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Abstract

Fog Computing infrastructures are deployed in the immediate vicin-
ity of users in order to meet the stringent delay requirements of some
emerging IoT applications, which cannot be achieved with traditional
Cloud Computing infrastructures. The latency gains of Fog Comput-
ing come however at the cost of a potentially larger total capacity. The
duplication of ressources in many micro data centres may also lead to
an explosion of energy and operations costs. In this paper, we con-
sider the optimal capacity planning of Fog Computing infrastructures
under probabilistic delay guarantees. Despite the non-linearity of the
delay constraints, we show that the problem can be formulated as a
Mixed Integer Linear Programming (MILP) problem. We first present
a MILP formulation of the problem assuming that the infrastructure
cost depends linearly on the capacities. To account for economies of
scale in favour of large data centres, we then extend this MILP for-
mulation to arbitrary concave objective functions. Empirical results
show that the optimal capacity-planning solution can be determined
efficiently even for large-size problem instances, and that it can results
in significant gains with respect to the solution in which user requests
are always processed in the nearest data centre.

1 Introduction

In sharp contrast to traditional cloud services, many emerging applications
require low and predictable latency. This calls for the extension of the clas-
sical centralized cloud computing architecture towards a more distributed
architecture that includes computing and storage nodes installed close to
users. As shown in Fig. 1, a Fog Computing (FC) architecture is a highly
virtualized platform that provides a multitude of compute, storage, and
networking resources at the edge of the network, allowing applications that
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depend on time-critical data to use nodes in their vicinity to meet the delay
requirements [6,7,19]. The FC infrastructure may correspond for instance to
an in-network distributed cloud built by telecom operators by distributing
the cloud inside their network points of presence [2].

Figure 1: Fog Computing infrastructures.

There are a number of benefits expected from the transition to FC,
including reduced latency and better quality of experience for users, preser-
vation of network resources, greater security, privacy and resilience, as well
as easier scalability [3,18,25]. FC is not intended to replace Cloud Comput-
ing, but rather to complement it by handling data managment, the cloud
handling data analytics for its part. FC is also expected to enable a new
breed of applications, in as diverse application domains as smart buildings
and cities, health care and transportation, among others.

The Fog is however a non-trivial extension of the Cloud. Latency gains
come at the cost of potentially larger total capacity because geo-distribution
forfeits statistical multiplexing of demands that a single large data centre
could benefit from. The duplication of distributed resources may also lead
to an explosion of energy and operation costs. In practice, the design of a
FC infrastructure has to balance two conflicting factors. The first one is the
importance of geographic diversity: the goal is to place micro data centres
close enough to users to meet delay requirements. The other one is the size
of the data centre: the goal here is to amortize the fixed costs of the site
while benefiting from statistical multiplexing gains by serving the workload
generated by the local population. Finding an optimal trade off between
geographic diversity and data-centre sizes is usually a challenging problem.

As an example, consider the simple scenario depicted in Fig. 2, in which
two different base stations can route their traffic to two different micro data
centres. The minimum latency is achieved with a distributed solution, in
which the traffic of each base station is routed to the closest micro data
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centre, so that base station B1 (resp. B2) routes all its traffic to data-centre
D1 (resp. D2).

B2B1

D1 D2

Figure 2: A simple scenario in which two base stations can route their traffic
to two different micro data centres.

Now, assume that the daily pattern of the offered traffic at each base
station is as shown in Fig. 3. In the distributed solution described above,
the minimum amount of capacity to be provisioned at data-centre D1 (resp.
D2) corresponds to the peak hour of traffic for base station B1 (resp. B2),
so that the total capacity to be provisioned is for 240+240 = 480 jobs/s. In
contrast, in the centralized solution where only one data-centre is used, the
total capacity to be provisioned should be only for 282 jobs/s. Thus the ratio
of total capacities between the centralized and the distributed solutions is
roughly 1

2 . In turns , this translates into an even lower ratio in terms of costs
in favor of the centralized solution due to economies of scale which impact
not only capacity costs, but also operating and energy costs. The issue
is that, for some services with stringent delay requirements, a centralized
solution might not be feasible.

