuators for controlling
systems such as the heating, ventilation, and air conditioning system. Each of

4 According to a 2014 HP study [22], 70% of IoT Devices are vulnerable to various
attacks.



these devices may use different protocols to connect (Wi-Fi, Bluetooth, Ethernet,
ZigBee and others) and most of them are not able to connect directly to the
Internet. A crucial component is then the IoT gateway, which is a device capable
of aggregating and processing sensor data before sending it to Internet servers.

As shown in Fig. 1, our attack detection approach relies on the analysis of
the traffic flows exchanged with the IoT gateway. The data packets exchanged
with the IoT gateway are captured on all network interfaces. These packet flows
are then analyzed in order to extract various packet-level metrics from which
network attacks can be detected. A classification algorithm, which has been
previously trained with ”normal” IoT traffic, takes as input these metrics and
predicts the probability that the IoT-connected home environment is currently
under attack.
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Fig. 1: Architecture of the online attack detection system..

The present paper is an extension of the work presented in [24]. Whereas a
two-class classification algorithm based on a Dense Randon Neural Network was
used in [24], implying that the learning algorithm needed to be first trained with
attack traffic as well as ”normal” traffic, the present work proposes a one-class
classification algorithm based on a Deep Neural Network which does not need
to learn what is attack traffic.

The paper is organized as follows. In Sec. 2, we analyze the vulnerabilities of
IoT gateways and identify the relevant metrics for detecting some of the attacks
against them. Sec. 3 is devoted to the description of the deep learning algorithm.
Section 4 presents the experiment setup as well as some preliminary results on
flood attack detection. Some conclusions are then drawn in Section 5, where
future research directions are also discussed.



2 Network Attacks

IoT gateways sit at the intersection of edge devices (sensors and actuators) and
the Internet, and are therefore vulnerable to both traditional IP attacks targeted
against the IoT gateway and to attacks against wireless smart devices. In this
section, we focus on the security of IoT gateways and consider both types of
attacks. As there is a myriad of different computer and network attack methods,
we focus on some of the most common and most damaging ones: Denial-of-
Service attacks for TCP/IP networks, and Denial-of-Sleep attacks for wireless
sensor networks.

2.1 Denial-of-Service Attacks

A denial-of-service attack (DoS attack) is typically accomplished by flooding the
targeted machine or resource with superfluous requests in an attempt to overload
systems and prevent some or all legitimate requests from being fulfilled. In a
distributed denial-of-service attack (DDoS attack), the incoming traffic flooding
the victim originates from many different sources, making it impossible to stop
the attack simply by blocking a single source.

Some DoS attacks aim at remotely stopping a service on the victim host.
The basic method for remotely stopping a service is to send a malformed packet.
Below, are two standard examples of this type of attacks:

– Ping-of-death attack : the attacker tries to send an over-sized ping packet
to the destination with the hope to bring down the destination system due
to the system’s lack of ability to handle huge ping packets.

– Jolt2 attack : the attacker sends a stream of packet fragments, none of
which have a fragment offset of zero. The target host exhausts its processor
capacity in trying to rebuild these bogus fragments.

Other well known examples of this type of attacks include Land attacks,
Latierra attacks and Rose attacks, but there are many more.

Another form of DoS attack aims at remotely exhausting the resources of
the victim host. This form of attacks involves flooding the remote victim with a
huge number of packets. Below are some well-known examples:

– TCP SYN attacks : This type of attacks exploits a flaw in some implemen-
tations of the TCP three-way handshake. When an host receives the SYN
request from another host, it must keep track of the partially opened con-
nections in a “listening queue” for a given number of seconds. The attacker
exploits the small size of the listen queue by sending multiple SYN requests
to the victim, never replying to the sent back SYN-ACK. The victim’s lis-
tening queue is quickly filled up, and it stops accepting new connections.

– UDP flood : The attacker sends a large number of UDP packets to random
ports on a remote host. The victims checks for the application listening on
this port. After seeing that no application listens on the port, it replies with



an ICMP “Destination Unreachable” packet. In this way, the victimized
system is forced to send many ICMP packets, eventually leading it to be
unreachable by other clients, or even to go down.

There are of course many other forms of flooding attacks, including ICMP
floods and HTTP POST DoS attacks, and many more.

