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Received: date / Accepted: date

Abstract Euclidean norm computations over continuous variables appear naturally
in the constraints or in the objective of many problems in the optimization literature,
possibly defining non-convex feasible regions or cost functions. When some other
variables have discrete domains, it positions the problem in the challenging Mixed
Integer Nonlinear Programming (MINLP) class. For any MINLP where the nonlin-
earity is only present in the form of inequality constraints involving the Euclidean
norm, we propose in this article an efficient methodology for linearizing the optimiza-
tion problem at the cost of entirely controllable approximations even for non convex
constraints. They make it possible to rely fully on Mixed Integer Linear Program-
ming and all its strengths. We first empirically compare this linearization approach
with a previously proposed linearization approach of the literature on the continuous
k−center problem. This methodology is then successfully applied to a critical prob-
lem in the telecommunication satellite industry: the optimization of the beam layouts
in multibeam satellite systems. We provide a proof of the NP-hardness of this very
problem along with experiments on a realistic reference scenario.
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1 Introduction

In the wide literature on mathematical optimization, there are several examples of
problems involving continuous point variables in R2 or R3 with constraints on the
Euclidean distance between pairs of such points. In some of these problems, the pos-
sibility to rely on convex optimization is preserved: for instance, an upper-bound on
a Euclidean distance between two points is a convex constraint. On the other hand,
any equality or lower-bound set on a Euclidean distance makes the corresponding op-
timization problem non-convex. In any case though, these quadratic constraints po-
sition the optimization in the Nonlinear Programming (NLP) class. More details on
Euclidean distance geometry and applications can be found in [15] and [1] but one of
the most famous problems that handles such 2-norm computations over continuous
variables is the Euclidean Multifacility Location Problem (EMFL): [27], [26]. This
problem consists in defining positions for n new facilities with respect to m existing
facilities. The minimized cost function terms are proportional to distances between
pairs of new facilities, and to pairwise distances between old and new facilities. Most
algorithms that solve the EMFL rely on second-order cone programming and inte-
rior point techniques for convex optimization since the problem can be equivalently
transformed into another one where convex quadratic proximity constraints appear.

For works that consider both proximity and separation constraints, we can men-
tion for instance the research on wireless sensor localization (see [17] for a thor-
ough survey on the matter). In this problem, we assume that a set of sensors has
been deployed on a certain region, and that some of the sensor positions are known
while the others are not, the goal being to estimate these unknown positions. The
authors of [3] have indeed to deal with non-convex equality and separation con-
straints which they choose to relax just enough to reach a semidefinite programming
model. In some cases, discrete variables are necessary to model decisions with fi-
nite numbers of possibilities. When combined with the Euclidean norm constraints
discussed above, these integer variables lead to Mixed Integer Nonlinear Program-
ming (MINLP), which is known to be one of the most difficult optimization prob-
lems class ever to be tackled. As an example of such problems, the authors of [25]
worked on the issue of packing unequal spheres in a 3-dimensional polytope with
sphere separation constraints and an objective to maximize the volume occupied by
the spheres, the application being radiosurgical treatment planning. In that case, the
continuous variables are the sphere centers, and the discrete variables correspond
for each sphere to the choice of a radius among a finite set of possibilities. This
non-convex quadratic problem is solved with an heuristically improved simplicial
branch-and-bound method.

Another example in the satellite industry is the problem of optimizing the beam
layouts of a multibeam telecommunication satellite system (see [5], [6] and [14] for
instance). It consists of defining the positions in the Euclidean plane of a certain
number of disks, each one representing the spatial extent of a radiofrequency beam
that carries telecommunication signals for various applications: television, telephone,
radio or internet by satellite for instance. While the number of user ground stations
(modeled by points of known coordinates in the Euclidean plane) covered by these
disks of discretely varying diameter is maximized, satellite antenna technological
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constraints force some couples of disks to be sufficiently separated. Note that this
last application is the one that motivated this work.