In this paper, we address the capacity planning of micro data-centers
used in Fog Computing. Three types of decisions have to be made. We
need to decide where to install data-centres, how user-generated requests
are routed to these data-centres, and the amount of capacity to be installed
in each data-centre. We assume that the goal is to minimize an arbitrary
concave function of the capacities installed in the data-centres under prob-
abilistic delay guarantees for user requests. Despite the non-linearity of the
delay constraints, we show that the problem can be formulated as a Mixed
Integer Linear Programming (MILP) problem. We first present a MILP
formulation of the problem assuming that the infrastructure cost depends
linearly on the capacities. To account for economies of scale in favour of large
data-centres, we then extend this MILP formulation to arbitrary concave ob-
jective functions. Empirical results show that the optimal capacity-planning
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Figure 3: Daily pattern of the offered traffic by the two base stations, as a
function of the hour of the day.

solution can be determined efficiently even for large-size problem instances.
These results also show that significant gains can be obtained with respect
to the solution in which user requests are always processed in the nearest
data-centre, and with respect to the minimum-cost centralized solution.

The paper is organized as follows. In section 2, we motivate the spe-
cific FC architecture and the latency requirements considered in this paper.
Section 3 introduces the notations and assumptions used in the paper, and
formulates the problem as a mixed integer optimization problem with non-
linear constraints. In Section 4, we consider the case where the system
designer provisions resources for each service separately. We prove that the
optimal capacities are the minimum solution of a system of linear inequal-
ities. This result is then used to formulate the global problem as a MILP
problem. Numerical results are then presented in Section 5. Finally, related
works are discussed in Section 6 and some conclusions are drawn in Section
7.

2 Fog computing for connected vehicles

The main motivation for the work in this article comes from connected
vehicles for which a large number of applications with varying needs of
quality of service have been defined. Applications for connected vehicles
can be classified into three categories [1]:

1. Active road safety applications: applications used to reduce the prob-
ability of traffic accidents and loss of lives. Examples include: inter-
section collision warning, head on collision warning, emergency vehicle
warning, wrong way driving warning, signal violation warning, etc.
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2. Traffic efficiency and management applications: these applications are
employed for improving the traffic flow, traffic assistance, traffic co-
ordination, updated local information, etc. Example include speed
management, and cooperative navigation applications.

3. Infotainment applications: these are less constrained applications such
as application that collect and disseminate information about locally
based services such as points of interest (restaurants, hotels, etc.) or
global internet services: multimedia services, parking management,
etc.

Based on [1], these applications have different requirements, ranging from
the most constrained: periodic messages, 10Hz frequency, and 100ms criti-
cal latency for active road safety applications to 1Hz frequency and 500ms
critical latency for co-operative services.

2.1 Fog Computing Infrastructure Planning

The business model behind FC for connected vehicles applications in not
clear yet. Indeed, multiple actors may be involved; car manufacturers, telco
operators, road infrastructures operators, or even cloud operators. All of
these different actors may have interest on building and operating a FC
infrastructures for connected vehicles applications. For example, a telco
operator (or a cloud operator) may be interested to operate such an infras-
tructure to optimize its primary services and augment its products catalogue
by services especially tailored for connected vehicles. In this article, we pro-
pose a model that can be used by any one of the previously mentioned actors
to build the Fog infrastructure from scratch by planning the number and the
capacity of the future micro data-centers. This model can also be used to
extend an already existing computing infrastructure. Indeed, existing data
centers can be fixed into the model and the optimization problem will be
solved for planning the capacity of the additional nodes to be built. This
second configuration is likely more realistic since the Fog operator will have
to deal with already existing resources. In other cases, existing (and spe-
cific) data centers must obligatorily be part of the final infrastructure for
privacy, performances or cost requirements.

2.2 Network latency

In this article, it is assumed that vehicles are connected to the micro data-
centres through a cellular network such as 4G/5G. Other options exist for
connected vehicles such as DSCRC. In the case of cellular networks, it is
necessary to consider two types of communications latencies: between the
connected vehicle and the base station (i.e. the radio network) and the
latency between the base station and the micro data-centre.
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The first latency is strongly dependent on parameters such vehicle ve-
locity, distance between the vehicle and the base station, density of users
attached to the same base station, users’ data traffics, etc. This latency can
range from 10 to 100 ms [4]. For the second latency, we can distinguish two
cases. In the case of the telco operator is also the Fog operator, the data
centres are part of the core network. This latency can be up to 20 ms [16].
However, if the micro data-centre is not part of the core network of the telco
operator, this latency can be very high depending on how the data centre
network is interconnected with other networks. In this article, no assump-
tion is made about whether the micro data-centres are part of the telco’s
core network or not. We have assumed application latencies of 60-150ms.

