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Abstract

The high volatility of traffic patterns in IP networks calls for dynamic routing schemes allowing to adapt resource
utilization to prevailing traffic. In this paper, we focus on the problem of link weight optimization in OSPF networks
where the traffic is routed along shortest paths according to the link metrics. We propose an online approach to optimize
OSPF weights, and thus the routing paths, adaptively as some changes are observed in the traffic. The approach relies
on the estimation of traffic demands using SNMP link counts. Experimental results on both simulated and real traffic
data show that the network congestion rate can be significantly reduced with respect to a static weight configuration.
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1. Introduction

With the increasing popularity of bandwidth-hungry
applications, traffic patterns are getting more and more
volatile. A consequence of the high traffic variability is
that it is no more credible to use a single “busy-hour” traf-
fic matrix for traffic engineering. Indeed, such an approach
can lead to poor network performances if at some point in
time the actual traffic matrix deviates significantly from
the one used for traffic engineering. A well-known alterna-
tive approach to handle time-varying traffic matrices is to
rely on online traffic monitoring and to adapt resource uti-
lization when changes are observed. One of the fundamen-
tal mechanisms to control the performances of a network
is route optimization. It allows to make a more efficient
use of network resources by tailoring routes to prevailing
traffic. However, several difficulties arise when seeking to
design and implement an adaptive routing scheme in IP
networks.

The first difficulty is related to how traffic is routed by
intra-domain routing protocols, the most prominent being
Open Shortest Path First (OSPF) and Intermediate Sys-
tem to Intermediate System (IS-IS) [1, 2]. Each traffic flow
is routed along shortest paths, splitting the flow equally at
nodes where several outgoing links are on shortest paths
to the destination. Although they are usually set to one,
the weights of the links, and thereby the shortest path
routes, can be changed by the network operator. Given
a set of traffic demands between origin/destination (OD)
pairs, the link weight optimization problem amounts to
finding a set of link weights that optimize a given perfor-
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Figure 1: Metric optimization example

mance measure, e.g., the maximum utilization rate of the
links (see [3, 4, 5, 6] and references therein).

An illustrative example is given in Figure 1. A single
flow of 8 Mbps has to be routed from node S to node D,
and the capacity of all links is 10 Mbps, except link S-B
whose capacity is 8 Mbps. If unit weights are used, the
flow is routed along path S-B-D, leading to a maximum
utilization rate equal to 100 %. However, if the weight
of link S-B is increased by one, half the traffic is deviated
along path S-A-B-D, resulting in a reduced maximum uti-
lization rate of 80 % on link B-D (whereas the other uti-
lization rates are lower than 50%). We note that the link
weight optimization problem is known to be a NP-hard
problem [7].

The second difficulty concerns the monitoring of OD
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traffic demands. Traditional methods for link weight opti-
mization have been designed for network planning pur-
poses: they assume that a predicted traffic demand is
known for each OD pair in the network, either exactly
or with some form of uncertainty [8, 9, 10, 11]. In prac-
tice, traffic demands cannot be directly measured in large
high-speed networks due to the high processing overhead
and to the significant reporting traffic induced by current
metrology solutions such as Netflow [12, 13]. An alterna-
tive approach is to use the link counts (amount of traffic
sent on a link in a 5 min interval) provided by the SNMP
protocol (Simple Network Management Protocol) to re-
trieve the actual traffic demands. However, since there
are usually many more network flows than link load mea-
sures, this leads to an ill-posed inverse problem which can-
not be solved without additional information (see, e.g.,
[14, 15, 16, 17, 18, 19] and references therein). We also
emphasize that these observations provide some form of
information on past traffic demands, whereas routing de-
cisions have to be taken for future demands.

Finally, there are some difficulties related to opera-
tional constraints. First, the routing changes have to be
limited in number, to avoid continuously changing the
routes in the network, and they have to be incremental
in nature, meaning that the current routing strategy has
to be improved incrementally by changing one link weight
after the other. Moreover, the reconfiguration decisions
have to be taken in real-time. If one considers that link
load observations are available every 5 minutes, and that
intra-domain routing protocols need a few tens of seconds
to converge to the new routes, then it means that the de-
cision process should last only a few seconds. This clearly
has an impact on the complexity of the decision algorithms
to be used.

In this paper, we investigate how to dynamically re-
configure link weights so as to adapt to prevailing traffic.
A similar problem was considered in [20], but, in contrast
to the present work, the authors assume that information
about the mean and the variance of the aggregate traf-
fic from every source to every destination router is avail-
able periodically. Another closely related reference is [21],
where the authors consider the same problem as us, but
fail to propose an approach that can cope with real-time
constraints.

We propose an online algorithm for dynamic reconfig-
uration of intra-domain routes depending on links loads in
IP core networks. The algorithm uses SNMP to regularly
collect link load measures, from which a set of possible
traffic matrices is derived. A simple robust optimization
heuristic is then used to minimize the congestion rate of
the network, i.e., the utilization rate of the most loaded
link. Simulation results as well as results obtained on
real traffic data show that the proposed method, despite
its simplicity, allows to greatly improve network perfor-
mances, and has running times compatible with an online
execution, even for large IP networks.

