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Abstract—We propose simple queueing models for predicting
response times of applications executed in a cloud computing
platform under the SaaS model. We assume that each application
instance is executed within a virtual machine running on a com-
puting node of a data-center, and that VMs running concurrently
on the same node share fairly its capacity. Our main contribution
is to explicitly take into account the different behaviors of the
different classes of applications (interactive, CPU-intensive or
permanent applications). We show that simple expressions of
the mean processing times of applications can be obtained using
standard results from queueing theory. Experiments on a real
virtualized platform show that the mathematical models allow to
predict response times accurately.

Keywords—Cloud computing, Performance estimation, BCMP
Network.

I. INTRODUCTION

Cloud computing is the delivery of computing resources
as a service over the Internet in an on-demand fashion [1],
[2]. This new approach to computing eliminates the cost of
purchasing and maintaining the computing infrastructures, and
enables end-users to focus on what the service provides them
rather than on how the services are implemented or hosted.
Indeed, cloud users just have to submit a request for computing
resources, which are then supplied on-demand by the cloud
provider from its large pools installed in data centers for the
required period of time.

Cloud computing providers offer their services according to
several fundamental models. In the model known as Software
as a Service (SaaS) [3], cloud providers (e.g. Google Apps or
Microsoft Office 365) install and operate application software
in the cloud and cloud users access the software from cloud
clients. Cloud users do not manage the cloud infrastructure
and platform where the application runs. This eliminates the
need to install and run the application on the cloud user’s own
computers, which simplifies maintenance and support.

Each application is usually ran in a separate virtual machine
(VM) that is executed using resources (computer, storage
and network devices, . . . ) in the data-center. A hypervisor
(e.g., Xen [4] or KVM [5]) is executed on each node of the
data-center and runs the virtual machines as guests. Pools of
hypervisors within the cloud operational support-system can
support large numbers of virtual machines and the ability to

scale services up and down according to customers’ varying
requirements.

As should be apparent from the above, virtualization plays
a key role in cloud computing solutions. A VM is just a
software implementation of a machine (i.e. a computer) that
executes programs like a physical machine. Although a VM
is less efficient than a real machine in that it accesses the
hardware indirectly, a key advantage of VMs is to allow
multiple OS environments to co-exist on the same computer,
in strong isolation from each other. Thus, multiple VMs each
running their own operating system (called guest operating
system) are frequently used in server consolidation, where
different services that used to run on individual machines to
avoid interference are instead run in separate VMs on the same
physical machine.

However, when multiple VMs concurrently run on the
same physical host, they share the available physical resources,
causing unpredictable drop in their performances when some
of them have compute-intensive peaks. Service providers have
therefore to carefully provision the amount of resources re-
quired in order to meet user performance requirements. To
this end, they need performance models in order to evaluate
the performances that can be achieved from a given hardware
configuration.

This paper is devoted to the performance modelling of
applications executed in a cloud computing platform under
the SaaS model. We assume that each application instance
is encapsulated in a virtual machine which is then executed
on a computing node of the data-center. The virtual machines
running concurrently on a physical machine share its resources
– CPU, network bandwidth, memory, etc. – in a fair way. The
main modelling difficulty comes from the variety of applica-
tions that can be executed. These applications have a wide-
range of resource requirements. Some such as a simulation
script require resources continously over an interval of time
while for others such as document edition the requirements
could be scattered over an interval of time. In order to know
the amount of physical resources that are in use at any
given moment in time, it is thus necessary to know which
applications are active and which of them are using resources.
Our main contribution is to show that simple expressions of the
mean processing times of applications and other performance
measures can be obtained using standard results from queueing
theory. Although simple, these expressions are highly accurate
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as shown by experimental results.

The rest of the paper is organized as follows. In Section
II we put our work in the context of the existing cloud
computing literature. We describe the model and derive closed-
form expressions for the main performance metrics in Section
III. In Section V we describe the experimental setting. We
analyze the accuracy of the theoretical performance measures
with respect to experimental results in Section VI. Finally, in
Section VII we summarize the main contributions of the paper
and discuss future works.

II. RELATED WORK

There are relatively few works on the performance model-
ing of virtualized environments. In [6], the author proposes
a queueing model to evaluate the performance and power
consumption of systems with VMs. Although simple, the
model requires a large number of parameters and may be
difficult to use in practice. The authors in [7] focus on the case
of virtualized system for server consolidation. They show that
classical queuing theory can be helpful to predict performance
metrics of virtualized systems for the studied server consolida-
tion scenario. A queuing-theoretic approach was also used in
[8] to build performance models for virtualized environments
under Xen Vms.

