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Abstract—We investigate the asymptotic performance of a
reward incentive Delay Tolerant Network based on mean field
limit. We consider a two-hop network with one source and one
destination and N relays. The source is backlogged and sends
messages to the destination by forwarding to the relays it meets.
For each message, there is a promised reward for the first one
who successfully transmits it to the destination. It was shown in
a previous work, the optimal policy for the relays is of thresholds
type (a relay will accept a message until certain time and drop it
after a second threshold). When the second threshold in infinite,
we give the mean-field ODE and show that all the messages have
the same probability of success. When the second threshold is
finite we only give an ODE approximation since the dynamics
are not Markovian.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) rely upon mobility of
nodes to ensure connectivity of the network. In DTNs, nodes
play the role of relays who can receive messages from sources,
store and forward them to other nodes, until the message
arrives to the destination. When a relay can forward a message
to another relay, the DTN is a known as multi-hop network
because a message can be relayed by multiple nodes before
arriving at the destination [1], [2], [3], [4]. While this mecha-
nism improves the probability of success and reduces the time
to deliver a message, it also increases energy consumption of
the relays. In order to reduce energy consumption, a two-hop
mechanism in which a relay is not allowed to forward to others
was considered in [5], [6], [7], [8], [9], [10].

Relaying of messages by nodes is essential in DTNs to
maintain connectivity and to keep the network alive. On the
other hand, nodes incur costs for transmitting, storing, and
receiving messages when they participate in relaying them.
It would be tempting for a node to avoid these costs by not
participating while benefiting from the relaying services of
other nodes. In order to discourage such selfish and harmful
behaviour of nodes and to solve the free rider problem, several
incentive mechanisms have been proposed in the literature. For
most of these mechanisms, the analysis of the performance
measures such as the mean delivery time or the probability of
success is complex, and it is not easy to figure out how much
reward should be proposed by the source to achieve a given
performance.

An exception to these complex mechanisms is the one
proposed in [10]. In there, the source proposes a fixed reward
for the delivery of each message. The first relay to deliver

this message gets this reward. In [11], [12], this mechanism
was analysed for a backlogged source and strategic relays
who were allowed to accept or not messages and allowed to
drop them whenever they wanted. Using the framework of
stochastic games, it was proven that the equilibrium strategy
of a relay has two thresholds. That is, for each message,
relays accept this message only until a first threshold. Once
a relay has accepts a message, it keeps it until a second
threshold unless it meets the destination earlier. Conditions for
the existence of a strictly positive first threshold as well as for
a finite second threshold were also given. The structure of the
equilibrium strategy was then used to derive the relationship
between the reward proposed and the performance measures.
The advantage of this fixed-reward mechanism is that in some
cases this relationship can be numerically computed based on
a recursive formula thereby giving a simple way to compute
the rewards that the source must propose to achieve a targeted
performance.

A. Contributions

In this paper, we pursue the analysis of the fixed-reward
mechanism further by investigating the mean-field limit of
the system dynamics when the number of relays becomes
large. The backlogged source proposes a message until no
relay will accept it any more after which it proposes the next
message. It will be shown that the time-scale for the duration
of a message being proposed by the source, that is, the first
threshold, is O(1/N) where N is the number of relays. The
second threshold will be shown to be O(1). We shall focus
the analysis on the case of the second threshold being infinite.
This leads to a Markovian description of the system, and to
the mean-field limit. We shall give the necessary and sufficient
that the reward must satisfy in order for the second threshold
to be infinite. We let the number of messages is proportion
to the number of relays, say k = tN . We then let N tend to
infinity and study the limits. In order to do that, we consider a
mean field interaction model with two states: state 1 for having
a message and state 0 otherwise. We will show that:

• When the second threshold is infinite, we shall show the
converge to an ODE and give its solution.

• In this case, the probability of success and the delay in
limit do not depend on t.



• When the second threshold is finite, since the dynamics
are no longer Markovian, we give an approximation for
the mean field limit.