We note that the proposed online mechanism can help

to mitigate the effects of route flapping in OSPF networks.
If an OSPF router doesn’t receive 4 consecutive hello pack-
ets from its neighbour, it will safely assume that its neigh-
bour is unreachable/down and subsequently purges all the
routes from its routing table that were once reachable via
this neighbour. If a link goes down due to severe conges-
tion (hello packets are lost due to buffer overflow), this
can induce massive shift of traffic from one route to an-
other. The original link will soon stabilize because the
traffic (and possibly congestion) has moved to another link,
and will comes up as available. Once it starts getting back
all its traffic, it will start getting congested again. This
can cause repeated traffic shifts with no apparent solution.
The dynamic scheme we propose could help to avoid this
phenomenon by balancing load among the routes before
congestion occurs.

The paper is organized as follows. Section 2 is devoted
to the mathematical formulation of the problem. The pro-
posed algorithm and its details are described in Section
3. Results obtained on simulated and real traffic data are
presented in Section 4. Some conclusions are drawn in
Section 5.

2. Problem statement

The network is represented as a graph G = (V,E). The
set V is composed of the N nodes of the network, while
the set E is composed of the M links of the network. We
denote by cl the capacity of link l, and let K = N(N − 1)
be the number of OD pairs.

We observe the network at discrete time points τ =
1, 2, . . . Let ŷτ = (ŷτ1 , . . . , ŷ

τ
M ) be the vector of measured

link traffics, where ŷτl gives the average traffic over link l
between times τ − 1 and τ . These measures provide an
indirect observation on the average traffic demands in this
time interval. Although conceptually traffic demands are
represented in matrix form, it is more convenient to use a
vector representation. Thus, we order the OD pairs and
let dτk be the average traffic transmitted by OD pair k in
the time interval Iτ = [τ − 1, τ ]. We let s(k) and t(k)
be the source and destination nodes of demand k, respec-
tively. We denote the vector of traffic demands by dτ . We
emphasize that traffic demands have to be interpreted as
offered traffic, i.e., the traffic which would be carried if link
capacities were infinite. Indeed, when evaluating the ben-
efits that can be expected from deviating an OD flow from
a link, it is more convenient to think in terms of offered
traffic. We note that, as a consequence, the utilization rate
of a link can be higher than 100%.

We can control the network by changing the weights
of the links. Let ωτ = (ωτ1 , . . . , ω

τ
M ) be the vector de-

scribing the link weight configuration in the time interval
Iτ , where the metric ωτl of link l is an integer value in
the interval Ω =

[
1, 216 − 1

]
. The shortest paths result-

ing from the weight configuration ωτ are modelled by an
M × K routing matrix F(ωτ ) whose rows represent the
links of the network and columns represent the OD pairs.
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Element fl,k(ωτ ) is the fraction of demand k sent across
link l. These values are readily obtained from the weight
vector using any shortest path algorithm, e.g., Dijkstra’s
one. We emphasize that they are not constrained to be 0
or 1 due to load-balancing on equal cost paths.

OD demands and observed link traffics are then related
through the following linear relation

ŷτ = F(ωτ ) dτ . (1)

By changing the weight configuration , we can control
the routing matrix, and thus the resulting link loads. The
main difficulty here is that we have to choose the weight
configuration ωτ at time τ without any means to predict
the future traffic demands between times τ and τ+1. Since
we have no information on the future traffic, our approach
is just to react to the observed network congestion by op-
timizing the weight configuration for the current traffic
demands dτ . In some sense, we proceed as if dτ+1 = dτ .
The basic idea is that, even if this modelling assumption
is not fully satisfied, there is some form of stability in the
traffic that allows to make the right decisions using the
most recent knowledge.

The problem we address amounts to finding the weight
configuration ωτ that minimizes the congestion rate of the
network (defined as the maximum utilization rate of the
links) over the time interval Iτ . Formally, the problem is
as follows:

minimize ρ(ω) = max
l∈E

yl
cl

(METRIC)

subject to

y = F(ω) dτ ,

ω ∈ ΩM .

We note that the solution of the above problem de-
pends on the unknown traffic demands at time τ . These
traffic demands have to be inferred from the available ob-
servations. We describe the proposed approach to solve
this problem in the following section.

3. Online algorithm

The proposed online algorithm for dynamic reconfig-
uration of IP routes is described in Figure 2. This algo-
rithm is run periodically. It first uses SNMP to collect
the average traffic on each link over the last time window.
These observations are then used to estimate a demand
uncertainty set, over which the routing metrics have to be
optimized. A robust greedy heuristic is then used to deter-
mine if some weight changes can be applied to reduce the
network congestion. If no such weight changes are found,
the algorithm becomes idle until the next period. Other-
wise, the weight changes are applied in the network, and
the algorithm waits for the new SNMP data. We describe
below the main steps of the algorithm.

SNMP measurements

Robust optimization on the 
uncertainty set

Update metrics

Applicable 
changes ?no

yes

Start

Estimation of a restricted demand 
uncertainty set

Figure 2: Online algorithm

Remark 1. SNMP is an Internet-standard protocol for
managing devices on IP networks, such as routers. The
MIB variable ifOutOctets, which is used to compute the
link count (number of bytes output by the interface), is di-
rectly set by the SNMP agent running on a router for each
of its network interfaces. This value should thus be per-
fectly accurate. The time required to collect all link counts
using SNMP is difficult to evaluate precisely, since it de-
pends on many factors, but it should be in the order of
a few seconds (depending on the size of the network, on
the architecture of the network management tool, etc. . . ).
The resulting traffic overhead can be neglected, and, since
SNMP is a low priority process as far as the CPU sched-
uler is concerned, the SNMP agent should not affect per-
formance of the router.