3 Problem statement

We are given as input a setD of potential sites for installing micro-datacenters,
as well as a set B of base stations. The geographical locations of the micro-
datacenters and of the base stations are known. The problem amounts to
deciding what amount of capacity to install in each micro-datacenter and
how to route the traffic originating from the base stations so as to obtain
a minimum-cost infrastructure satisfying a number of performance require-
ments. We assume that the traffic generated by base stations varies over
time, and that they can change the routing of their traffic from one time slot
to the other. However the capacities of the datacenters have to be decided
once and for all.

The infrastructure supports a set S of S job classes. Let λk,ti be the
class-k traffic originating from base station i ∈ B at time t = 1, 2, . . . , τ . We
define xk,tij as the amount of class-k traffic sent by base station i to micro-
datacenter j at time t. These variables, which define the routing strategy
at time t, have to satisfy the following constraints

∑
j∈D

xk,tij = λk,ti , (1)

xk,tij ≥ 0. (2)

We also define the binary variable ak,ti,j , which indicates whether base
station i sends class-k jobs to datacenter j at time t, and the binary variable
uk,tj , which indicates whether class-k jobs are routed to datacenter j, by
imposing the following constraints on the feasible values of these variables
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∑
i

ak,ti,j ≤ |B|uk,tj , (3)

uk,tj ≤
∑
i

ak,ti,j , (4)

xk,ti,j ≤ λk,ti ak,ti,j , (5)

uk,tj ∈ {0, 1}, (6)

ak,ti,j ∈ {0, 1}. (7)

Finally, the binary variable uj defined by the following constraints

uk,tj ≤ uj , ∀k, t, (8)

will be used to determine whether data centre j has to be opened. Note
that there is no need to enforce that uj = 0 if uk,tj = 0 for all k and t
because the objective functions that we consider are non-decreasing in uj .

In the following, the variables xk,ti,j , ak,ti,j , uk,tj and uj shall be referred to as
the routing variables of the problem. A feasible routing strategy is a set of
values for these variables satisfying (1)-(8).

The performance requirements are related to the quality of service of
jobs processed by the servers of the FC infrastructure. The system designer
aims at determining the capacities of the data centres in such a way that
most class-k jobs be served in a maximum acceptable processing time Tk.
More precisely, let Sk,tj be the processing time of class-k jobs at data centre

j and at time t = 1, 2, . . . , τ , and let `ki,j be the network time, that is, the
time it takes to send a job request from base station i to data centre j plus
the time it takes to receive the reply. For simplicity, we assume that `ki,j is
a fixed communication delay which does not depend on the network load.
In contrast, the processing time Sk,tj is a random value whose distribution
may depend on the load of the data center and on the class of the job. The
term Sk,tj + `ki,j then represents the total time it takes for a class-k request
sent by node i at time t to be received and processed by micro data-centre
j, plus the time it takes to receive the reply.

The goal is to design the system in such a way that the probability that
this time be strictly greater than Tk be lower than a given value δi, that is,
in such a way that

P
(
Sk,tj + `ki,j ≥ Tk

)
≤ δk,

for all base stations i sending class-k jobs to micro data-centre j at time t.
In other words, the above delay constraints should be enforced only for those
i such that ak,ti,j = 1 and for those values of j, k and t such that uk,tj = 1.
This can be done by imposing that

7



P
(
Sk,tj ≥ Tk −max

i
`ki,ja

k,t
i,j

)
≤ δk + 1− uk,tj . (9)

Note that if no class-k jobs are routed to site j at time t (that is,

uk,tj = 0), the above constraint is redundant. Otherwise, it imposes that

P
(
Sk,tj ≥ Tk −maxi `

k
i,ja

k,t
i,j

)
≤ δk, as expected.

We shall assume that micro data-centres are equipped with homogeneous
servers. We denote by 1

µk
the mean processing time of a class-k job on one

of these servers. We also denote by cj be the number of compute servers
installed in site j ∈ D. It has to be big enough so that the latency constraints
(9) are satisfied. We assume the following cost structure:

• An opening cost βj is incurred if capacities are installed in data centre
j, that is, if uj = 1.