B. Related works

In literature, there has been many researches about mean-
field analysis for Delay Tolerant Networks. For instance, [13]
considers a network with one source and one destination. In
this network, the source has only one message to send during a
time T (the life time of a message). The author uses multi-hop
setting where a node will consider to forward a message to
other node based on the available energy. He does not consider
any incentive scheme but work with the trade-off between the
delay and the energy which gives us a complicated optimal
problem. In contradiction, mean-field leads to a simpler result
with a threshold which depends on the remain energy. [14]
works in the mean-field scheme of a Delay Tolerant Network
in which the source wants to send an information formed by
K packages. The destination sends feedback to the source (via
relays) about the number of packages have not received yet,
based on that, the source will send again some corresponding
packages. The work is based on the energy consumption and
does not consider any incentive mechanism. In [15], [16], the
authors study an control problem where the source can control
rate of the number of copies of the message by changing the
probability of forwarding the message to a relay. The authors
proved the optimal strategy for the source is of threshold type
policy. The mean-field limit is presented when the number
of nodes is very large. The mean-field not only helps the
authors reduce the complexity of the problem but also lets
them analyze the network with any size, i.e. with any number
of nodes.

C. Paper organization

The paper is organized as follows: Section II presents our
model and assumptions. We recall results which are necessary
in this paper in Section III. The mean field model and mean
field limits as well as the performance metrics are computed in
Section IV for the case when the second threshold in infinite.
An estimation to compute a(t) := θ(t)N for finite γ is given
in Section V.

II. MODEL DESCRIPTION

We consider a two-hop network with N + 2 nodes with
one source and one destination who are fixed and N other
nodes who play the role of relays. The source has many
messages to send to its destination. N relays move randomly
in the network and may meet the source or the destination
some time following an exponential distribution with rate λ,
µ respectively. We assume that the mobility pattern of relays
and the meeting times between the source and relay, between
the destination and relay are i. i. d. When the source meets
a relay, it will propose a message with a promised reward,
R, for the first relay who successfully delivers the message
to its destination. For a message, the fixed reward means the
source proposes the same reward for all relays. A relay incurs

a cost of receiving and transmitting a message of Cr and Cd
respectively. Keeping a message costs Cs per unit of time. For
convenience, we denote R̄ = R−Cd. At anytime, a relay can
accept or reject a message (when meeting the source), drop or
keep when it has a message. There is no cost of dropping and
rejecting a message. We assume that a relay only rejects or
drops a message if the expected cost is positive. The two-hop
network does not allow a relay to forward messages to other
relays except to the destination. We also assume that a relay
can store only one message at a time and it does not seek a
new message while it is having one. That is, it only can accept
a new message if it had rejected or transmitted or dropped the
previous message. The source proposes messages to relays
sequentially. The source and the relays have no feedback
from the destination that the message has been transmitted
or not. The source does not give any information about how
many relays have the message. In our previous work [11], we
proved that the optimal strategy of relays is of threshold-type:
it accepts until the first threshold and it drop after the second
threshold. We proved the uniqueness of the symmetric solution
that is, all relays will play the same thresholds. The condition
to have solution and the condition to have finite solution were
also given. Based on that, we provided the formula to find the
expected delay and the probability of success of the source
for each message.

III. PRELIMINARIES

In this section, we recall some results from [11] which will
be used in the sequel. We recall one of the main theorems in
[11] that gives the form of best-response policy. Theorem 3.1
in [11] stated that given the strategies of the other relays for
message kth, the best-response policy π∗i (t;x) at time t, state
x of relay i is a threshold-type policy: there exists a θik and
γik > θik such that π∗i (t;ms) = accept if and only if t ≤ θik,
and π∗k(t; 1) = drop if and only if t > γik. Moreover, (θik, γ

i
k)

is the solution of:

γik = sup{t : pik(t) >
Cs

µ(R− Cd)
}, (1)

θik = sup{t : Cr +Gik(t, γik) < 0}, (2)

where by convention the supremum of the empty set is 0 and

Gik(a, b) =

∫ b

a

µe−µ(t−a)(Cs(t− a) + (Cd −R)pik(t))dt

+e−µ(b−a)Cs(b− a). (3)

An immediate corollary stated that the type of policy at a Nash
equilibrium is a threshold-type policy, that is, for a message k,
there exist vectors θk and γk such that relay i uses a threshold-
type strategy with parameters (θik, γ

i
k).