The authors in [9] analyse the trade-off between perfor-
mance and power consumption in virtualized environments.
They assume a fixed number of VMs running web servers,
Poisson arrivals of http requests for each VM, and a GPS
scheduling discipline for the hypervisor. Using mean field
theory [10], they obtain simple approximations for the mean
processing time of jobs, among others. The main difference
with our work is that they focus on web servers, whereas we
rather consider the executions of CPU-intensive and interactive
applications. The trade-off between energy and response time
was also considered in [11] and [12]. In [13], an experimental
evaluation on how the VM start-up time depend on various
factors (time of the day, OS image size, etc.) was done for
several cloud providers (Amazon EC2, Windows Azure and
Rackspace).

In contrast to above works, we are mainly interested in
predicting the mean processing time of applications in a
virtualized environment. Our main contribution is to explicitly
take into account the different behaviors of the different classes
of applications (interactive or CPU-intensive applications and
web servers), and to propose simple queueing formula to
evaluate their performances. Experiments on a real virtualized
platform shows that the mathematical models allow to predict
response times accurately.

III. MODEL DESCRIPTION

As depicted in Figure 1, we consider a set of users that
submit jobs for execution on the servers of a data center. We
assume in the following that the population of users can be
considered as infinite, with the meaning that it is large enough

for the job arrival rate to be considered as independant of the
number of active users1.

DATA CENTER

DISPATCHER

USERS

Fig. 1: Users sharing the resources of a data center.

Each individual user can be either idle (inter-session phase)
or involved in an on-going session of a remote application
(see Figure 2). We shall distinguish three broad categories of
applications:

1) Interactive: Applications in this class require re-
sources for a finite duration which could be inter-
spersed in time with periods of inactivity. Document
edition is an example of applications in this class. A
user who wishes to edit a document, instanciates a
document editor only when required. While editing,
the user may take some time to think in between
writing text. During the think-time of the user, the
document editor does not require much computation
resources and could be considered inactive.

2) CPU-intensive: This class of applications are those
that require physical resources for a continuous and
finite duration of time. Simulation or numerical-
experiment scripts are examples of this class. Once
instanciated they remain active throughout their life-
time which is of finite duration.

3) Permanent: Applications in this class are applications
such as web servers or database servers that have
no end date. Once a virtual machine hosting a web
server is instanciated, it is assumed to be functional
forever either waiting for requests or processing them
simultaneously. Even though the virtual machine for
this class will always be instantiated, its physical
resource requirements may vary with the demand,
i.e, a web server will need computing and memory
resources only when it is processing requests. During
the rest of the time, its resource requirements will be
negligible.

In the sequel, we let B denotes the set of CPU-intensive
applications, I be the set of interactive applications, and P be
the set of permanent applications. We denote by R = B∪I∪P
the set of all applications available to the users, and by R
the total number of applications. It is assumed that they are
numbered from 1 to R.

1If this is not the case (e.g., for a private cloud), a similar model can be
developed using the theory of closed queueing networks.
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Fig. 2: Activity of an individual user accross time.

New sessions of non-permanent application are initiated by
users according to a Poisson process at rate λ. This assumption
stems naturally from the fact that individual sessions are
independently generated by a large population of users. Upon
submission, a request for application execution is received by
a dispatcher, which routes the job to one of the N servers
according to a (probabilistic) round-robin policy. As a conse-
quence, new sessions are initiated on the servers according to
independant Poisson processes, each one at rate λ/N , and we
can analyze each server in isolation. In the following, we thus
consider a single server, say server i.

When a new session of a non-permanent application is
started, the server first opens a VM. We denote by 1/µ0(i)
the average time required to open a VM on server i. Once the
VM ready, the server starts executing the application within
this VM. A new session uses application r with probability
γr. Each execution cycle starts by a computing phase on the
CPU. We let 1/µr(i) be the mean duration of a computing
phase for application r. The numbers of computing phases
during a session are i.i.d. random variables, with mean 1/pr.
By convention, pr = 1 if r is a CPU intensive application,
i.e., r ∈ B. It is assumed that the number of computing
phases by an interactive application r ∈ I is distributed
according to a geometric distribution, and we let 1/βr denote
the average duration of the OFF period for this application.
Finally, after the last computing phase, the VM is closed and
all its ressources are freed. As before, we assume that the time
it takes to close a VM on server i is a random variable, and
we denote by 1/µR+1(i) its mean. As well, we assume that
new sessions of permanent application are initiated by users
requests according to a Poisson process. It is assumed that
the mean processing time of requests are random variables.
In the following, it is assumed that all random variables are
independant random variables.