In the end, the focus of this article is laid on the particular MINLP problems where
the only nonlinearities are quadratic constraints expressed with an Euclidean distance
over continuous variables. Both separation and proximity constraints are handled, and
they cohabit with discrete variables, in order to optimize a linear objective. For these
problems, we detail in section 2 the methodology we devised for reaching a Mixed
Integer Linear Programming model (MILP) thanks to controllable approximations,
the goal being to take full advantage of all the efficient techniques developed for
this specific class of optimization problems. In section 3, we show that the family of
controllable approximations we propose both generalizes and ease the linearization
of previously proposed approximations. A comparison of the proposed MILP with
another linearization scheme of the Euclidean distance is carried out with compu-
tational experiments on the continuous k-center problem in section 4. In section 5,
the beam layout optimization is defined more in details, its NP-hardness is proven,
and the principles of section 2 are applied in order to reach a MILP model which is
presented and commented. A comparison with other linearizations and experiments
on a reference scenario are presented in section 6. Concluding remarks are drawn in
section 7.

2 Linearization of Euclidean norm dependent constraints in R2

Let X ∈ R2 and α,β ∈ R+. We develop in this section a MILP-compatible lineariza-
tion process of the constraints of the following form: ‖X‖ ≤ α and ‖X‖ ≥ β with ‖·‖
denoting the Euclidean norm. The associated inner product will be denoted by 〈· | ·〉.
The choice of R2 is directly motivated by the beam layout optimization application,
but the principles presented could be generalized to R3, or to higher dimensions. Also
note that, even if it is not discussed here, these techniques could also be extended to
the constraints of the form ‖X1‖+ · · ·+ ‖Xk‖ ≤ α and ‖X1‖+ · · ·+ ‖Xk‖ ≥ β with
k > 1.

On the topic of linearizing the Euclidean norm in the context of mathematical op-
timization, the examples are rare but can be found in the applications overviewed
of section 1. In the context of radiotherapy equipment configuration, the authors of
[16] propose to linearize the quadratic terms of the convex proximity constraints with
extra variables and a notion of approximation points, but without really discussing
the error made in the end on the approximated Euclidean distances. Another way
of linearizing the Euclidean distances is to discretize the possible positions of the
originally continuous variables allowing then to pre-compute all the possible point-
to-point distances, as done both in [16] and [5]. Although, our ambition in this work
was to preserve this continuity of the position variables so this type of discretiza-
tion has been discarded. Then, in the context of wireless sensor location, the author
of [11] approximates the Euclidean distances by the L1 norm and exploits the tri-
angle inequality for reaching a linear programming model. This last technique falls
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within a more general wave of research in the field of digital distances on how to
substitute cleverly the computationally expensive L2 norm calculations by optimized
combinations of the less demanding operation L1 and L∞ norms. Note also that these
two norms are much more naturally linearizable norms than the Euclidean norm.
The most recent works ([7], [19]) on the subject showed that in the Euclidean plane,
the best maximum relative error of an optimized combination of the L1 and L∞ norms
with respect to the L2 norm is approximately equal to 5.6%. In the same paper the best
combination of an overestimating norm, the euclidean Chamfering weighted distance
in 2-D, and an underestimated norm, the Inverse square root weighted t-cost distance
in 2-D provide the best empirical MRE of 1.29%. There are two issues with such
linear combination of overestimating and underestimating norms. First, the resulting
norm is neither an over-approximation nor an under-approximation of the euclidean
norm. However, as we aim at modeling minimum or maximum distance constraints
in industrial optimization problems, the linear combinations do not allow a strict en-
forcement of such constraints. In [19], exact MREs of such norms were provided. The
MRE of the best overestimating norm is about 8.24 %, while the MRE of the best un-
derestimating norm is about 7.61%. The second issue is that we are looking for a
totally controllable approximation of the Euclidean norm whose maximum relative
error could tend towards 0 if one was willing to pay the price in terms of numerical
complexity. The polyhedral ε−approximation approach by [2,12] answers partially
this requirement for convex second order cone constraints, which can express upper
bound on Euclidean distance. In this spirit, we propose a family of polyhedral approx-
imations of the Euclidean distance based on uniform plane directions discretization
that also allows to tackle lower bound constraints on the Euclidean distance, which
are non convex constraints. We will also show that this family of approximations
both generalizes and makes easier the linearization of the above referenced under-
and over-approximations.