In this paper, we consider the symmetric case. That is, we
assume that all relays will play the same thresholds θk and γk
at equilibrium. In this case, the existence and the uniqueness
of the symmetric solution was proved in [11]. To compute
the thresholds for each message, we need to find the exact
form of the probability that a relay fails to deliver message k



to the destination by time t, pk(t) used in (1) and (2). This
probability can be computed as the follows:

pk(τ) = Vk (min(θk, τ),min(γk, τ))
N−1

, (4)

where

Vk(x, y) = 1−
∫ x

θk−1

φk(s)(1− vx,y(s))ds, (5)

vx,y(s) = e−λ(x−s)+
λ

µ− λ
e−µyeλs

(
e(µ−λ)x−e(µ−λ)s

)
,

with φk(s) be the density function of the event: ”a relay is
ready for message k at time s”. The expression above depends
on the value of θk−1. Therefore, by recursion, it requires all
the knowledge of message 1 to message k−1 to do the analysis
of message k which gives us a challenge. The complexity also
comes from the density function φk(s). We define Ik(x, τ) as
the probability that a relay that comes into play at time x will
accept the kth message and will not be able to deliver it to
the destination by time τ ∈ [θk, γk]. Therefore,

Ik(x, τ) =
e−µτ

µ− λ
λeλx

(
e(µ−λ)θk − e(µ−λ)x

)
(6)

The density function φk(τ) can be defined as follows. For
τ ∈ [θk, γk],

φk+1(τ) = h1(θk)δθk(τ) +φk(τ)

+h2(θk)eµθk
{
µe−µτ + e−µγkδγk(τ)

}
(7)

where

h1(θk) =

∫ θk

θk−1

φk(x) {1− Ik(x, θk)} dx, (8)

h2(θk) =

∫ θk

θk−1

φk(x)Ik(x, θk)dx. (9)

The condition to have a symmetric Nash equilibrium with
θk > 0 is

R̄ ≥ Cr +
Cs
µ
. (10)

This Nash equilibrium is finite, i.e. θk ≤ γk <∞ if and only
if

1 + µ
Cr
Cs

<
(1 + b)N − 1

Nb
, (11)

where

b =
1

σω

∫ θmin

θk−1

φk(s)
(
e−λ(θmin−s) − e−µ(θmin−s)

)
ds,

(12)

with ω =
(
Cs
µR̄

)1/(N−1)

and σ = µ−λ
λ and θmin be the

solution of

1 +

∫ θmin

θk−1

φk(s)
(
e−λ(θmin−s) − 1

)
ds = ω, (13)

We denote θ̂k := θk− θk−1, the interval of time during which
message k is proposed by the source and γ̂k := γk − θk, the
interval during which a relay does not drop message k.

IV. ASYMPTOTIC ANALYSIS

In this section, we study the asymptotic performance of the
network when the number of relays, N , is large. Let YN (τ) ≡
(Y N1 (τ), Y N2 (τ), ..., Y NN (τ)) be a continuous-time stochastic
process where Y Ni (τ) ∈ {0, 1} indicates whether relay i has
message at time τ or not.

Consider the discrete-time embedding of Y and θk defined
by XN (k) = Y(θk). The process XN lives on SN = {0, 1}N .
Here XN

n (k) is the state of relay n at θk−1. If XN
n (k) = 1,

then relay n has a message at the release time of message k,
otherwise it is free to accept message k from the source. With
this definition, the duration of time-slot k is of length θ̂k.

The process XN is a discrete-time Markov chain only if γ̂k
is infinite for all k. Otherwise, we also need to keep track of
the identity of the message held by a relay as well as the γ̂
of that message to be able to define the dynamics of XN .

We now give the condition to have infinite γ̂k when N is
large. Interestingly, the condition does not depend on k. For
this, we first need the following results which shall be invoked
later as well.

Lemma 4.1:

lim
N→∞

Nθ̂k = ck. (14)

Proof: See Appendix A.
The above result states that the duration for which the source
proposes message k, that is θ̂k is O(1/N) as N → ∞. The
intuition behind this result is the following. When the number
of relays is large, in order to observe a change in the occupancy
measure of any state, we need to look at messages that have
sequence numbers of O(N). The intuitive reasoning is that a
message is profitable to accept only if there are a finite number
of relays that are competing to deliver this message. Otherwise,
the probability of success of a relay will be zero, and it will not
accept the message. Since, on an average, there will be at least
λθ̂kNM

N
0 (k) relays that will pick message k, θ̂k should be

0(1/N) in order for the average number of competing relays to
be finite for each message. Thus, we need to look at messages
k = tN to observe changes in the occupancy measure.