IV. PERFORMANCE METRICS

The performance model introduced in Section III is very
general and reveals difficult to analyze. In the following, we
shall consider two special cases. In Section IV-A, we show
that in the presence of both CPU-intensive and interactive
applications, the system can be analyzed using standard results
from queueing theory, and that simple expressions for the
mean processing time of jobs can be obtained. In Section,
IV-B, we consider the scenario in which a single VM running
a permanent application is executed concurrently with VMs
running CPU-intensive jobs. Although the analysis is far
more involved than in the previous case, we obtain simple
approximations for the mean processing times of jobs and
requests.

OFF

CPU

pCPU,r;CPU,R+1 = pr

pCPU,R+1;0,R+1 = 1λ/N

pOFF,r;CPU,r = 1 pCPU,r;OFF,r = 1− pr

pCPU,0;CPU,r = γr

Fig. 3: Equivalent open network of queues, where ps,c;s′,c′ is
the probability that a class-c customer who completes service
at node s will next require service at node s′ in class c′.

A. Presence of CPU-intensive and interactive applications

In this section, we study the case where there is both CPU-
intensive and interactive application in the system. We observe
that the execution of applications on the server can be modeled
as an equivalent multiclass network of queues, as depicted in
Figure 3. Customers in this queueing network represent on-
going applications. Exogeneous arrivals represent new sessions
started by users on server i, while departures from the network
represent the end of sessions. There are R + 2 classes of
customers:

• Class-0 customers represent VMs beeing opened; all
customers enter the network as class-0 customers,

• Class-r customers, where 1 ≤ r ≤ R, represent VMs
executing application r,

• Class-R+ 1 customers represent VMs beeing closed.

Each node in this queueing network is associated to a
possible state of an on-going application: customers at the cpu
node represent VMs beeing executed (either beeing opened,
closed, or executing an application depending on the class of
the customer), while customers at the off node represent VMs
executing interactive applications which are in the OFF period.
Since it is assumed that the VMs running concurrently on a
server share its CPU in a fair way, the cpu node is modelled
as a Processor Sharing node [14]. The off node is an Infinite
Server queue which introduces a random delay, of mean 1/βr
for the interactive application r.

Finally, let ρcpu(i) and ρoff be the offered loads of the two
nodes in this queueing network. We observe that the arrival
rate of class-0 and class-(R + 1) customers at node cpu is
λ/N , while the arrival rate of class-r customers at this node is
λγr/(N pr) for r ∈ R. The arrival rate of class-r customers
at node off is λγr(1 − pr)/(N pr), and 0 for the two other
classes. We thus easily obtain that ρcpu(i) =

∑R+1
r=0 ρ

r
cpu(i),

where
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ρ0cpu(i) =
λ

N

1

µ0(i)

ρrcpu(i) =
λ

N

γr
prµr(i)

ρR+1
cpu (i) =

λ

N

1

µR+1(i)
,

and that ρoff =
∑R
r=1 ρ

r
off where ρroff = λγr(1 −

pr)/(N pr βr). Our main results are stated below.

1) Joint distribution and its marginals: Let nrs denote the
number of sessions of application r in phase s = cpu, off .
Let us define the following vectors: ncpu =

(
nrcpu

)
r=0,...,R+1

and noff =
(
nroff

)
r=1,...,R

. Let π(n) be the steady-state

probability that the system is in state n = (ncpu,noff ), if
it exists. Finally, let the random variable Ns (resp. Nr

s ) be the
total number of sessions (resp. of application r) in phase s.
The queueing network described above can be analyzed as a
BCMP network [15], yielding the following result.