3.1. Traffic matrix estimation

In order to solve problem (METRIC), we have to know
the traffic demands at time τ . In practice, these traffic
demands are unknown and have to be inferred from the
available SNMP measures. We assume that at time τ we
obtain the following data regarding the traffic demands in
the time interval Iτ :

• Traffic ŷτl on each link l ∈ E,

• average ingress traffic bi,τn and egress traffic be,τn of
each edge router n.

The vector dτ of traffic demands on the interval Iτ is
related to the vector ŷτ of observed link traffics through
equation (1). Although the routing matrix F(ωτ ) is known
at time τ , this equation does not allow in general to de-
termine the traffic demands. Indeed, this problem is an
ill-posed inverse problem because in almost any network,
the number of OD pairs K is much higher than the num-
ber of links M . Nevertheless, we can define the polytope
Dτ of traffic matrices that comply with the observations
as the set of vectors d ∈ IRK

+ such that
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Figure 3: Matrices and uncertainty set used for optimization

ŷτ = F(ωτ ) d, (2)∑
k:s(k)=n

dk = bi,τn , ∀n ∈ V, (3)

∑
k:t(k)=n

dk = be,τn , ∀n ∈ V. (4)

Since we cannot determine exactly the traffic demands
at time τ , we have to use additional information in order
to estimate it. Existing methods for traffic matrix estima-
tion differ in the nature of the additional information used.
Starting with [22], a first generation of methods has tried
to use link load covariances as this additional information
(see e.g., [23, 24, 25]). These methods are based on statis-
tical assumptions on the traffic demands whose validity is
questionable. A second generation of methods use spatial
or temporal prior information [26, 15, 16, 17]. The latest
generation of methods use posterior spatial and temporal
information. They require a calibration phase where the
traffic matrix is regularly measured using Netflow over a
certain period of time and then use filtering techniques to
predict future traffic matrices [18, 19]. Although the ac-
curacy of these methods is significantly superior to that of
first generations methods, their drawback is the overhead
induced on the network during the calibration phase. We
have chosen to use the “tomogravity” method introduced
in [26] because it is the simplest and fastest method of the
second generation, it does not rely on statistical assump-
tions on traffic demands as do first generation methods,
and does not introduce extra-overhead on the network as
is the case for third generation methods. The basic idea
of the method is to consider the traffic vector dG obtained
using the following simple formulation:

dGk =
be,τt(k)∑

n 6=s(k)

be,τn
bi,τs(k). (5)

In other words, the traffic vector dG is obtained by
assuming that the total ingress traffic at a node is split
between the demands originating from that node in pro-
portion to the egress traffics of their destination nodes.

In general, the traffic demands dGk are not consistent with
the observations, i.e., dG 6∈ Dτ . To obtain traffic demands
complying with the observations, the tomogravity method
computes the projection of the traffic vector dG on the
polytope Dτ (see Figure 3). The estimated traffic vector

d̂ is thus the vector of Dτ minimizing the distance to dG.
Choosing the infinity norm distance, the traffic vector d̂ is
therefore the solution of the following linear programming
problem:

minimize α
subject to

α ≥ |d̂k − dGk | k = 1, . . . ,K

ŷτl =

K∑
k=1

fl,k(ωτ )d̂k, ∀l ∈ E∑
k:s(k)=n

d̂k = bi,τn , ∀n ∈ V∑
k:t(k)=n

d̂k = be,τn , ∀n ∈ V

Note that the minimal value of α has to be interpreted
as the distance between the tomogravity traffic vector dG

and the polytope of traffic matrices complying with SNMP
measures. Therefore, it does not give the distance to the
actual traffic matrix of the network.

Our online algorithm uses the CPLEX library (C++)

[27] to compute the traffic vector d̂ once the SNMP data

are available. The estimated traffic demands d̂k can be
obtained very quickly, in a fraction of seconds for small
networks, and in just a few seconds for very large ones.
They are then used to optimize the link weights for the
time interval Iτ+1.

If a topology modification (e.g., a link going down or
up) occurs between the time instants τ−1 and τ , the above
minimization problem can become infeasible. In such a
case, to avoid taking wrong decisions due to inconsistent
information, no weight change is applied and the algorithm
waits for the next consistent SNMP measures.

3.2. Robust optimization of link weights

The vector d̂ of estimated traffic demands can be used
to obtain lower and upper bounds on the demand of each
traffic flow in the time interval Iτ :

(1− γ) d̂k ≤ dτk ≤ (1 + γ) d̂k, ∀k = 1, . . . ,K, (6)

where the parameter γ has to be adjusted to take into
account the estimation error. Since we know exactly the
ingress and egress traffics of each edge router in the time
interval Iτ , we also require that

∑
k:s(k)=n

dτk = bi,τn , ∀n ∈ V, (7)

∑
k:t(k)=n

dτk = be,τn , ∀n ∈ V. (8)
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Require: ωτ and Dτ∗
1: ω ← ωτ ; ω∗ ← ω
2: while n < Nmax and q < Qmax do

3: Choose ` ∈ arg max
l∈E

max
d∈Dτ∗

yl(ω,d)
cl

4: ∆` ←arg min
∆≥1

[∑
k

fl,k(ω +∆ e`) <
∑
k

fl,k(ω)

]
5: ω ← ω + ∆`e`
6: Compute ρ(ω)
7: if ρ(ω) ≤ ρ(ω∗) then
8: ω∗ ← ω; q ← 0
9: else

10: q ← q + 1
11: end if
12: n← n+ 1
13: end while

Figure 4: Greedy heuristic for robust weight optimization.