Proposition 4.1: When N is large, there exists a symmetric
Nash equilibrium with θ̂k > 0 if and only if R̄ ≥ Cr + Cs

µ .
This solution is finite if and only if

1 + µ
Cr
Cs

<

µR̄
Cs
− 1

ln
(
µR̄
Cs

) . (15)

Proof: See Appendix B.
The RHS of the condition above increases in R̄ = R − Cd.
That means for a small enough reward R, we will get a infinite
γ̂k.

In the rest of this section, we shall assume that the condition
(15) is satisfied so that XN is a discrete-time Markov chain.



We observe that the transitions of each XN
n are independent

from that of the others. The transition probabilities between
the states are

p0,1 = (1− e−λθ̂k) · e−µθ̂k

= λθ̂k + o(θ̂k), (16)

p1,0 = (1− e−µθ̂k) · (e−λθ̂k

+(1− e−λθ̂k) · (1− e−µθ̂k))

= µθ̂k + o(θ̂k) (17)

The expression for p1,0 has the following explanation. The
transition from state 1 to state 0 happens if the relay meets
the destination for the first time to deliver the message that it
has. Then, to remain in state 0 it should either not meet the
source until the end of the interval θ̂k or if it meets the source
before the end of this interval then it should again meet the
destination.

A. Mean-field limit

In [17], a general framework for showing the convergence of
discrete-time Markov chains to mean-field dynamics is given.
Following their steps, let MN (k) be the occupancy measure
which is the vector of frequencies of state s ∈ S at time t,

MN
s (k) =

1

N

N∑
n=1

1{XNn (k)=s}. (18)

We have MN (k) ∈ ∆ := {m ∈ R2,m1 +m2 = 1,m1,m2 ≥
0}.

Define a time rescaled process M̄N (t) as{
M̄N
s (t) = MN

s (t/N) for all t,
M̄N
s (τ) is affine on τ ∈ [t, t+ 1/N)],

(19)

Let â(t) = Nθ̂tN be the rescaled interval during which
message k = tN is proposed . Let â0 be the rescaled interval
for the first message when all the relays are available to
compete for this message (see [12] for its computation). The
following proposition gives the mean-field limit of the rescaled
occupancy measure.

Proposition 4.2: Let m0(t) be the solution of the differential
equation

ṁ0(t) = −λm0(t)â(t) + µ(1−m0(t))â(t), (20)

with â(t) = â0
m0(t) and m0(0) = m. Assume MN

s (0)→ m in
probability as N →∞. Then, for all t > 0, as N →∞,

sup
0≤τ≤t

∥∥M̄N
0 (τ)−m0(τ)

∥∥→ 0, (21)

in probability.
Proof: The proof is based upon the verification of condi-

tions in [17] and is given in Appendix C.
The above proposition gives the fraction of relays that are

available to compete for message t. The following result tells
the duration for which this message will be proposed by the
source.

Fig. 1. The behavior of â(t) when µ = 0.5, λ = 0.3 and N = 500; 800.

Proposition 4.3: Let â(0) = â0/m0(0). Then,

â(t) =
â(0)

α+ (1− α)u
, (22)

where u is the solution of the following equation

−βâ(0)t = α ln(u) + (1− α)u+ α− 1, (23)

where α = µ
µ+λ , β = µ+ λ.

Proof: Equation (20) can be rewritten in terms of â to
get the following differential equation

˙̂a(t)

â2(t)
= (λ+ µ)â(0) + µâ(t). (24)

The solution of this differential equation is given by

â(t) =
â(0)

α+ (1− α)e−β
∫ t
0
â(s)ds

(25)

Let u = e−β
∫ t
0
â(s)ds, then u̇ = −βâ(t)u. Plugging this

substitution into the above equation and taking the integral
we will gives the claimed result.
Using this result, we can also compute the time at which
message t will be released by the source.

Corollary 4.1: Let a(t) = limN→∞ θtN be the release time
of message t. Then,

a(t) = − 1

β
ln(u),

where u is the solution of

−βâ(0)t = α ln(u) + (1− α)u+ α− 1.

Proof: The claim follows by noting that message t is
released at time

∫ t
0
â(s)ds and using the definitions in the

above proposition.
We check numerically that the mean-field ODE is gives a

good approximation for â(t) for finite N . First, we let µ < λ,
and take µ = 0.5, λ = 0.3 (Figure 1) and in Figure 2 the
comparison is done for µ = λ = 0.4.