Proposition 1: The stationary joint distribution π exists
provided that ρcpu(i) < 1, and it has the following simple
product-form,

π(ncpu,noff ) = πcpu(ncpu)πoff (noff )

where

πcpu(ncpu) = (1− ρcpu(i)) |ncpu|!
R+1∏
r=0

(ρrcpu(i))
nr
cpu

nrcpu!
,

πoff (noff ) = e−ρoff

R∏
r=1

(ρroff )
nr
off

nroff !
,

with the notation |ncpu| =
∑R+1
r=0 n

r
cpu. Moreover,

Pr [Ncpu = k] = (1 − ρcpu(i)) (ρcpu(i))
k and

Pr [Noff = k] =
(ρoff )k
k! e−ρoff .

Note that the above results, as well as all the results
presented in this section, are insensitive to detailed application
characteristics. In other words, they depend on the stochastic
distributions used for computing time durations or for think
times, only though their means.

2) Key performance measures: Let D (resp. Dr) be the
duration of an execution (resp. of application r). We have the
following results regarding the expected numbers of sessions
and the mean processing times of applications.

Proposition 2: The mean number of sessions in phase cpu
is given by

E [Ncpu] =
ρcpu(i)

1− ρcpu(i)
(1)

whereas E[Noff ] = ρoff . Moreover, the mean number
of sessions of application r being executed is E[Nr

cpu] =
(ρcpu(i)

r/ρcpu(i))E[Ncpu] for r ∈ R.

From Little’s law, the mean response time of jobs is D =
N

E[Ncpu]
λ , while the mean processing time of application r is

Dr = N
E[Nr

cpu]

λ γr
.

Remark 1: It was assumed for simplicity that the proba-
bility that an incoming job be routed to server i is pi = 1

N ,
∀i = 1, . . . , N . This assumption is natural for homogeneous
servers, but it might be interesting to use a different load-
balancing strategy if there are servers of different speeds. In
this case, the above formulas are still valid: one just has to
replace λ/N by pi in the definitions of ρrcpu(i) and ρroff .

B. Presence of CPU-intensive and permanent applications

In this section, we study the case where there is both
CPU-Intensive and permanent applications in the system. It
proves difficult to analyze the model since standard results
from queueing theory cannot be used in this case. Given the
complexity of the model, we shall consider the scenario in
which the computer executes a single VM running a permanent
application (say, a web server) concurrently with VMs running
CPU-intensive applications. We shall further make a number
of simplifying assumptions. First of all, we shall assume
that all random variables are independant and exponentially
distributed. We also assume that there is a finite number M
of CPU-intensive jobs that can be executed concurrently (the
maximum number of virtual processors that can be assigned
to a single core is usually M = 8). In the following, VMs
running CPU-intensive jobs shall be called class-1 jobs, while
http requests submitted to the web server shall be called class-2
jobs.

Class-1 jobs are submitted by users according to a Poisson
process at rate λ1 and have a mean service time equals to 1/µ1

(including the time to open and close the VM). Requests are
submitted to the web server according to a Poisson process at
rate λ2 � λ1. We denote by 1/µ2 their mean service time
and assume that 1/µ2 � 1/µ1 . The traffic intensity for class
i = 1, 2 is ρi = λi/µi. Let (n1, n2) be the state of the system,
where ni is the number of class-i jobs being executed. All
active VMs receive a fair share of the capacity, so that in state
(n1, n2) class-1 jobs get an aggregate service rate equals to

φ1(n1, n2) =
n1

n1 + 1{n2>0}
,

while class-2 jobs are served with the aggregate rate
φ2(n1, n2) = 1− φ1(n1, n2).

1) Quasi-stationary Assumption: We note that the steady-
state distribution of the number of jobs of each class can be
computed, provided it exists, by numerically solving a Markov
chain. However, in order to obtain explicit performance for-
mulas and avoid a high solving time in some cases (M is
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high), we shall instead analyze the system under a quasi-
stationary (QS) assumption. The basic idea is that, since class-
2 jobs arrive at a higher rate and have a far lower processing
time, the dynamic of the number of class-2 jobs is far more
faster than that of class-1 jobs, suggesting that the number
of class-2 jobs can reach a statistical equilibrium before the
number of class-1 jobs has evolved. The approach is thus to
compute the steady-state distribution π(n2|n1) of the number
of class-2 jobs, given the number of class-1 jobs. Once this
conditional distribution is known, the stochastic process n1(t)
can be analyzed independantly by assuming that when there are
n1 jobs of class-1, they are served with the average service rate
φ̃1(n1) =

∑
n2
φ1(n1, n2)π(n2|n1). Following this approach,

we obtain Proposition 3.