• The cost of installing c servers in data centre j is gj(c), where g is
a given continuous function, which is often chosen concave to express
economies of scale in favour of large data centres. Note that gj(c)
includes the cost of purchasing the capacity c, but can also include
energy and maintenance costs for operating it.

The problem can now be formally stated as follows

minimize
∑
j∈D

βj uj + gj(cj) (CAPA)

subject to constraints (1)− (9).

In this problem, we have non-linear constraints and binary variables
which make the problem non-standard. The precise form of these constraints
obviously depend on the queueing model which is assumed for data centres.
We shall make it explicit in the following section.

4 Separate Resource Provisioning per Service

In this paper, we consider the case where the system designer provisions
resources for each service separately. We let ckj be the number of compute

servers provisioned for handling class-k jobs1. Obviously, we have

cj =
∑
k

ckj (10)

1In the following, we consider ckj as a continuous parameter. In practice, the value that
should be used is dckj e.
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We can analyse separately the optimal capacity to be provisioned for
each class. As a consequence, in sections 4.1 and 4.2 below, we consider
only one class of jobs, and we drop the index k.

4.1 Assumptions

We assume that job requests arrive according to a Poisson process and that
an incoming job is routed with probability 1/cj to any of the servers using
what is known as Bernoulli routing, that is jobs are routed to server j
with a probability that does not depend upon the number of tasks in the
servers. This is different from state-dependent routing policies such as join-
the-shortest-queue for which the number of jobs in each of the servers has
to known to the dispatcher. The service time of a job on a server will be
assumed to be exponentially distributed with mean 1/µ. Note that the
service time is different from the processing time. Service time is the time it
takes to finish a job if it were alone in the system whereas the processing time
is the sum of the service time and the waiting time (the time to serve jobs
that arrived before). In practice, service times need not be exponentially
distributed. In this case, the analysis for the computation of processing
time is involved and the expressions for the distribution of the response
time are not easy to obtain. As a first work on this topic, we shall assume
exponentially distributed service times.

It follows from these assumptions that the servers provisioned at data-
centre j for the considered class are modelled as cj parallel M/M/1/∞
queues [15], and therefore that

P
(
Stj ≥ z

)
= e−(µ−y

t
j/cj) z, (11)

where ytj =
∑

i∈B x
t
i,j is the rate at which job requests arrive at data center

j at time t = 1, . . . , τ .

4.2 Optimal capacity for a fixed routing strategy

Our first step is to analyze the capacity required at a given data center,
say j, for a fixed routing strategy satisfying (1)-(8). We first note that,
for stability reasons, we should have ytj/cj < µ, that is, cj > ytj/µ. This
condition is however not sufficient, as formally stated below.

Lemma 4.1. There exists cj > ytj/µ satisfying the latency constraint of jobs
if and only if the routing strategy is such that

li,jai,j < T − log(1δ )

µ
, i ∈ B, t = 1, . . . , τ (12)
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Proof. With (9) and (11), we obtain

ytj
cj
≤ µ− κ

T − `i,jati,j
, (13)

where κ = log(1δ ). Inequality (13) ha a non-negative solution cj if and only
if the RHS is non-negative, that is, if and only if li,jai,j < T − κ

µ

The condition in Lemma 4.1 merely imposes that ati,j = 0 whenever
`i,j ≥ T . Provided that this condition is met, Lemma 4.2 below gives the
optimal number of servers to install in data center j for known values of the
other variables.

Lemma 4.2. Given the values of the routing variables, the minimum num-
ber of servers required to satisfy the latency constraint of jobs is

cj = max
t,i

{
ytj

µ− di,j
ati,j

}
, (14)

where di,j = log(1δ )/ [T − `i,j ].

Proof. See Appendix 9.

It follows from Lemma 4.2 that the optimal capacity at data center j is
the minimum value satisfying the following linear inequalities

cj ≥
ytj

µ− di,j
−M

(
1− ati,j

)
, (15)

cj ≥ 0, (16)

where M is any constant sufficiently large for the RHS of (15) to be negative
whenever ati,j = 0.