2.1 Euclidean norm linearization through uniform plane directions discretization

To find such a convenient linearization process, we relied on two geometrical results.
They are both based on a parametrically controlled discretization of the directions
of the Euclidean plane, that are otherwise characterized by the continuous domain
[0,2π[. In practice, for a given ndirections ∈ N such that ndirections ≥ 3, and for all i ∈
{1, · · · ,ndirections}= U, let us denote by

Ui =

(
Ui,x
Ui,y

)
=


cos
(

2(i−1)π
ndirections

)
sin
(

2(i−1)π
ndirections

)
 ∈ R2 (1)

the ith discretized direction (running notation throughout the paper). These ndirections-
th roots of unity provide a uniform discretization of the Euclidean plane directions
with each resulting direction representing an exclusive sub-interval of [0,2π[ of size

2π

ndirections
. See for instance Fig. 1(a) for an example with 8 directions. Note that by
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2π

n !u1

!u2

(a) (b)

Fig. 1 (a) Uniform discretization of the directions of the Euclidean plane (ndirections = 8) : the 8th roots of
unity (b) Approximation of the Euclidean plane disk D by the regular ndirections-sided polygons P and P ′
with the linear approximation of the Euclidean norm

definition, we have:

∀i ∈U, ‖Ui‖= 1 (2)

In practice, the Proposition 1 presented below allows to define a process based on
linear operations to check whether two points u,v ∈ R2 are closer than a given dis-
tance: one has to check that the projections of the u− v vector on the Ui directions
are all lower than a precise threshold. The fact that u and v will be decision variables
(position variables) while the Ui directions will be input data is to be kept in mind to
understand the linearity of the process proposed.

Proposition 1 Let u,v ∈ R2 and let d ∈ R+,

[ ∀i ∈U, 〈u− v |Ui〉 ≤ d ] =⇒‖u− v‖ ≤ d
cos(θmax)

(3)

where θmax =
π

ndirections

Proof Let us therefore assume that

∀i ∈U, 〈u− v |Ui〉 ≤ d (4)

Since two consecutive directions are separated by an angle of exactly 2π

ndirections
, we

necessarily have the following constraint on the angle ∠(u− v,Uimin)

](u− v,Uimin)≤
π

ndirections
= θmax (5)
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where the direction imin ∈ U is defined as the closest direction to u− v in terms of
angular separation. Therefore, since ||Uimin ||= 1 and since θmax ∈ [0, π

3 ]:

cos(θmax)‖u− v‖ ≤ 〈u− v , Uimin〉 (6)

and since imin ∈U and therefore verifies the equation (4):

‖u− v‖ ≤ d
cos(θmax)

(7)

ut

Note that [2,12] propose a better linearization of this convex constraint in a more
general context. As a natural complement to the previous proposition, Proposition 2
defines a linear process to check whether the two points u,v∈R2 are sufficiently sep-
arated, according to the separation distance d which is a non linear constraint. So this
discretization approach also allows to consider minimum separation distance, which
is a non convex constraint.