Proposition 3: Provided that ρ2 < 1
1+M , the QS distribu-

tion of the number of class-2 jobs exists and is given by

π(n2|n1) = (1− (1 + n1)ρ2) (1 + n1)
n2 ρn2

2 , (2)

for n2 = 0, 1, . . . The steady-state probability that there n1 =
0, 1, . . . ,M jobs of class-1 being executed is given by

π1(n1) =

{
1

1+M if ν = 1,
1−ν

1−ν1+M νn1 if ν 6= 1,
(3)

where ν = ρ1/(1− ρ2).

Proposition 3 immediately yields the following corollary.

Corollary 1: The steady-state average number of class-1
jobs is E (N1) =

M
2 if ν = 1, and

E (N1) =
ν

1− ν − (1 +M)
ν1+M

1− ν1+M , (4)

otherwise. The steady-state average number of class-2 jobs is
given by

E (N2) =

M∑
n1=0

π1(n1)
ρ2(1 + n1)

1− ρ2(1 + n1)
. (5)

2) Validity of the QS Assumption: We compare below
the approximation obtained under the QS assumption with
the exact results obtained by solving the Markov Chain
(n1(t), n2(t)). We denote by α the ratio λ1

λ2
and by β the ratio

µ1

µ2
. By assumption, α� 1 and β � 1. We further assume that

M = 10. Figures 4 and 5 show the evolution of the relative
error on the expected number of ongoing jobs of class 1 and
2 obtained using (4) and (5) depending on the product αβ.
We observe that the results obtained from (4) and (5) are very
close to the numercical results obtained by solving the Markov
chain for both class-1 and class-2 of jobs and for all considered
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scenarii. The relative error is less then 2% for class-1 jobs and
7% for class-2 jobs. We have also validated the approximation
for different values of the product αβ. We note that the relative
error decrease when the QS assumption is satisfied i.e. αβ is
small enough. The results confirm that expressions (4) and (5)
constitute a good approximation.

V. EXPERIMENTAL SETTING

We have done a set of experiments to compare the pre-
dictions of the mathematical models described in Section
IV against the measured behavior of the system. These ex-
periments amount to running VMs executing CPU-intensive,
interactive or permanent applications on a host computer, and
measuring the mean processing time of jobs/requests. In this
section, we describe the experimental setting and the emulated
scenarios.

A. Host computer

The virtualized environment within which the applications
were executed was installed on a quadri-processor server (Intel
Xeon 2.3 GHz with 4 CPU cores per processor), 4 GB of
RAM, 500 GB of hard disk capacity, and Ubuntu 10.04.4
LTS as the operating system. For virtualization, we have
choosen VirtualBox [16]. We have installed 8 VMs on the
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host computer, running under the same Ubuntu version as the
host. The memory allocated to each Virtual Machine is 512
MB (minimum value required for the Operating System).

B. Emulating Poisson Processes

New sessions of non-permanent applications are initiated
on the host computer according to a Poisson process at rate λ.
A Matlab program was used to generate the arrival instants
T0, T1, . . . of the new sessions according to the following
recursion:

Tk+1 = Tk − (1/λ) ∗ (log(u)), k = 0, 1, . . . (6)

where u ∈ (0, 1) is a uniform random number and T0 = 0.
Once the arrival instants generated, application executions are
scheduled using cron, a time-based software for job scheduling
purposes in Unix [17]. The executed scripts open a VM,
execute the application within the VM, and then close the VM.

C. Scilab: CPU-intensive application

As CPU-intensive application, we have choosen a Scilab
program. Scilab is a high-level, numerically oriented program-
ming language [18]. The main applications of Scilab are signal
processing, statistical analysis, numerical optimization, and
modeling, simulations and (if the corresponding toolbox is in-
stalled) symbolic manipulations. Our Scilab program solves an
optimization problem of mathematical ecology using dynamic
programming (see [19] for details).