4.3 Linear objective function

In this section, we consider the case where gj(c) = αj c, for some constant
αj . It directly follows from Lemma 4.2 that the optimal solution of problem
(CAPA) is obtained by solving the following Mixed Integer Linear Program-
ming (MILP) problem

minimize
∑
j∈D

(βj uj + αj cj) (CAPA-PL)

subject to constraints (1)− (8), (10), (12), (15)− (16).
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4.4 Piecewise linear objective function

As mentioned in the introduction, the function gj(c) is often a non-linear
concave function to express economies of scale in favour of large data centres.
The minimization of a non-linear concave objective function is in general a
challenging problem, in particular when integer variables are involved. How-
ever, with the increasing efficiency of MILP software tools, an interesting
alternative is to use a piecewise linear (PWL) approximation of the original
non-linear function.

The PWL approximation of a function f(x) over an interval [xmin, xmax]
is obtained by introducing a number n of sampling coordinates x1, . . . , xn
such that x1 = xmin and xn = xmax. The function f(x) is then approxi-
mated by the collection of linear segments [(xi, f(xi)), (xi+1, f(xi+1))]. Fig-
ure 4 illustrates the quality of the approximation obtained for two concave
functions, f1(x) = log(1 + x) and f2(x) = 3

2 + 1
4

√
x, over the interval [0, 50].
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Figure 4: PWL approximations of the functions f1(x) = log(1 + x) and
f2(x) = 3

2 + 1
4

√
x over the interval [0, 50]. The number of sampling coor-

dinates is n = 5, and they have been generated as follows: x1 = 0 and
xi = 2−(n−i)50 for i = 2, . . . , n.

If n is the number of linear segments of the approximation, the above
technique can be applied to our problem by introducing n continuous vari-
ables and n− 1 binary variables, as described in [9]. We note however that
most modern MILP solvers are capable of directly handling PWL objective
functions, usually using the concept of Special Ordered Set.
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5 Experimental Results

We now describe the results that were obtained with the proposed algo-
rithms. We first consider a very simple scenario in Section 5.1. The numer-
ical results obtained with a larger number of base stations are presented in
Section 5.2.

5.1 Simple scenario

We first consider a simple scenario with three data centres and two base
stations, which are located as shown in Fig. 5. The first two data centres,
located in Aulnay-sous-Bois and Corbeil-Essones, in France, are potential
data centres. The cost for opening them are β1 = β2 = 100, and the cost of
one unit of capacity is α1 = α2 = 1. In contrast, the data centre in London
is an existing large public data centre. Therefore, there is no opening cost
associated to this data centre (β3 = 0) and we assume that, due to economies
of scale, the cost of an individual compute server is only α3 = 3

4 . Note that
each base station is in immediate vicinity of a data centre. The distance from
the base station 1 in Rosny-sous-Bois to the data centre in Aulnay-sous-Bois
(resp. Corbeil-Essonnes) is 8.9 Km (resp. 32.6 Km), and the distance from
the base station 2 in Evry to the data centre in Corbeil-Essonnes (resp.
Aulnay-sous-Bois) is 4 Km (resp. 35.7 Km).

Figure 5: Locations of data centers and base stations.

The workload is composed of two classes of jobs. The first class of
jobs correspond to real-time jobs, whereas the other ones are best-effort
jobs with far less stringent requirements. The parameter values used in our
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Table 1: Characteristics of job classes. Times are given in seconds, and nk
represents the number of packets send by a class-k request.

1/µk Tk δk nk
Class 1 0.01 – – 2
Class 2. 0.1 2.0 0.1 6

Table 2: Communication times (ms) between base stations and data centres.
Aulnay Corbeil London

Rosny 33 / 43 39 / 52 134 / 178
Evry. 41 / 54 31 / 41 140 / 187

experiments are given in Table 1. Note that the values of the maximum end-
to-end latency T1 and the threshold probability δ1 for the real-time class are
not given in Table 1, because we will vary their values in the following.

We also assume that the communication latency between two points at a
distance of d kilometres from each other is 10+0.1×d ms, which, according
to the idealized deterministic model in [5], yields the TCP transfer times
given in Table 2, where in each cell the first (resp. second) value is the
communication time for the first (resp. second) class of jobs. Regarding
real-time jobs, the offered traffic of each base station evolves as shown in
Fig. 3, but with values which are scaled by a factor 10. or simplicity, we
assume that the class-2 offered traffic of each base station is constant over
time, and equals to 2, 000 jobs/s.