Fig. 2. The behavior of â(t) when µ = λ = 0.4 and N = 500; 800.

Fig. 3. The simulated probability and its analytical value with N = 800,
µ = 0.5, λ = 0.3.

B. Performance metrics

In this part, we will find the probability of success of
message number k = tN for N is large as well as its expected
delay. The following proposition present the probability of
success and the delay when N is large.

Proposition 4.4: If k = tN and N is large, we have the
probability of success of message kth (denoted by ξ(t)) will
be

ξ(t) = 1− e−λâ0 , ∀t. (26)

We let D(t) be the delay provided that at least one copy of
message has reached the destination. Then the expected value
of D(t) is

E(D(t)|D(t) <∞) =
e−λâ1

µ(1− e−λâ1)

∫ 1

0

eλâ1u − 1

u
du.

(27)
Proof: See Appendix D.

The probability of success and the expected delay do not
depend on t since the average number of relays who have
the message during the time between two consecutive θ are
the same when N is large. Figures 3 and 4 shows that the
simulated probability of success and the simulated delay are
close to the analytical results.

Fig. 4. The simulated delay and its analytical value with N = 800, µ =
0.5, λ = 0.3.

V. ESTIMATION IN THE FINITE γ CASE

When γk is finite, it is more complicated since the mean
field model is no longer a Markov chain. Therefore, in order
to find the limit, we need to know exactly how many relays
have message k for all k and how long they will keep that
message counting from current time. That is not an easy job.
In this section, we just give an estimation of m0(t).

In the following Proposition, we present an observation of
â(t) and γ̂(t).

Proposition 5.1: When γk is finite, we have for all t,

â(t) =
â1

h1(t)
, (28)

γ̂(t) = γ̂1. (29)

Proof: When γk is finite, some following estimations still
hold.

h2(t) ≈ λθ̂(t)h1(t), (30)∫ θ̂(t)

0

φt(s)ds ≈ h1(t), (31)

pt(γ̂(t))
N
N−1 ≈ e−λâ(t)h1(t)(1−e−µγ̂(t)), (32)

pt(θ̂(t))
N
N−1 ≈ 1. (33)

Therefore, we have the equations system to find γ̂(t) and θ̂(t)
as follows

e−λâ(t)h1(t)(1−e−µγ̂(t)) ≈ Cs
µR̄

, (34)

Cr −
Cs
µ

log(υ)

λâ(t)h1(t)
+

R̄

λâ(t)h1(t)
= 0, (35)

where υ = Cs
µR̄
. Eq. (35) means when t is closed to 0, we will

get â1, hence for all t we have

â(t) =
â1

h1(t)
. (36)

Plugging this result into the Eq. (34), we also get

γ̂(t) = γ̂1, for all t. (37)



Fig. 5. The value of γ̂1 and γ̂k with N = 1000; 3000, µ = 0.8, λ = 0.4.
We see that when N is large, the duration of time that a relay keeps a message
is the same for all messages.

Fig. 6. The function m0 and function h1 with N = 3000, µ = 0.8, λ = 0.4.

We also have h1(t) ≈ m0(a(t)) where a(t) =
∫ t

0
â(s)ds.

Hence, we only need to estimate the function m0(x).
For convenience, we chance the time-scale and give the

ODE for m(a(t)) ≡ m0(x). The change in m0(x) in a δx will
be the difference between the ones who meet the destination
or drop at time x and the ones who are available to accept
a new message. At any time x, there are λm0(x − γ̂1)e−µγ̂1

relays will drop their messages because the reach the second
threshold. In addition there will be m0(x)λ who will change
state to 1 and (1−m0(x)µ) who will change state to 0. Then,
we have

dm0(x)

dx
= −λm0(x) + µ(1−m0(x)) + λm0(x− γ̂1)e−µγ̂1 .

(38)
Solving (38) gives us m0(x), then plugging into (28), we will
get â(t) for all t.

Figure 5 confirms that when N is large, the duration
of time that a relay keeps a message is the same for all
messages. Figure 7 verifies that the estimated â(t) is close
to the analytical value of a(t).

For the probability of success and the delay, we do similarly

Fig. 7. The estimated â(t) and the analytical a(t) with N = 3000, µ =
0.4, λ = 0.8.