Proposition 2 Let once again u,v ∈R2 and d ∈R+. Then, the following implication
holds

[ ∃i ∈U, 〈u− v |Ui〉 ≥ d ] =⇒ ||u− v|| ≥ d (8)

Proof It is a direct consequence of the Cauchy-Schwarz inequality for the canonical
inner product of R2. Let i be the direction such that 〈u− v |Ui〉 ≥ d, then:

||u− v||= ||u− v|| · ||Ui|| (since ||Ui||= 1) (9)
≥ |〈u− v |Ui〉| (10)
≥ d (11)

ut

On a practical point of view, when we need to make sure that two points are suffi-
ciently separated, it means that we only need to find, among the ndirections discretized
directions, one direction for which this inner product is sufficiently high.

2.2 Quality of the linear approximation

In the case of Proposition 1 (the same analysis could be conducted for Proposition 2),
say we are trying to check whether the distance duv ∈R+ between two points u,v∈R2

is lower than ∆ ∈ R+. Relying on our previous results, if all the inner products are
less or equal to ∆ as dictated by Proposition 1, we will consider here that duv ≤ ∆.
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Though, note that the guarantee resulting from all the inner product inequalities is
that the distance between the two points is lower than ∆lim with

∆lim =
∆

cos(θmax)
(12)

This means that the two points could be actually at a distance comprised between ∆

and ∆lim, and still be considered as closer than ∆ according to the process of Propo-
sition 1. This is exactly what is represented in Fig. 1(b): D is a disk of radius ∆

centered on a certain v ∈R2, and P is the set of points verifying all the inner product
inequalities with respect to the point v, i.e. P = {u ∈ R2 / ∀i ∈U,〈u− v |Ui〉 ≤ ∆}.
Therefore, P\D is what we could call the exterior approximation set, that is the
set of points that are considered at a distance from v less than ∆ although they are
not. Note that there is another way of exploiting Proposition 1 by comparing all
the inner products to cos(θmax)∆ instead of directly ∆, then when all the inequali-
ties are true, we have now the guarantee that the distance between the two analyzed
points is less or equal to ∆. However, in that case, it is possible to find situations
where the distance between the two points is comprised between cos(θmax)∆ and
∆ and where one of the inner products has a value greater than cos(θmax)∆, lead-
ing to an impossibility to conclude that the two points are closer than ∆ with the
process of Proposition 1. This defines the interior approximation set D\P ′ with
P ′ = {u ∈ R2 / ∀i ∈ U,〈u− v |Ui〉 ≤ cos(θmax)∆}, also represented in Fig. 1(b).
In the end, we have to chose between two undesirable consequences of our lin-
ear approximation: accepting incorrect close points, or not detecting correct close
points. Concerning these two effects, note that the two right-hand sides analyzed
here (cos(θmax)∆ and ∆ that helped define P ′ and P respectively) correspond to ex-
treme situations. Depending on the application considered, one could try to find a
convenient trade-off between the two detrimental effects by chosing a right-hand side
α ∈ [cos(θmax)∆,∆]. Concerning the amplitude of the error caused by the linear ap-
proximation, it is directly linked to the number of directions ndirections: the error tends
relatively fast towards 0 when ndirections increases. One way to quantify this conver-
gence is to compare the area of D,P and P ′ with a varying number of directions, as
done in Fig. 2.

2.3 Extension of these principles to R3 and higher dimensions

The method proposed in section 2.1 for the linearization of euclidean norm con-
straints is valid in dimension 2. In the following, we argue about the possibility to
consider dimension 3.

Another way to interprete this choice we made to rely on the nth roots of unity in
R2 to discretize the Euclidean plane directions is to observe that they are a solution to
the following problem: what subset of size ndirections of the R2 unit circle minimizes
the maximum angular distance between a point of the unit circle and its angularly
closest point among the selected ndirections points ? Mathematically, this problem can
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Fig. 2 (a) Evolution of the area of the approximating polygons P and P ′ with respect to the area of the
disk D (b) Examples of values appearing in the curves

be expressed as follows

min
A⊂{v∈R2 | ||v||=1}
s.t. card(A)=ndirections

J (A) = max
u∈R2

s.t. ||u||=1

min
u′∈A

( u , u′ ) (13)

and it indeed admits the uniform distribution defined by the nth roots of unity (A =U)
as an optimal solution of optimal value J (U) = θmax (the entire set of optimal solu-
tions can be obtained by rotating the nth roots of unity of an angle α ∈

[
0, 2π

ndirections

)
,

each value of α leading to a distinct solution).