We denote by Dτ∗ the set of traffic vectors d satisfying
(6)-(8). The set Dτ∗ describes the uncertainty on the traffic
demands at time τ . As will be explained in Section 3.2.2,
the main advantage of using the polytope Dτ∗ instead of
Dτ is that it greatly simplifies the computation of worst-
case link loads. Defining yl(ω,d) =

∑
k fl,k(ω) dk as the

traffic on link l under the weight configuration ω when the
traffic vector is d, and noting that

ρ(ω) = max
d∈Dτ∗

max
l∈E

1

cl
yl(ω,d),

= max
l∈E

max
d∈Dτ∗

1

cl
yl(ω,d), (9)

we obtain the following equivalent formulation of problem
(METRIC)

minimize ρ(ω) = max
l∈E

max
d∈Dτ∗

1

cl
yl(ω,d)

subject to ω ∈ ΩM

This new formulation lends itself better to optimiza-
tion because, as explained in Section 3.2.2, it allows to
use minimum cost flow algorithms to compute the worst-
case utilization rate of a link. Our online algorithm uses a
greedy heuristic to incrementally solve this problem. This
greedy heuristic is described in Figure 4.

The greedy heuristic first initializes the best weight
configuration ω∗ and the current weight configuration ω
to ωτ . At each iteration of the optimization loop, it ar-
bitrarily selects a link ` among those with the maximum
worst-case utilization rate (line 3), and computes the min-
imum metric increment ∆` to deviate at least one OD flow
(in whole or in part) from this link (line 4). The current
weight configuration ω is then set to ω + ∆`e`, where e`
is the M-vector with 1 in position ` and 0 elsewhere, and

the network congestion rate under weight configuration ω
is evaluated (line 6). If it is reduced with respect to the
best weight configuration ω∗, then ω∗ is updated (line 8).
To avoid getting stuck in a local minimum, the heuristic
also allows the network congestion rate to increase for a
limited number of iterations q ≤ Qmax. The convergence
is reached when either q = Qmax or when the maximum
number of iterations Nmax is attained (line 2). We de-
scribe in more detail the main steps of the heuristic below.

3.2.1. Minimum metric increment ∆`

The basic idea of the greedy heuristic is to deviate traf-
fic from a link ` having the maximum worst-case load. This
is done by increasing the weight of that link by the min-
imum quantity ∆` such that at least one OD flow k sent
through link ` is deviated from that link. Formally, ∆` is
computed using the formula given in line 4 of Figure 4.

We emphazise that, although ` is the link with the
maximum worst-case utilization rate, the quantity ∆` is
independent of the traffic demands. We first observe that
if there exists an OD flow k such that 0 < fl,k(ω) < 1,
then this flow is split among several shortest paths. In
this case, a metric increment ∆` = 1 is sufficient to devi-
ate flow k from link `. Otherwise, we use the technique
proposed in [4]. The basic idea is to remove link ` from the
network and to analyze how the distances between source
and destination nodes increase for those flow k such that
fl,k(ω) = 1. Choosing ∆` as the minimum increase in
shortest path lengths introduces load-sharing for at least
one of these OD flows, thus deviating in part this flow from
link `. We refer to [4] for further details.

3.2.2. Worst-case evaluation of link loads

One of the key operations of the greedy heuristic is
the evaluation of the worst-case loads of the links. This
operation is required when choosing the link ` (line 3), and
when computing the network congestion rate (line 6) after
the metric of that link has been increased. We first note
that we do not need to recompute the worst-case load for
all links, but only for those links for which the parameters
fl,k have been updated. Let l be one of these links. Noting
that ∑

n

be,τn −
∑
k

dτk = 0, (10)

the worst-case load of link l can be written as follows:

max
d∈Dτ∗

yl(ω,d) =
∑
n

be,τn + max
d∈Dτ∗

∑
k

(fl,k(ω)−1)dk,

=
∑
n

be,τn − min
d∈Dτ∗

∑
k

(1−fl,k(ω))dk.

The computation of max
d∈Dτ∗

yl(ω,d) therefore reduces to

solving the following minimization problem:
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mind∈IRK
+

∑
k

(1− fl,k(ω)) dk

s.t.

(1− γ)d̂k ≤ dk ≤ (1 + γ)d̂k ,∀k∑
k:s(k)=n dk = bi,τn , n ∈ V∑
k:t(k)=n dk = be,τn , n ∈ V

The structure of the above linear problem is that of a
standard minimum cost flow problem on a bipartite graph.
It can be solved very efficiently using a dedicated algo-
rithm [28]. The advantage of using the polytope Dτ∗ in-
stead of the polytope Dτ is precisely here: it allows to
drastically reduce the computing times by solving a min-
imum cost flow problem instead of a general linear pro-
gramming problem. We have used the software library
LEMON (C++) [29] to solve this problem.