Fig. 8. The simulated probability of success and its analytical value with
N = 1000, µ = 0.8, λ = 0.4.

to the infinite γ(t). We have the average number of relays who
have a message stays the same and equals to that number of
the first message. So that we will get the same probability of
success and the delay for all message.

Proposition 5.2: When γk is finite, for all t, the probability
of success and the delay are

ξ(t) = 1− Cs
µR̄

, (39)

E(D(t)|D(t) < γ(t)) =
e−λâ1

µ(1− υ)

∫ 1

e−µγ̂1

eλâ1u − 1

u
du

where υ = Cs
µR̄

.
As in the case γ(t) = ∞, we have the same delay and

probability of success for all messages as in Figure 8.

VI. CONCLUSION

We consider a network with N relays and one pair of
source-destination. The source is backlogged and proposes a
fixed reward for each message. We study the mean-field limit
of this game when the second threshold is infinite and show
that in this limit each message is proposed for a duration
of O(1/N). We show that the fraction of relays without a
message converges in the mean field limit to the solution of



an ODE. Based on that limit, we find the formula to compute
various performance metrics such as probability of success and
the mean delay. It is shown that the probability of success is
the same for all messages.

When the second threshold is finite, the dynamics are no
longer Markovian and we propose an ODE approximation
which numerically gives a good match.
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APPENDIX A
PROOF OF LEMMA 4.1

From (3), we observe that pk(τ) should be strictly positive
in the limit N → ∞ for a relay to accept message k. From
(4) and (5), this is equivalent to∫ θk

θk−1

φk(s)(1− vθk,τ (s))ds = O(1/N).

which is equivalent to∫ θ̂k

0

φk(s+ θk−1)(1− vθk,τ (s+ θk−1))ds = O(1/N). (40)

From the definition of v (see (5)), for θ̂k → 0,

vθk,τ (s+ θk−1) = 1− λ(θ̂k − s)(1− e−µ(τ−θk)) + o(θ̂k).

Using the definition of φk is (7), we get the following
asymptotics for the LHS of (40)∫ θ̂k

0

φk(s+ θk−1)(1− vθk,τ (s+ θk−1))ds = h1(θk−1)λθ̂k

·(1− e−µ(τ−θk)) + o(θ̂k).

Next, we shall argue that h1(θk) is O(1) which will then imply
that θ̂k has to be O(1/N) for (40) to hold. Consider the mean-
field limit of the continuous time process Y. When γ̂k =∞,
it can be seen that the scaled process y1(s) = 1

N

∑N
i=1 Yi(s)

converges to the ODE

ẏ1(s) = λy0(s)− µy1(s).

Here y1(t) is the fraction of relays that have a message at time
s. This ODE has a unique solution for which y1(s) ∈ (0, 1),∀s
if y1(0) ∈ (0, 1). Thus, for all time s the fraction of nodes
available to compete for a message is strictly positive. The
probability that a relay becomes available to take message k
is
∫ θk
θk−1

φk(s)ds which, from (7), tends to h1(θk−1) when
θ̂k → 0. Thus, h1 is O(1) and θ̂k is O(1/N).

APPENDIX B
PROOF OF PROPOSITION 4.1

Let us consider message tN , and let θmin(t) be θmin of
message k = tN . We assume that when N is large, the θ(t)−
θmin ≈ amin(t)

N . Therefore the Eq. (13) can be approximated
as 1− h1(t)λθ̂min(t) = ω, hence(

1− h1(t)λamin(t)

N

)N−1

=
Cs
µR̄

.

When N is large, the LHS of that equation tends to
e−λamin(t)h1(t). Therefore, when N is large, amin(t) will be

amin(t) =
1

h1(t)λ
ln

(
µR̄

Cs

)
. (41)



Similarly, we have the approximation for b. First, we observe
that lim

N→∞
ω = 1. From Eq. (12), b can be approximated as

b ≈ λ

µ− λ
(µ− λ)h1(t)θmin(t) = h1(t)λθmin(t).