While it is trivial in R2 to discretize uniformly the directions of the plane for
a certain number of aimed directions ndirections, it is far from obvious to find a pre-
determined number of uniformly distributed points at the surface of the unit sphere
in R3. For some values of ndirections, it can even be proven that there is no solution
of exactly uniform distributions of the points on the sphere. As a result, this very
simple problem motivated a dedicated wave of research and therefore offers a rich
literature on the different methods developed to solve it: [21], [24], [13], [9]. For our
linearization process, it means that we have to extend our principles to non-uniform
discretized directions in R3. One way to do so is to solve at best the problem defined
previously in R3:

min
A⊂{v∈R3 | ||v||=1}
s.t. card(A)=ndirections

J (A) = max
u∈R3

s.t. ||u||=1

min
u′∈A

( u , u′ ) (14)

In some of the aforementioned literature, this problem is exactly the one tackled,
but there are articles that also address close variants of the problem with other cri-
teria inspired by physical phenomena, such as electrostatic equilibrium for instance.
From the point of view of our application, solving this optimization problem can be
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interpreted as finding the most isotropic treatment of all the R3 directions before ap-
proximating linearly the Euclidean distances. Let therefore U be an optimal (or sub-
optimal) solution of (14), then Proposition 1 and Proposition 2 become valid in R3

simply by using U as the set of discretized directions and by setting θmax = J (U).
Since the application that motivated this work (beam layout optimization, detailed
further in the article) is set in the Euclidean plane, we did not perform at this point
any analysis for R3 similar to the one presented in the previous paragraph for R2

where the evolution of the approximation error with the number of discretized direc-
tion has been properly quantified. To do so, one would simply have to implement a
solution for solving (14) for each number of directions ndirections tested.

Finally, note that several articles tackle the question of sampling uniformly from n-
dimensional spheres (for instance [8] and [20]), allowing us to further extend our
principles to dimensions even higher than R3 by applying the exact same reasoning.

3 Relation with known approximations of the Euclidean distance

Mukherjee [19] presents approximations of the Euclidean norm based on linear com-
binations of other norms. He proposes a combination of the L∞ and L1 norms and
also a combination of the euclidean chamfering weighted distance in n-D (CWDeu)
and the inverse square root weighted t-cost distance in n-D (WtDisr). We give below

the expression of these different norms for a 2-D vector u =

(
ux
uy

)
.

dL∞
(u) = max(|ux|, |uy|) (15)

dL1(u) = |ux|+ |uy| (16)

dWtDisr(u) = max
(

max(|ux|, |uy|),
1√
2
(|ux|+ |uy|)

)
(17)

dCWDeu(u) = max(|ux|, |uy|)+(
√

2−1)min(|ux|, |uy|)

= (2−
√

2)max(|ux|, |uy|)+(
√

2−1) ((|ux|+ |uy|))
(18)

The latter expression is obtained by using the relation min(|ux|, |uy|) = |ux|+ |uy|−
max(|ux|, |uy|). Norms L∞ and WtDisr give under-estimations of the Euclidean norm,
while norms L1 and CWDeu provide over-estimations of the Euclidean norm. We use
the second expression of norm CWDeu since it allows an easier linearization.