2.2 Denial-of-Sleep Attacks

In the context of the Internet of Things, low-rate wireless personal area net-
works are a prevalent solution for communication among devices. As discussed
in [2], tights limitations on hardware cost, memory use and power consumption
have given rise to a number of security vulnerabilities, including traffic eaves-
dropping, packet replay, and collision attacks, straightforward to conduct5. A
simple form of attack is to deplete the energy available to operate the wireless
sensor nodes [4, 6, 7]. For instance, vampire attacks are routing-layer resource ex-
haustion attacks aiming at draining the whole life (energy) from network nodes,
hence their name [12]. In this section, we shall focus on another form of energy
attacks, which are MAC-layer attacks known as Denial-of-Sleep attacks. Below
are some examples of denial-of-sleep attacks:

– Sleep Deprivation Attack: the ability of sensor nodes to enter a low
power sleep mode is very useful for extending network longevity. The at-
tacker launches a sleep deprivation attack by interacting with the victim in
a manner that appears to be legitimate; however, the purpose of the inter-
actions is to keep the victim node out of its power conserving sleep mode,
thereby dramatically reducing its lifetime [10, 11, 5].

– Barrage Attack: As in the sleep deprivation attack, the attacker seeks
to keep the victim out of its sleep mode by sending seemingly legitimate
requests. However, the requests are sent at a much higher rate and aim at
making the victim performs energy intensive operations. Barrage attacks are
more easily detected than sleep deprivation attacks, which are carried out
solely through the use of seemingly innocent interactions.

– Broadcast Attack: malicious nodes can broadcast unauthenticated traffic
and long messages which must be received by other nodes before being pos-
sibly discarded for lack of authentication [1]. Such attacks are hard to detect
since they have no effect on system throughput, and nodes that receive them
waste energy.

Other forms of denial-of-sleep attacks include Synchronization attacks [9],
Replay attacks [3], and Collision attacks [8].

2.3 Relevant metrics to detect attacks

Tab. 1 presents the relevant metrics for detecting the attacks described above.

5 For instance, these attacks can be conducted with KillerBee, a python-based frame-
work for attacking ZigBee and other 802.15.4 networks



Attack Metric

UDP flood Number of destination UDP ports per second
Number of outgoing ICMP ”destination unreachable” packets

TCP SYN Difference between the numbers of initiated
and established connexions

Sleep Deprivation Attack Number of data packets over a long time scale

Barrage Attack Number of data packets over a short time scale

Broadcast Attack Number of broadcast messages

Table 1: Selected attacks and relevant metrics to detect them.

3 Network-attack detection with deep neural network

This section describes the use of deep neural networks [20, 21, 13, 16, 14, 15] to
detect network attacks, which can be seen as a one-class classification problem.
First, we show how to construct training datasets from captured packets without
attack. Then, we describe the procedures used for deep neural networks to learn
the data and solve the classification problem.

3.1 Dataset construction

Starting with the captured packets, statistical data (e.g., the rate) in time series
can be obtained from captured packets in only the non-attack case. We extract
samples from the time-series statistical data by setting a sliding window with
length l. When a sample Xn ∈ Rl×1 is extracted, we assign the initial label of
this sample denoted as yn = 0. Then, we have a dataset {(Xn, yn)|n = 1, · · · , N},
where the input is the statistical data extracted and the output is a scalar.

3.2 Learning Procedures

Deep neural network The feed-forward architecture of multi layers allows a
deep neural network (DNN) to extract high-level representations from input data
[20, 21, 13, 16, 14, 15]. Suppose the DNN has an input layer, L hidden layers and
an output layer, where the input and output layers have linear activation y = x
while hidden layers have nonlinear activation y = ψ(x). The activation function
ψ(x) can be different types, such as the Logistic, Tanh and ReLU functions. Let
Ol denote the output of the lth layer l = 1, · · · , L + 2. Suppose there is a data
vector Xn, a forward pass of X in the DNN can be described as:

O1 = Xn,

Ol = ψ(Ol−1Wl−1 +Bl), for l = 2, · · · , L+ 1,

OL+2 = OL+1WL+1 +BL+2,

where Wl is the connecting weight matrix between the lth and (l + 1)th layers
and Bl+1 is the bias matrix for the (l + 1)th layer with l = 1, · · · , L + 1. These
are the adjustable parameters of the DNN which need to be determined by the
training procedure.



Training Phase Given Xn, the output of the DNN is OL+2(Xn), and the
adjustable parameters in the DNN are Wl and Bl+1 with l = 1, · · · , L+ 1. Let c
denote the center of the DNN outputs of all the training samples. The problem
of training the DNN for classification becomes

min
Wl,Bl+1,l=1,···,L+1

N∑
n=1

(OL+2(Xn)− c)2. (1)

Stochastic Gradient Descent (SGD) or its variants could be used for solving
(1). Every a certain number of iterations, the center c is updated with the most
recent DNN outputs using

c =

∑N
n=1OL+2(Xn)

N
. (2)

Testing Phase After the training phase, we can use the DNN for classification
with the following three steps:

1. First, we retrieve the latest center c.
2. Second, for an input Xn, we have its DNN output OL+2(Xn). The distance

between this output and the center c can be calculated by d = |OL+2(Xn)−c|.
3. Third, the probability that the input Xn is an attack is calculated by

p =
2

1 + exp(−10d)
− 1. (3)

4 Experimental Results

4.1 Experiment Setup

Some packet captures were obtained from a standard installation of the Carelife
system. The Televes gateway was connected to the Internet using a 3G SIM card.
Several software modules were installed on the gateway in order to capture and
parse (in a PCAP file format) the data packets exchanged with various sensors
which were previously paired and registered by the gateway, as well as those
exchanged by the gateway with Internet servers. Packets were captured for a
complete weekend on all the network interfaces of the gateway (see Fig. 2).

In the following, we shall focus on the packets captured on the PPP inter-
face (a wide-area-network interface based on 3G data communication), but we
emphasize that the analysis would be similar for the other network interfaces.
In total, 100, 653 frames were captured on this interface during the experiment,
50, 296 IP packets were received by the gateway, and 41, 938 IP packets were
sent by it. As a whole, the IP traffic exchanged with the gateway is composed
of 93.8% of TCP packets, 4.1% of UDP packets and 2.1% of ICMP packets. As
shown in Fig. 3, IP packets were sent to 158 distinct destination IP addresses,
and received from 2, 375 distinct origin IP addresses.
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Fig. 2: Configuration used for the experiment.
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Fig. 3: Locations of packet origins and destinations.

The packet captured on the PPP interface were analyzed using Scapy. Scapy
is a packet manipulation tool for computer networks, written in Python by
Philippe Biondi. It can forge or decode packets, send them on the wire, capture
them, and match requests and replies. It can also handle tasks like scanning,
tracerouting, probing, unit tests, attacks, and network discovery. In our case,
Scapy was used to produce the time-series associated to various network met-
rics from pcap files, and the resulting data sets were in turn used to train the
classification algorithm.

4.2 Attack detection results

TCP SYN Attacks We first present the empirical results obtained for the
detection of TCP SYN attacks. Using Scapy, we wrote a Python script for gen-
erating such attacks. The resulting pcap files was merged with the initial packet
capturesusing the utility tool mergecap, so as to superimpose a TCP SYN attack
upon the ”normal” traffic collected during the experiment.



For the detection of TCP SYN attacks, the relevant metric is the difference
between the numbers of initiated and established TCP connections per time slot
(10 s). This metric was extracted from initial packet captures in order to obtain
training samples, where the length of the sliding window is set as 1. The number
of training samples in the non-attack case is larger than that of the samples in
attack case. The DNN exploited has two hidden layers, which respectively have
10 and 10 hidden neurons. The data in Fig. 4a is used to test the trained DNN.
Fig. 4b plots the time-series for the probability predicted by the DNN that there
is an attack. We can see that the DNN trained with only data in the non-attack
case predicts correctly that there was an attack.
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Fig. 4: Scenario where a SYN attack was inserted into the normal traffic captured
from 9:15 AM to 11:03 AM on Sep. 21st, 2017: (a) time-series of the difference
between the numbers of initiated and established TCP connexions per time slot
(10 s), and (b) attack probability predicted by the classification algorithm.

UDP Flood Attacks We now consider UDP flood attacks. As for SYN flood
attacks, we have used Scapy and mergecap to superimpose a UDP flood at-
tack upon the ”normal” traffic collected during the experiment. The attack was
launched at 20:00 on September 22nd, 2017, and lasted for 2 minutes. For this
type of attack, the relevant metric is the number of ICMP ”port unreachable”
messages sent by the gateway per time slot (10s). Again, this metric was ex-
tracted from initial packet captures in order to obtain training samples, which
were feed to a DNN having similar characteristics to the one used for the de-
tection of SYN attacks. The data in Fig. 5a is used to test the trained DNN.
Fig. 5b plots the time-series for the probability predicted by the DNN that there
is an attack. Again, it can be observed that the UDP flood attack is correctly
detected.

5 Conclusion

In this paper, we presented a methodology for the online detection of network at-
tacks against IoT gateways. The methodology, which is based on a deep-learning
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Fig. 5: Scenario where a UDP flood attack was inserted into the normal traffic
captured on Sep. 22nd, 2017: (a) time-series of numbers of ICMP ’Port Unreach-
able’ packets sent by the gateway per time slot (10 s), and (b) attack probability
predicted by the classification algorithm.

approach, can predict the probability that a network attack is ongoing from a set
of metrics extracted from packet captures. As future work, we intend to apply
our methodology to a broad range of network attacks, including Denial-of-Sleep
attacks against Zigbee and Bluetooth-connected devices.
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