Hence, we can get the limitation of Nb and (1 + b)N when
N is large,

lim
N→∞

(1 + b)N − 1

Nb
=
eh1(t)λamin(t) − 1

h1(t)λamin(t)
. (42)

Plug the value of amin(t) into the Eq. (11) we get

1 + µ
Cr
Cs

<

µR̄
Cs
− 1

ln
(
µR̄
Cs

) . (43)

APPENDIX C
PROOF OF PROPOSITION 4.2

First, we shall show that â(t) = a0/m(t). One computes
θk from (2) and (3). When N is large, and assuming k = tN
and γ̂k =∞, one can show that

Gk(θk, γk) = Cr +
Cs
µ

(1− e−γ̂k)

− (Cd−R)

h2(θk)

1

N

(
pk(∞)N/(N−1) − pk(θk)N/(N−1)

)
.

With some abuse of notation, we shall use hi(t) to denote
hi(θtN ). From (7), one has the approximation h2(t) ≈
h1(t)It(θtN , θtN ) ≈ h1(t)λâ(t)/N . It can be shown that

pk(∞)N/(N−1) ≈
(

1− λâ(t)h1(t))

N

)N
−→
N→∞

e−λâ(t)h1(t).

(44)
and pk(θk)N/(N−1) → 1. Thus, any solution of (44) has the
form ˆa(t)h1(t) = c, a constant. As argued in the proof of
Lemma 4.1 h1(t) = m0(t). Denoting â0 to the constant when
m0(t) = 1 we get the desired relationship.

Next, we check that the conditions in [17] are verified. Let
fN (m0) be the drift function which is the expected change to
MN

0 in one time slot,
• Intensity vanishes at a rate ε(N): We take ε(N) = 1

N .
We need to prove that

lim
N→∞

fN (m0)

ε(N)
= f(m0), exists for all m0 ∈ (0, 1).

(45)
From (16) and (17), and Lemma 4.1, we have

fN (m0)

ε(N)
= Nm1

µâ(t)

N
−m0

λâ(t)

N
. (46)

Hence,

lim
N→∞

fN (m0)

ε(N)
= m1µa(t)−m0λa(t). (47)

• Second moment of number of object transition per
time slot: There are two types of transitions from 0 to 1
and from 1 to 0. The total number of transitions of the
first type has a Binomial distribution with parameters Ni

and λâ(t)/Ni where Ni is the number of relays with no
messages. This tends to Poisson distribution that has a
finite second moment. The same argument holds for the
second type of transitions.

• fN (m) is a smooth function of 1
N and m0: The function

m1
µâ(t)
N −m0

λâ(t)
N with â(t) = 1/m0 is smooth in 1/N

and in m0.

APPENDIX D
PROOF OF PROPOSITION 4.4

From [11], we have the probability of success when γ =∞
is

ξk = 1−

(
1−

∫ θk

θk−1

φk(s)
(

1− e−λ(θk−s)
)
ds

)N
. (48)

We remark that for k = tN , we have m0(θ(t)) = â1
a(t) .

Moreover, we also have

ξk = 1−

(
1−

∫ θk

θk−1

φk(s)
(

1− e−λ(θk−s)
)
ds

)N
,(49)

= 1−
(

1−m0(θ(t))
(

1− e−λθ̂(t)
))N

,

= 1−
(

1− λâ1

N

)N
. (50)

Therefore,

ξ(t) = lim
N→∞

1−
(

1− λâ1

N

)N
= 1− e−λâ1 . (51)

For the delay, we have, for all k the expected delay given
that at least one copy of message has reached the destination
is

1

ζk

∫ γk

θk−1

(
Vk(min (s, θk), s)N−Vk(θk, γk)N

)
ds (52)

We now estimate the Vk(min (s, θk), s)N where k = tN and
N is large. We have, for all s ≥ θ(t),

Vk(s, s) = 1−
∫ ∞
θ(t)

φt(y)
(

1− e−λ(θ(t)−y), (53)

− λ

µ+ λ
e−µseλy

(
e(µ−λ)θ(t) − e(µ−λ)y

))
dy,

= 1−m0(θ(t))λθ̂(t)
(

1− e−µ(s−θ(t))
)
, (54)

= 1− â1

N
λ
(

1− e−µ(s−θ(t))
)
. (55)

Therefore, we have

lim
N→∞

(
1− â1

N
λ
(

1− e−µ(s−θ(t))
))N

= e−λâ1(1−e−µ(s−θ(t))).

(56)
Hence,

E(D(t)|D(t) <∞) =

∫ ∞
θ(t)

e−λâ1

ξ(t)

(
eλâ1e

−µ(s−θ(t))
− 1
)
ds,

(57)
and by changing variable we get the stated result.