Now, let Un,α the 2×n matrix such that each vector column (Un,α
i )i=1,··· ,n is the

direction obtained by expression (1) with ndirections = n and then rotated by angle α.
We consider in particular the following matrices:

U4,0 =

(
1 0 −1 0
0 1 0 −1

)
U4, π

4 =

(
cos(π

4 ) −cos(π

4 ) −cos(π

4 ) cos(π

4 )
cos(π

4 ) cos(π

4 ) −cos(π

4 ) −cos(π

4 )

)

U8,0 =

(
1 cos(π

4 ) 0 −cos(π

4 ) −1 −cos(π

4 ) 0 cos(π

4 )
0 cos(π

4 ) 1 cos(π

4 ) 0 −cos(π

4 ) −1 −cos(π

4 )

)
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U8, π

8 =

(
cos(π

8 ) sin(π

8 ) −sin(π

8 ) −cos(π

8 ) −cos(π

8 ) −sin(π

8 ) sin(π

8 ) cos(π

8 )
sin(π

8 ) cos(π

8 ) cos(π

8 ) sin(π

8 ) −sin(π

8 ) −cos(π

8 ) −cos(π

8 ) −sin(π

8 )

)
Let P α

n = {u ∈ R2 / ∀i ∈ {1, · · · ,n},
〈
u |Un,α

i
〉
≤ ∆} the set of points that lie

at a distance of no more than ∆ from the origin according to the outer approxima-
tion of the Euclidean distance via discretization Un,α and let P ′αn = {u ∈ R2 / ∀i ∈
{1, · · · ,n},

〈
u |Un,α

i
〉
≤ cos(π

n )∆} the set of points that lie at a distance of no more
than ∆ from the origin according to the inner approximation of the Euclidean distance
via discretization Un,α.

Proposition 3 Let δ ∈ R+. Consider the set of points

PL∞
= {u ∈ R2 / dL∞

(u)≤ ∆} PL1 = {u ∈ R2 / dL1(u)≤ ∆}

PWtDisr = {u ∈ R2 / dWtDisr(u)≤ ∆} PCWDeu = {u ∈ R2 / dCWDeu(u)≤ ∆}

We have the following:

(i)PL∞
= P 0

4 ,(ii)PL1 = P ′
π

4
4 ,(iii)PWtDisr = P 0

8 and (v)PCWDeu = P ′
π

8
8

Proof

(i) max(|ux|, |uy|)≤ ∆⇔


ux ≤ ∆

uy ≤ ∆

−ux ≤ ∆

−uy ≤ ∆

⇔
〈

u |U4,0
i

〉
≤ ∆ ∀i = 1, · · · ,4

(ii) |ux|+ |uy| ≤ ∆ ⇔


ux +uy ≤ ∆

−ux +uy ≤ ∆

−ux−uy ≤ ∆

ux−uy ≤ ∆

⇔


cos(π

4 )ux + cos(π

4 )uy ≤ cos(π

4 )∆
−cos(π

4 )ux + cos(π

4 )uy ≤ cos(π

4 )∆
−cos(π

4 )ux− cos(π

4 )uy ≤ cos(π

4 )∆
cos(π

4 )ux− cos(π

4 )uy ≤ cos(π

4 )∆

⇔
〈

u |U4, π

4
i

〉
≤ cos(π

4 )∆ ∀i = 1, · · · ,4

(iii) max
(

max(|ux|, |uy|), 1√
2
(|ux|+ |uy|)

)
≤ ∆ ⇔



ux ≤ ∆

−ux ≤ ∆

uy ≤ ∆

−uy ≤ ∆
1√
2
ux +

1√
2
uy ≤ ∆

− 1√
2
ux +

1√
2
uy ≤ ∆

1√
2
ux− 1√

2
uy ≤ ∆

1√
2
ux− 1√

2
uy ≤ ∆

⇔
〈

u |U8,0
i

〉
≤ ∆ ∀i = 1, · · · ,8



Title Suppressed Due to Excessive Length 11

since cos(π

4 ) =
1√
2
.