We first consider the case where the infrastructure cost is linear in the
data centre capacities, that is,

100× (u1 + u2) + c1 + c2 +
3

4
× c3 (17)

Our goal is to compare three different solutions:

• the first one is the optimal solution, which is obtained as the solution
of the MILP problem (CAPA-PL),

• the second one is the fully distributed solution in which each base sta-
tion is assigned to the nearest data centre. This solution is obtained
by adding to problem (CAPA-PL), for each base station i, the con-
straints ai,j = 1 if data centre j is the nearest one to base station i,
and ai,j = 0 otherwise.

• the third one is the minimum-cost centralized solution in which only
one data centre is used. This solution is obtained by adding to problem
(CAPA-PL) the following constraints:
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∑
t

∑
(k′,i′)6=(1,1)

ak
′,t
i′,j = τ [S|B| − 1] a1,11,j , ∀j,

∑
j

a1,11,j = 1.

Note that for low values of the maximum latency T , the problem might
become infeasible with these additional constraints.

Using the MILP solver Gurobi [12], we computed the cost of each of the
above solution for δ1 = 10−2 and δ1 = 10−4, and for different values of the
maximum latency T1 between 69 ms and 300 ms. The results are reported in
Fig. 6. As expected, the fully distributed solution is optimal for low values
of T , whereas the minimum-cost centralized solution is either infeasible or
very expensive. For instance, for δ = 0.01 and T = 80 ms, the centralized
solution is about 17% more expensive than the optimal one. However, as T
increases, the centralized solution quickly becomes the optimal one, whereas
the fully distributed one is significantly more expansive. For δ = 0.01, the
additional cost is +91% for T = 300 ms, but it is already +48% for T = 100
ms.
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Figure 6: Cost of the FoG infrastructure as a function of the latency re-
quirement of real-time jobs for the cost function given in (17).

Fig. 7 shows the probability that the end-to-end processing delay of
jobs be greater than the allowed value as a function of the time of the day
when T = 100 ms and δ = 0.01. In this case, the optimal solution sends
all real-time jobs to the data centre in Corbeil-Essonnes. Note that these
probabilities fluctuate over time but never exceed δ.

Let us now evaluate the effect of economies of scale on the structure of
the optimal solution. We now assume that the goal is to minimize
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5× (u1+u2)+log(1 + c1)+log(1 + c2)+
3

4
× log(1 + c3). (18)

The results obtained for this cost function are reported in Fig. 8. Note
that the drop in the cost of the optimal solution at T1 = 190 ms correspond
to the point where the public cloud in London can host all the traffic. We
remark that, as expected, the minimum-cost centralized solution is optimal
whenever it is feasible. For δ = 0.01 and T = 80 ms (resp. T = 300 ms),
the cost of the fully distributed solution is 76% (resp. 323%) greater than
that of the optimal one.
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Figure 8: Cost of the FoG infrastructure as a function of the latency re-
quirement of real-time jobs for the cost function given in (18).
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5.2 Larger number of base stations

We now build upon the previous scenario to design scenarios in which there
is a larger number of base stations. We consider 29 base stations and 3 data
centres, which are located as shown in Fig. 9. Note that for convenience,
the data centre located in London is not shown in Fig. 9. Most of the base
stations are in the area around Paris, but some of them are located a bit
farther.

Figure 9: Locations of data centers and base stations for the third scenario.

We consider the same classes of jobs than in the previous scenario (cf.
Table 1) with T1 = 105 ms and δ1 = 0.01. For values of T1 below 105 ms, the
delay requirement of real-time requests sent by the base station located in
Tours cannot be met. To generate random problem instances with realistic
traffic patterns, we have used a spatio-temporal model inspired from [22], in
which a sinusoid superposition model is used to capture the temporal traffic
variation, whereas a normal distribution is used for spatial traffic modelling
at each epoch.

In a first scenario, we consider only the 5 first base stations, then in a
second scenario we consider only the 10 first base stations, etc., until all 29
base stations are included in the sixth and last scenario. We have randomly
generated 16 problem instances for each scenario. We have limited the total
time expended by the solver gurobi to 5 minutes per problem instance. To
avoid spending too much time in proving optimality, we also have set the
relative gap of Gurobi to 2%, so that it terminates (with an optimal result)
when the gap between the lower and upper objective bounds is less than
0.02 times the the upper bound.