D. OpenOffice: interactive application

As interactive apllication, we have choosen the Spreadsheet
application of OpenOffice [20]. This software will let us
connect from a remote computer to a server that runs the
word processor in a interactive and easy way. We wrote a
JAVA program that use UNO components from the Apache
OpenOffice Software Development Kit2. This program opens
a SpreadSheet, insert some data in it then draw some 3D
graphics. In order to emulate the interactivity of a user, the
program alternates between ON periods, where data are entered
into the spreadsheet, and OFF periods, where the application is
inactive. The number of ON-OFF cycles follows a geometric
distribution with mean 1

p = 125. The duration of ON and OFF
periods are exponentially distributed, with mean 800 ms and
200 ms, respectively. The mean duration of an ON-OFF cycle
is thus 1 second, and the mean duration of an execution is 125
seconds.

When a new interactive application has to be started, a
script is ran to open a VM, execute our Java program within
the VM to emulate an interactive execution of the OpenOffice
Spreadsheet application, and then close the VM. One of the
input parameter of the Java program is the name of a file,
chosen randomly among 25 files that we generated. Each file

2The Apache OpenOffice Software Development Kit is an add-on for the
AOO office suite. It provides the necessary tools and documentation for
programming the AOO APIs and creating own extensions (UNO components)
for Apache OpenOffice.

gives the number of ON-OFF cycles, as well as the duration
of each ON or OFF phase. Figure 6 gives an example of such
a file in the case of 4 ON-OFF cycles.

Phase Time (ms)
ON 153
OFF 36
ON 1986
OFF 43
ON 1612
OFF 561
ON 751
OFF 183

Fig. 6: Example of a file with 4 ON-OFF cycles.

E. Web Service: permanent application

We simulate a web server with a simple client/server
program that uses socket communication. As well, multi-
threading programming is used to process multiple client
request simultaneously. Client request are generated according
to a Poisson process. Once the server accepts a socket, a
thread is spawned to handle it. The thread performs an iterative
computation. An input parameter of the thread controls the
number of iterations, and thus the duration of the execution.
The parameters are given in such a way that processing times
of requests have an exponential distribution with mean 5
seconds.

VI. MAIN RESULTS

In this section, we present the validity of the mathematical
models presented in Section III. For this, we shall measure the
mean response time of the applications described in Section V
and compare them with those predicted by the mathematical
models. We shall measure the accuracy of the predication of
the mathematical models using relative error, i.e.,

RelErr(%) = 100
‖Tmeas − Tmod‖

Tmeas
(7)

where Tmeas and Tmod is the measured mean response time
and the theoretical mean response time, respectively.

A. Parameter estimation

In order to compute the theoretical mean response times,
we first need to calibrate the model, that is to determine the
values the mean service times, 1/µis. For this purpose, we ran
one instance of a VM in isolation and executed a process inside
it. That is, we wrote a script that opened a VM, executed the
process (Scilab or OpenOffice) and then closed the VM, and
this was repeated several times. From these experiments, we
computed the empirical mean service times for the opening and
closing of a VM and the execution of different applications.

The findings of these experiments were:
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• Virtual Machines : the mean time to open and close
a VM, i.e., 1

µ0
and 1

µR+1
were 65 and 11 seconds,

respectively.

• CPU-intensive applications : the time of execution
of the Scilab program in the VM was 122 seconds.
Taking into account the values obtained above for
opening and closin a VM, we can conclude that the
mean response time of a CPU-intensive job executed
in a VM is 198 seconds.

• Interactive applications : as already mentioned in
Section V-D, the mean number of ON-OFF cycles
is 1

p = 125 ms, the mean duration of an ON phase
is 1

µr
= 800 ms, and the mean duration of an OFF

phase is 1
βr

= 200 ms. The mean processing time of
the Openoffice application is thus 125 seconds. Taking
into account the values obtained above for opening and
closin a VM, we can conclude that the mean response
time of an interactive job executed in a VM is 201
seconds.

• Permanent applications : as already mentioned in Sec-
tion V-E, requests have an exponentially distributed
service time with mean 5 seconds. We change the
arrival rate of requests generated by the client in order
to change the load of the server.

These results are summarized in Table I.

Parameter Value
1/µ0 65 sec
1/µR+1 11 sec
1/µr , r ∈ B 122 sec
1/µr , r ∈ I 0.8 sec
1/βr , r ∈ I 0.2 sec
1/pr , r ∈ I 125 cycles

TABLE I: Parameters of an execution in a VM

Now that we have computed the different parameters of
the model, we proceed to the validity of the model. Since the
average facilities utilization in data center is estimated to be
not high (56 % according to a recent report by McKinsey 3),
we consider in the following different scenarios with only light
and medium load.