(iv) (2−
√

2)max(|ux|, |uy|)+(
√

2−1) ((|ux|+ |uy|))≤ ∆

⇔
{
|ux|+(

√
2−1)|uy| ≤ ∆

(
√

2−1)|ux|+ |uy| ≤ ∆

since
√

2 = 2cos(π

4 ) we have:

⇔
{

cos(π

8 )|ux|+ cos(π

8 )(2cos(π

4 )−1)|uy| ≤ cos(π

8 )∆
cos(π

8 )(2cos(π

4 )−1)|ux|+ cos(π

8 )|uy| ≤ cos(π

8 )∆

using 2cos(a)cos(b) = cos(a−b)+ cos(a+b) and cos( 3π

8 ) = sin(π

8 ) we obtain:

⇔
{

cos(π

8 )|ux|+ sin(π

8 )|uy| ≤ cos(π

8 )∆
sin(π

8 )|ux|+ cos(π

8 )|uy| ≤ cos(π

8 )∆

⇔
〈

u |U8, π

8
i

〉
≤ cos(π

8 )∆ ∀i = 1, · · · ,8

ut

It follows that the proposed scheme based on uniform discretization of the plane
directions allows to include in mixed-integer linear programs the previously proposed
norms L1, L∞, WtDisr and CWDeu as well as their linear and convex combinations
proposed in [19]. As these norms correspond to the particular cases ndirections = 4
and ndirections = 8, this framework allows to obtain their generalization to higher dis-
cretization levels, improving as needed w.r.t the acceptable CPU time increase the
approximation quality. Note that in our experiments, the linear combination of under-
and over-estimated norms would lead to significant violations of the constraints.
Hence for maximal distance constraints, we use a over-estimate of the Euclidean
distance while for the minimal distance constraints, we use an under-estimate of the
Euclidean distance.

4 A simple case with convex distance constraints: the continuous k-center
problem

To illustrate the applicability of the proposed linearization process, this section intro-
duces how it could be used to solve a well-known operations research problem that
mixes continuous and discrete aspects: the continuous k-center problem. It consists
in defining the position of K ≥ 1 centers that are used to cover N ≥ 1 cities of known
positions Cc = (Xc,Yc) ∈ R2 (c ∈ {1, · · · ,N}) in order to provide a certain service:
these centers can be fire stations, hospitals, police stations, warehouses... The goal
is to place the centers and to allocate the cities to the centers in such a way as to
minimize the maximum time needed to provide service to a city. To produce such
solutions, most of the literature on the continuous k-center problem proposes to min-
imize the maximum Euclidean distance between a center and its allocated stations,



12 Jean-Thomas Camino et al.

but other norms can be used, as it is done in [23] with l1 and l∞ norms for instance.
Here, we naturally consider the Euclidean norm in order to apply the linearization
principles presented in the previous section. We use continuous variables for the po-
sition of the K centers ((xk,yk) ∈ R2, k ∈ {1, · · · ,K}), that are allowed to vary in a
certain bounding box B = [Xmin,Xmax]× [Ymin,Ymax]⊂ R2, and boolean variables to
materialize the allocation of the cities to the centers (αc,k ∈ {0,1}). Finally, λ ∈ R+

is the continuous variable that will represent the maximum distance of a city to its
center (that is to be minimized).

Minimize λ (19)

under the following constraints

∀k ∈ {1, · · · ,K}, xk ≥ Xmin (20)

∀k ∈ {1, · · · ,K}, xk ≤ Xmax (21)

∀k ∈ {1, · · · ,K}, yk ≥ Ymin (22)

∀k ∈ {1, · · · ,K}, yk ≤ Ymax (23)

∀c ∈ {1, · · · ,N}, ∑
k∈{1,··· ,K}

αc,k = 1 (24)

∀c ∈ {1, · · · ,N},∀k ∈ {1, · · · ,K},

αc,k ∈ {0,1} (25)√
(xk−Xc)2 +(yk−Yc)2 ≤ λ+Mc(1−αc,k) (26)