As before, we first consider the case when the infrastructure cost is linear
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in the capacities. Fig. 10 shows the minimum, maximum and average values
of the relative gap in percent between the costs of the optimal solution and
the other solutions as a function of the number of base stations. Surprisingly,
we observe that the fully distributed and the centralized solutions are always
around 30% more expensive than the optimal one. In most cases, the time
limit of 5 mn was reached by the solver. We however believe that the
optimal solution was found in a few seconds in most cases by Gurobi, which
was then not able to prove the optimality of the solution within the allocated
timeframe.
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Figure 10: Relative gap in % between the costs of the optimal solution and
the other solutions as a function of the number of base stations for a linear
cost function.

The results obtained for a logarithmic cost function are reported in Fig.
11. The time limit of 300 seconds was always reached, which means that
there is no optimality certificate for the solution obtained. As expected, the
relative gap between the optimal cost and the cost of the centralized solution
is less important than for a linear objective function. However, significant
differences are still observed in Fig. 11 for more than 15 base stations.

6 Related Work

Most of the works on the optimal design of Fog Computing infrastructures
focus on the optimal placement of cloudlets and on traffic offloading to the
cloud [8] [21] [10] [17] [11] [24] [13] [23]. For instance, the authors in [23]
investigate how to optimally select K mobile access points in which to install
a cloudlet, assuming that each cloudlet has a fixed capacity and that a
fraction of the traffic is offloaded to the cloud. As another example, [21]
studies the optimal offloading strategy of mobile devices to fixed-capacity
cloudlets with the objective of minimizing the latency.

A number of studies have however been devoted to the capacity planning
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Figure 11: Relative gap in % between the costs of the optimal solution
and the other solutions as a function of the number of base stations for the
logarithmic cost function.

of Fog infrastructures. In [20] , the authors formulate a mixed integer non-
linear programming for the placement and capacity planning of cloudlets,
assuming as input a number of potential locations. The objective is to
minimize cloudlet installation as well as networking cost. The authors model
cloudlets as M/M/1 queues, which has the drawback that the processing
time can become arbitrary low when the capacity is large. This assumes
that the capacity of all the cloudlet servers can be pooled to serve a job. In
practice, a job will be allocated a small fraction of the whole capacity and
cannot use the capacity of the other servers even if they are idle. Further,
this model will only give a lower bound on the capacity, which may not be
a good approach for jobs requiring QoS guarantees. In addition, in contrast
to the present work, the work in [20] considers only one class of jobs and
does not take into account the temporal variations of traffic demands.

Another relevant work is [14]. Given the total capacity, the problem
addressed by the authors amounts to distributing it among cloudlets and the
cloud. Cloudlets are modeled as discrete-time fluid systems. In contrast to
the present work, there is no routing decision from base stations to cloudlets.
At each time instant, each cloudlet receives a random amount of traffic and,
if the traffic exceeds the capacity of the cloudlet, the excess traffic is routed
to the cloud. In this model, there is no infrastructure cost, and the goal
is to optimize the quality of service of network flows. The authors discuss
variations of the objective function based on the delay or loss probability.

Some other works have addressed the capacity planning problem, but
without any queuing model. For instance, the authors in [23] suggest to use
profiling and benchmarking tools to determine the resource requirements
of applications from their workload. They assume that latency-sensitive
applications are always executed in cloudlets, whereas other applications
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are executed in the cloud. In order to minimize the capacity required in
each cloudlet, they solve a Knapsack problem.

7 Conclusions

We have shown that the optimal capacity-planning of micro data centres
used in Fog Computing can be formulated as MILP problem, which can be
solved efficiently even for large-size problem instances. Numerical results
show that significant cost savings can be obtained with respect to the solu-
tion in which user requests are always processed in the nearest data centre,
and with respect to the minimum-cost centralized solution.

As future work, we plan to extend our approach to situations in which the
capacity of individual compute servers are shared among several classes of
jobs, using for instance a strict priority mechanism or another more advanced
resource sharing mechanism. One challenging problem is to dimension the
system when the service times of jobs are not exponentially distributed.
Since there are no known formulas for the distribution of the processing
time in the general case, we intend to look at analytical approximations
that can help dimension the system. Further, we also plan to consider more
advanced load-balancing policies than Bernoulli routing for the distribution
of jobs inside a data centre, such as for instance policies based on Power of
Two Choices or Join the Shortest Queue.

8 TCP transfer times

In this section, we study the transfert time of a file with TCP as a function
of the RTT and the file size. To this end, we use a simple deterministic
model which was proposed in [5]. The model assumes an ideal environment
in which no losses occur and round-trip times are constant. The model can
thus be used to estimate lower bounds on the transfer time in most standard
TCP implementations.