B. Applications in isolation

In this section, we shall study the case where there is only
one type of application (either CPU-intensive, or interactive,
or permanent) in the system, i.e., R = 1. Note that the
difference with the experiments in the section of parameter
estimation is that in that section only one instance of the
application was running at any given time whereas in the
current set of experiments several instances of the applications
could be running concurrently. The arrival epochs of instances
were generated according to a Poisson process. In each of the
experiments, 100 instances of the application were generated,

3McKinsey analysis. Available: www.mckinsey.com

and they were scheduled using cron. Each instance opened a
VM, ran the application and then closed the VM.

We compare the results for two different value of system
load : ρcpu = 0.2 and ρcpu = 0.5. In table II the theoretical
mean response time and the percentage relative error is given
for the three types of applications. We observe that the model
predicts quite well the measured mean response time with a
relative error under 4%.

C. CPU-intensive and Interactive Applications

Next, we study the case when both interactive and CPU-
intensive applications can run concurrently on the same CPU.
For this scenario, we generated according to a Poisson process
and scheduled with cron the arrival epochs of the first 100 jobs
for each type of application. Each one of the executions opens
a VM, executes the OpenOffice or the Scilab program and
closes the VM when the program is finished.

The experiments were conducted for two different system
loads : (i) load of each type equal to 0.1; and (ii) load of
CPU-intensive applications equal to 0.2 and that of interactive
applications equal to 0.3. In the first case, the total utilization
rate is 20 %, while it is 50 % in the second case.

In table III we present the results of these experiments. We
observe that the relative error increases with the total system
load but this error remains under 4% for a system load of 50
%.

D. CPU-intensive and Permanent Applications

Finally, we study the case when both one permanent
application and CPU-intensive jobs can run concurrently on
the same CPU. The arrival rate of client requests on the server
are generated in such a way that the QS assumption holds.

The experiments were conducted for two different system
loads : (i) load of permanent application equals to 0.1 and load
of CPU-intensive jobs equals to 0.4; and (ii) load of permanent
application equals to 0.1 and load of CPU-intensive jobs equal
to 0.6. In the first case, the total utilization rate is 50 %, while
it is 70 % in the second case.

In table IV we present the results of these experiments.
We observe that for a total load equals to 70%, the estimation
error is below 6 % and 5 % for CPU intense application and
for the permanent jobs, respectively. When the total load is 50
% we obtain a relative error of 8.8 % for the CPU-intensive
applications and less than 7 % for the permanent jobs.

VII. CONCLUSION

We have proposed simple performance models for applica-
tions executed in a cloud computing platform under the SaaS
model. These models are applicable when each application
instance is executed whitin a virtual machine running on a
computing node of a data-center. Our main contribution is
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Load CPU Intensive Interactive Permanent

Model Mean Time Relative Error Model Mean Time Relative Error Model Mean time Relative Error

0.2 247 sec 1.2% 244 sec 1.21% 6.25 sec 3.2%
0.5 396 sec 2.2% 376 sec 2.58% 10.0 sec 3.9%

TABLE II: Predicted mean response time and its relative error for CPU-intensive, Interactive and permanent applications under
different loads.

Load CPU-intensive Load Interact. Total Load Model Mean Time Relative Error
0.1 0.1 0.2 246 sec 1.99%
0.2 0.3 0.5 383 sec 3.03%

TABLE III: Comparison of measured and predicted mean times when interactive and CPU-intensive applications are executed
concurrently.

Load CPU-intensive Load Permanent Total Load. Model Mean Time CPU-intensive Relative Error Model Mean Time Permanent Relative Error
0.4 0.1 0.5 386.1 sec 8.8% 12.5 sec 6.4%
0.6 0.1 0.7 551.5 sec 5.53% 26.01 sec 4.9%

TABLE IV: Comparison of measured and predicted mean times when permanent and CPU-intensive applications are executed
concurrently.

to explicitly take into account the different behaviors of the
different classes of applications (interactive, CPU-intensive
or permanent applications), and to propose simple queueing
formulae to evaluate their performances. Although simple,
these formulae are fairly accurate as shown by the experiments
done on a real virtualized platform. Future work includes the
generalization of our results to the case of several permanent
applications executed on the same node. We shall also inves-
tigate the impact of machine failures and migration of jobs on
the response times. Another direction is to compute optimal
load-balancing policies using the results on the mean response
time on a single CPU.
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