3.3. Reduction of the number of metric changes

Recall that, to avoid being trapped in local minima,
some weight changes can lead to an increase of the network
congestion rate. We therefore regroup the weight changes
proposed by the greedy heuristic into groups, such that
when all weight changes of the same group are applied,
the network congestion rate is strictly improved.

After some changes in the weight configuration, the
intra-domain routing protocol needs some time before con-
verging to the new routes, and the convergence time de-
pends on the number of changes. It is therefore sensible
to restrict the number of weight changes to those that are
really needed. The following rules are used to reduce the
number of metric changes:

• the greedy heuristic stops if the weights of more than
MAX METRIC distinct links have been changed,

• the latest group of weight changes reducing the net-
work congestion rate by less than a certain threshold
Gthreshold is removed.

Figure 5 provides an illustration of these rules with
MAX METRIC = 10. Each step corresponds to the pro-
duction of a new group of weight changes. The cumulative
number of links whose weight has to be changed is shown in
the figure at each step (note that it does not increase from
steps 3 to 4 because the weight changes concern already
modified links). In this example, the heuristic proposes
6 groups of weight changes. We keep only the first four
because : (a) group 6 exceeds the maximum number of
allowed metric changes, and (b) group 5 provides a gain
below the threshold Gthreshold.

4. Results

In this section, we analyse how the network congestion
rate evolves in time using the proposed online algorithm.

Figure 5: Restricting the number of metric changes

Table 1: Topologies characteristics : number of nodes (N) and links
(M)

Topology N M

ABOVENET 19 68

ARPANET 24 100

BHVAC 19 46

EON 19 74

METRO 11 84

NSF 8 20

PACBELL 15 42

VNSL 9 22

The analysis is done for simulated traffic data and real
traffic data.

All results presented were obtained using the following
parameters: Nmax = 100, Qmax = 10, Gthreshold = 2%,
MAX METRIC = 10 and various values of parameter
γ. The C++ implementation code was compiled using the
GCC compilator, using the -O3 level of optimization. All
simulations have been performed on a Intel Core i5-2430M
processor at 2.4 GHz, running under Linux with 4 GB of
available memory.

4.1. Simulated traffic data

Simulations are performed on 8 real network topologies
(see Table 1). Their characteristics have been found in
IEEE literature (bhvac, pacbell, eon, metro, arpanet, nsf)
or from the Rocketfuel project [30] for abovenet and vnsl
topologies. For each topology, the initial weight of each
link is set to 1.

For each network, a random traffic matrix is generated
at time τ = 0. We remind that the number of OD pairs
is K = N(N − 1), where N is the number of nodes of
the network topology. Each minute, the traffic matrix is
updated by adding a white gaussian noise to each traffic
demand:

dtk = dt−1minute
k +N (0, σ2) k = 1, . . . ,K. (11)
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The standard deviation of this noise is chosen so that
99.7% of the traffic demands varies by at most ±8.5% per
minute (we enforce these bounds for the remaining 0.3%).
As a consequence, each traffic demand can vary by at most
±50% over an interval of 5 minutes:

0.5dτ−1
k ≤ dτk ≤ 1.5dτ−1

k (12)

Despite its simplicity, this model allows significant traf-
fic variation (+-50% on five minutes). In addition, real
traffic data observed on the ABILENE network (see sec-
tion 4.2 for details) gives some credits to our simple model:
real measured traffic exhibit bursty traffic, but on time
scales of several minutes, and the maximum observed vari-
ations are also similar to the one used in our simulation
(max +- 50% each five minutes). We emphasize that our
method is not intended to handle large traffic variations
on short time scales (less than 5 minutes), which would re-
quire truly dynamic routing algorithm, but rather to adapt
routes as traffic fluctuates over larger time scales due to
the behavior of users.

All our simulations on simulated traffic data consider
a total time period of 250 minutes.

4.1.1. Time-average network congestion rates

To investigate the performances obtained using the on-
line algorithm, we decide to study the time-average net-
work congestion rate over the complete time period. To
compute this value, the network congestion rate is ob-
served at each minute. The time-average value is then
defined as follows:

φ̄ =
1

n

n∑
t=1

max
l∈E

ytl
cl

=
1

n

n∑
t=1

max
l∈E


K∑
k=1

fl,k(ωt)dtk

cl

 (13)

with in our case, n = 250.
Three different static weight configurations are con-

sidered. The first two ones are commonly used in real
networks, and correspond to Unit metrics (ωl = 1,∀l ∈
E) and CISCO metrics (ωl = 108/cl,∀l ∈ E), respec-
tively. The third considered configuration is hypothetical,
and uses optimized weights. To obtain these optimized
weights, we assume to know future traffics demands for the
entire period. We compute the average traffic matrix over
the whole temporal period of 250 minutes, and then use
the local search algorithm proposed in [21] to optimize the
weights for this average matrix. Finally, these optimized
weights are used to define an optimized static metric con-
figuration for the whole 250 min simulation, that is the
weights are not changed during the simulation.

These three static weight configurations are compared
with the proposed online algorithm. As the γ parameter
(defined in section 3.2) affects the evaluation of worst case

link loads, it can change the routing decisions. To better
understand the influence of this parameter, a set of simu-
lations are performed with γ ∈ {0, 0.25, 0.4}. The results
are shown in Table 2.