Let N be the total number of packets transmitted, T be the total trans-
fer time (ms) and RTT be the round-trip time between the sender and the
receiver (ms). Let also Ws be the TCP slow-start threshold and Wmax be the
maximum window size, both being measured in packets. Using simple ar-
guments, it is then possible to show that the number of packets transmitted
in the TCP slow-start phase is

Nss = 2Ws − 1,

whereas the number of packets transmitted in the congestion-avoidance
phase is
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Nca = (Wmax −Ws − 1)
Wmax +Ws

2
.

It follows that for short files containing N ≤ Nss packets, the transfer
time is given by

T = (dlog2(N)e+ 1) RTT,

where dxe denotes the smallest integer greater than x. Files with more than
Nss packets but with less than Nss+Nca packets are completely transmitted
before the end of the congestion avoidance phase. In this case, the transfer
time is given by

T = {log2(Ws) + 1

+
⌈(√

(2Ws + 1)2 + 8(N − 2Ws + 1)

−(2Ws + 1)) /2e} RTT.

Finally, for files of size strictly greater than Nss + Nca packets, N −
(Nss +Nca) packets are transmitted in the steady-state phase. In this phase
Wmax packets are transmitted per RTT. A slightly more complex formula
can be derived to compute the transfer time of such files (see equation (4)
in [5]).

Note that, independently of the file size, the transfer time is linear in
RTT. Fig. 12 shows how the transfer time evolves as a function of the file
size for two different values of the RTT, 10 ms and 20 ms. It was assumed
that Ws = 16 packets and Wmax = 64 packets, and that the packet size is
1500 Bytes. Interestingly, we note that when the RTT is 20 ms, the transfer
time of only 3 packets (4.5 kB) is already 60 ms. When the RTT is 10 ms,
a file of size 13.5 kB (9 packets) is transferred in 50 ms.
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9 Proof of Lemma 4.2

Inequality (13) can equivalently be written as follows

cj ≥
ytj

µ− κutj/
[
T −maxi

(
`i,jati,j

)] . (19)

Indeed, if utj = 1, the RHS of (13) and (19) are obviously equal. If on
the contrary utj = 0, then it follows from (3) and (5) that xti,j = 0 for all i
and therefore that ytj = 0, which implies that the equality between the RHS
of (13) and (19) holds.

We shall now make use of the following result.

Lemma 9.1. For any values of the routing variables satisfying (1)-(7), it
holds that

κ

T −maxi

(
`i,jati,j

) utj = max
i

(
κ

T − `i,j
ati,j

)
(20)

Proof. Noting that the function x → κ
T−x is strictly increasing over [0, T ),

we obtain

κ

T −maxi

(
`i,jaTi,j

) utj = max
i

(
κ

T − `i,jati,j

)
utj .

If utj = 0, then from constraint (3) we have that ati,j = 0 for all i, and
hence equality (20) is satisfied. If on the contrary utj = 1, then constraint
(4) implies that there exists k such that atk,j = 1, and hence that

max
i

(
κ

T − `i,jati,j

)
≥ κ

T − `k,j
>
κ

T
.

Since κ
T−`i,jati,j

= κ
T−`i,j a

t
i,j when ati,j = 1, and κ

T−`i,jati,j
= κ

T when

ati,j = 0, we conclude that equality (20) is also satisfied when utj = 1.

From Lemma 9.1, it follows that

cj ≥
ytj

µ−maxi

(
di,jati,j

) , (21)

= max
i

{
ytj

µ− di,jati,j

}
, (22)

= max
i

{
yk,tj

µk − dki,j
ak,ti,j

}
, (23)
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where the equality between (21) and (22) follows from the fact that the

function z → ytj
µ−z is strictly increasing over [0, µ). The last equality is

proved by considering two different cases:

• If ati,j = 0 for all i, then it follows from (5) that xti,j = 0 for all i and
therefore that ytj = 0, which implies that the equality between (22)
and (23) holds.

• if ati,j = 1 for some i, then the maximum value in (22) is obtained for
some k such that atk,j = 1, and this value is equal to the value obtained
in (23), which proves that the equality is also valid in this case.

Finally, we conclude the proof by observing that the inequality (22) has
to be satisfied for all values of t, which yields (14).
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