Several comments are in order. First, the results show
that significant benefits can be expected from link weight
optimization. Indeed, the proposed online optimization
clearly outperforms the static configurations Unit and CISCO,
for all γ values different from zero, except for ABOVENET,
ARPANET and VNSL topologies, where no acceptable
modification was proposed. We also note the proximity be-
tween the results obtained with the proposed online algo-
rithm and the static configuration with optimized weights.
We emphasize that this last static configuration is purely
theoretical in that it requires the knowledge of future traf-
fic demands over the whole time period, which is not the
case in reality. Moreover, the length of the considered
time period is relatively short (250 min), which means that
the traffic demands remain ”close” to their average values
over the time period. The larger the period of time used
to compute the optimized static configuration, the greater
the probability that the actual traffic matrix deviates at
some point in time from the average matrix over that pe-
riod, and the worse the time-average network congestion
rate obtained with the static configuration with respect
to those obtained with the dynamic reconfiguration algo-
rithm.

Finally, we note the benefit of using some uncertainty
on estimated traffic demands. Indeed, the congestion rates
obtained with γ = 0 (considering only the tomogravity ma-
trix, with no uncertainty on traffic demands) are higher
than those obtained with γ = 0.25 or γ = 0.4. In fact,
most of the time with γ = 0, except for the PACBELL
topology, the obtained congestion rates are equal to the
ones given by the Unit static configuration. This confirms
the interest to consider a demand uncertainty set around
the tomogravity matrix, to avoid bad decisions due to ma-
trix estimation errors. Finally, due to the heuristic nature
of the algorithm and also to unpredictable estimation er-
ror, it is difficult to choose the best γ value, as the results
are very close between γ = 0.25 and γ = 0.4. In what
follows, we will consider the value γ = 0.25, which seems
to be a good compromise.

The total number of weight changes is shown in Ta-
ble 3. It remains quite limited. Table 4 gives the num-
ber of time instants where reconfigurations are done. The
changes are applied at just a few time instants, thus avoid-
ing to continuously change the routes in the network. The
BHVAC topology is an exception here, with more instants
applying modifications than for the other networks.

4.1.2. Temporal evolution of network congestion rates

In this section, we are interested in the temporal evolu-
tion of the network congestion. We also want to study how
the proposed metrics changes are applied, and their con-
sequences on the network congestion. In this perspective,
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Table 2: Time-average network congestion rate (%) for 250 minutes

Topology
Static metrics Online Algorithm

Unit CISCO Optimized static weights γ = 0 γ = 0.25 γ = 0.4

ABOVENET 81.00 101.20 55.69 81.00 81.00 81.00

ARPANET 81.57 96.35 75.84 81.57 81.57 81.57

BHVAC 81.62 75.13 67.30 81.62 64.80 65.62

EON 91.21 103.49 54.86 91.21 50.95 47.63

METRO 63.08 47.83 44.13 63.08 37.84 37.93

NSF 43.78 43.77 41.52 43.78 42.16 43.52

PACBELL 137.97 40.04 37.56 46.15 38.14 39.47

VNSL 59.28 59.28 58.43 59.28 59.28 59.28

Average 79.94 70.89 54.42 68.46 56.97 57.00

Table 3: Total number of weight changes for 250 minutes

Topology γ = 0 γ = 0.25 γ = 0.4

ABOVENET 0 0 0

ARPANET 0 0 0

BHVAC 0 34 49

EON 0 28 42

METRO 0 25 28

NSF 0 6 12

PACBELL 1 9 9

VNSL 0 0 0

Table 4: Number of epochs where weight changes are applied, for
250 minutes

Topology γ = 0 γ = 0.25 γ = 0.4

ABOVENET 0 0 0

ARPANET 0 0 0

BHVAC 0 16 17

EON 0 4 6

METRO 0 5 6

NSF 0 2 3

PACBELL 1 2 1

VNSL 0 0 0

we decide to plot the network congestion and the weight
changes during the considered time period.

To evaluate the gain of using an adaptive routing scheme,
we compare with the static weight configuration where all
metrics are set to 1 (Unit metrics). To assess the loss in
performance due to the uncertainty on traffic demands,
we also compare with the results obtained by the greedy
heuristic in the case where the traffic demands are known.
Finally, we also wish to measure the gap with respect to
the network congestion rates that would be obtained us-
ing the optimal weight configuration at each time step if
the traffic demands were known. Since there is no exact
optimization algorithm to solve the weight optimization
problem, we compute instead a lower bound on the opti-
mal network congestion rate by solving the following mul-
tipath routing problem:

min z (MULTIPATH)

s.t.∑
k

fl,k d
τ+1
k ≤ cl z, ∀l ∈ E, (14)∑

l∈δ+(n)

fl,k−
∑

l∈δ−(n)

fl,k=hnk , ∀k, ∀n∈V, (15)

0 ≤ fl,k ≤ 1, ∀l∈E, ∀k (16)

where δ+(n) (resp. δ−(n)) denotes the set of incoming
(resp. outgoing) arcs at node n, while hnk is 1 if v = s(k),
-1 if v = t(k) and 0 otherwise. Note that inequalities (16)
ensure that there is no restriction on the routing scheme.
Note also that it is assumed that future traffic demands
dτ+1
k are known at time τ . We emphasize that this lower

bound is potentially much lower than the network conges-
tion rate obtained under the optimal weight configuration.

Figures 6, 7 and 8 present the results obtained for the
topologies BHVAC, EON and METRO, respectively (sim-
ilar results are obtained for the other topologies). These
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Figure 6: Congestion for BHVAC topology

figures show the evolution of the network congestion rate.
The x-axis represents the time τ . Two vertical axes are
present : the left one is the measured congestion rate of
the network. The right one gives the number of weight
changes made by the online algorithm. Four curves are
plotted on each graph:

• Lowerbound : the lower bound obtained by solving
problem (MULTIPATH),

• UnitMetrics : congestion rate obtained with unitary
metrics,

• KnowMatrixOptim : congestion rate obtained with
the greedy heuristic if the traffic matrix was known,

• EstimatedMatrixOptim : congestion rate obtained
with the proposed online algorithm.

Vertical bars represent the number of link weights mod-
ified by the online algorithm. No vertical bar means that
the algorithm does not change the routing.

We first observe that the use of an adaptive routing
scheme allows to significantly reduce the network conges-
tion rate with respect to a static weight configuration such
as that with unitary metrics. We also observe that for all
topologies there is no significant loss in performance due
to the uncertainty on traffic demands. In practice, the es-
timation of the traffic matrix seems sufficiently accurate to
perform interesting optimization. The robust optimization
algorithm even performs better than if the traffic matrix
was known in some cases: this can be explained by the
heuristic nature of the algorithm. We note that for the
BHVAC and EON topologies, the network congestion rate
obtained with the online algorithm is often fairly close to
the lower bound, indicating that this algorithm provides
a near-optimal weight configuration. Finally, we also ob-
serve that the number of metric changes is quite limited,
thus avoiding to continuously change the routes in the net-
work.
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Figure 7: Congestion for EON topology
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Figure 8: Congestion for METRO topology

4.1.3. Execution time

The execution time of the online algorithm at each time
step is critical in this study. The worst per-step execution
times are presented in Table 5. For all the networks, the
routing decisions can be taken in a few fractions of sec-
onds, which is clearly compatible with online processing.
An experiment on two larger network topologies, which
we call BRITE1(50 nodes, 200 links) and BRITE2 (100
nodes, 400 links), generated using the BRITE tool [31], has
shown that execution times can increase very fast as the
size of the topology grows. The worst execution time was
equal to 4.6 seconds for BRITE1 and around 24 seconds
for BRITE2. This is certainly due to the size of the prob-
lem we consider, which also grows very fast with network
size (for example, the routing fractions fl,k is composed of
N ∗N ∗M values which needs to be computed and used).
For example, on the BRITE2 topology experiment, the
traffic matrix estimation took around 4.6 seconds, and the
repeated calculation of the worst cost evalution (cf section
3.2.2) problem took around 5.5 seconds to compute in to-
tal. The remaining time is spend computing the routes and
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Table 5: Worst per-step execution times (s)

Topology Time

ABOVENET 0.15

ARPANET 0.56

BHVAC 0.17

EON 0.21

METRO 0.07

NSF 0.04

PACBELL 0.10

VNSL 0.04

especially the corresponding routing fractions fl,k. Unfor-
tunately, ISPs generally regard their router-level topolo-
gies as confidential and, as a result, real topologies are
not publicly available. Available public data (see Table 1
and the ABILENE network in Section 4.2) suggest how-
ever that real core networks have far fewer nodes and links
than the BRITE2 topology

4.2. Real traffic data

We now present the results obtained with real traffic
data recorded in 2004 on the ABILENE network (12 nodes
and 30 links) [32]. Unfortunately, we were not able to
obtain more recent traffic data because such data are not
publicly available. A recent traffic matrix would probably
have higher traffic levels, although it is difficult to say
what it would look like since there is probably not a single
representative traffic matrix.

The ABILENE traffic data were collected every 5 min-
utes during 24 weeks (6 months). We needed to choose one
week of traffic to work on. The motivation for choosing a
specific week of traffic was three-fold. First, we wanted a
week with a clear day-to-day traffic variability. Second, we
wanted a week exhibiting significant traffic variations on
short time-scales. Finally, we wanted a week with a sig-
nificant gap between the average and the maximum link
utilizations, indicating room for optimization. Week 4 was
one the weeks complying to all criteria, and this is why
only the fourth week is used to carry out our experiments.

Assuming unitary metrics, the evolution of the network
congestion rate is plotted in Figure 9. The average utiliza-
tion rate of the links is also plotted. In contrast to the
network congestion rate, variations in average utilization
rate of the links are very slight, indicating that there is a
true potential for a better load distribution in the network.

We analyse in more detail three phases of one hour
traffic (see Figure 9): phase 1 corresponds to a period of
low congestion (≈ 10%), phase 2 corresponds to a period
when load increases and with important traffic variations
(see Figure 10), and phase 3 is a period of high congestion
(≈ 55%). For the three phases, we compute the average
traffic demand of each OD flow over the one hour period,
sort them in the order of decreasing traffic demands and

Table 6: Maximum traffic variations (%) for large flows

Percentile (%) Phase 1 Phase 2 Phase 3

100 83 142395 87

99 41 74 48

98 33 43 35

95 21 31 26

90 16 25 18

then retain only the first OD flows that represent 90% of
the total traffic (those “elephants” that are really mean-
ingful for traffic engineering purposes). Table 6 gives sta-
tistical data regarding the relative variation (in absolute
value) of these large flows.

We note that 98% of the flows have relative variations
lower than 43%, so that the constraint (12) is satisfied for
almost all traffic demands k. The large value observed for
the 100th percentile of phase 2 is caused by OD demands
which were very close to zero at some measurement epoch,
and became non-negligible at the next one.

The same study is performed for ingress/egress traf-
fics for all the nodes in the network. Results obtained for
ingress and egress are similar, and Table 7 gives statisti-
cal data for ingress traffics. We note that 90% of ingress
traffics have relative variations lower than 19% for phase
2 and lower than 12 % for phase 1 and 3. These variations
are not completely insignificant, but the obtained results
show that it does not affect the optimization quality.

Table 7: Maximum ingress traffic variations (%) for all nodes

Percentile (%) Phase 1 Phase 2 Phase 3

100 49 1062 36

95 15 28 14

90 10 19 12

The optimization results obtained for the ABILENE
topology, with γ = 0.25 and the 4th week traffic data are
shown in Figure 11.

The proposed dynamic routing algorithm allows a sig-
nificant reduction of the network congestion rate when the
traffic is high: the maximum congestion rate of the net-
work is decreased from 55% with unitary metrics to about
45%.

Using the static optimized metrics configuration de-
fined in 4.1.1, the time-average network congestion rate for
the whole 4th week of ABILENE is visible in Table 8. As
expected, the online algorithm provides slightly better re-
sults than the optimized static weights configuration ones.
Furthermore, with both configuration, when the traffic is
high, the congestion rate is decreased to about 45%. This
proximity is a good result, considering that the optimized
static weight is hypothetical, as we can not know future
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Figure 9: Link congestion rates for 4th week on ABILENE, using unit metrics
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Figure 10: Zoom on phase 2

traffic.
Concerning execution times, they remain below 0.07

seconds, which is fully compatible with an online execu-
tion. The total number of modifications is also very lim-
ited. For γ = 0.25, there are only 17 time instants where
routes are reconfigured for the whole week (which is com-
posed of around 2000 instants), and the total number of
applied metric modifications for the whole week is 27.

4.3. Link failure

In this section, we study the results obtained with the
algorithm when a link failure occurs in the network. More

Table 8: Time-average network congestion rate (%) for the whole
ABILENE 4th week

Configuration Time-average congestion

Unit metrics 19.37 %

Optimized static weights 17.84 %

Online algorithm (γ=0.25) 16.18 %

Online algorithm (γ=0.4) 16.42 %

precisely, we compare the network congestion obtained
with unitary metrics and with the proposed online algo-
rithm when a link goes down at an arbitrary time instant
Tdown, and then goes up at time Tup > Tdown. We use the
same simulation protocol as that used in section 4.1. The
same link is cut in the different configurations: it is one of
the links with the greatest utilization rate under unitary
weights at the time of failure. Three examples of results
are presented in Figures 12, 13 and 14, all obtained with
Tdown = 97th minute, Tup = 157th minute and γ = 0.25.
The same kind of results is obtained for the others topolo-
gies.

As explained at the end of Section 3.1, the demand
estimation problem can become infeasible when the link
goes down, and when it reappears. In these two cases, the
algorithm stays idle until the next SNMP measures be-
come available. For Tdown = 97th minute and Tup = 157th

minute, it means that the algorithm does not propose any
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Figure 11: Congestion for ABILENE topology during the 4th week
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Figure 12: Congestion for ABOVENET topology with link failure

modification at the 100th and 160th minutes.
The obtained network congestion rates are most of the

time below that obtained with unitary weights. We can
observe that after each event, some modifications are ap-
plied, reducing the congestion in a very efficient way. We
also note that for each event, the network congestion in-
creases less when we use the online algorithm, and the
number of applied modifications remains limited. It seems
that balancing the traffic load among the network links
before the failure event occurs, helps to reduce its impact
on network congestion.
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Figure 13: Congestion for BHVAC topology with link failure

5. Conclusion

The key idea of the proposed approach is to deviate
traffic from the most loaded links. To evaluate to which
extent this is interesting, we need some information on
the traffic in the network. This information is obtained
using a simple estimation of the current traffic from the
SNMP link counts. Robust optimization is used to com-
pensate for the estimation errors. The results obtained
on simulated and real traffic data show that a significant
reduction of the network congestion rate can be obtained
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Figure 14: Congestion for EON topology with link failure

with respect to a static weight configuration, even when
the traffic has significant variations in time. In the ABI-
LENE record, the maximum congestion has been reduced
to around 45% with the algorithm, while it was around
55% with the static weight configuration. It also shows
that the dynamic algorithm provides a more robust con-
figuration, giving the ability to react to traffic variation.
The running times are compatible with online execution,
as long as we do not consider very large network topolo-
gies. Another interesting conclusion is that, by balancing
the traffic load among the network links, the proposed on-
line mechanism helps reducing the impact of failures on
network congestion when they occurs. Future work will
consider the implementation of the algorithm in a real net-
work to demonstrate its practical feasibility.
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