The MINLP described by equations (19)-(26) corresponds to the minimization of the
maximum distance between a center and its associated cities. Equations (20), (21),
(22), (23) define the boundaries of the center positions. The constraints (24) force
each city to be allocated to one and only center. Finally, the constraints (26) allows
to lower-bound the continuous distance variable λ by all the center-city distances
of all active center-city couples. This constraint is a non linear but convex distance
proximity constraint. Furthermore, it involves a big M constraint where Mc can be
formulated as the greatest distance between a city and a position in the bounding
box. So we can consider Mc = max

Z∈B
‖Z−Cc‖. By means of Proposition 1, we can

reformulate (26) by
∀c ∈ {1, · · · ,N},∀k ∈ {1, · · · ,K},∀u ∈ {1, · · · ,ndirections},

cos(θmax)λ≥
(

xk−Xc
yk−Yc

)
·
(

Uu,x
Uu,y

)
−Mc(1−αc,k) (27)

Note that in equations (31), Proposition 1 is used with a “conservative” approach:
the unit disk is approximated by P ′ in order to over-estimate the minimized maxi-
mum distance, instead of under-estimating it as it would have been the case with an
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approximation of the disk by P . Fig. 3 provides examples of solutions generated by
this MILP respectively for (N = 59, K = 9, ndirections = 12) and (N = 144, K = 30,
ndirections = 12). Note that in this problem, there are no strict proximity constraints,

(a)

(b)

Fig. 3 (a) k-center solution example for N = 59, K = 9, ndirections = 12(b) k-center solution example for
N = 144, K = 30, ndirections = 12

nor separation constraints, but simply a notion of maximum distance to be minimized.
This allows to have a wide range of different strategies based on branch-and-bound
procedures (see [10] for instance) or on metaheuristics ([22]) to produce optimal so-
lutions for very large instances that we could not solve with the MILP model above.
However, this example seemed simple enough to illustrate how easily our lineariza-
tion process allows to reach a direct algorithmic solution that relies on all the powerful
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solving principles inherent to Mixed Integer Linear Programming. Most importantly,
such models are adaptable to variants of the problem that are characterized by extra
sets of constraints and variables.

As mentioned in Section 2, the authors of [16] propose linearization and dis-
cretization techniques for a special sphere covering problem occuring in a gamma
ray machine radiosurgery application. Their technique is based on the linearization
of the squared distance. Below we apply this technique to the k− center problem so
as to make an experimental comparison with our approach for different discretiza-
tion levels. The approach considered the squared distance (xk−Xc)

2 +(yk−Yc)
2 =

x2
k + y2

k − 2xkXc− 2ykYc +X2
c +Y 2

c , where the only non linear variable terms are x2
k

and y2
k . The linearization is based on a discretization parameter D and on points

x̄d = Xmin +(d−1)
Xmax−Xmin

D
d = 1, . . . ,D

ȳd = Ymin +(d−1)
Ymax−Ymin

D
d = 1, . . . ,D

Then the piecewise linear function defined by segments (x̄d , x̄2
d)(x̄d+1, x̄2

d+1) for d =

1, . . . ,D−1 defines an inner approximation of x2 of any x ∈ [Xmin,Xmax] and the one
defined by segments (ȳd , ȳ2

d)(ȳd+1, ȳ2
d+1) for d = 1, . . . ,D−1 defines an inner approx-

imation of y2 of any y ∈ [Ymin,Ymax]. It follows that constraints (26) is implied by the
following constraints, introducing continuous variables x̂k and ŷk as upper bounds of
x2

k and y2
k , and variable Λ = λ2.

∀c ∈ {1, · · · ,N},∀k ∈ {1, · · · ,K},

x̂k + ŷk−2xkXc−2ykYc +X2
c +Y 2

c ≤ Λ+M2
c (1−αc,k) (28)

∀k ∈ {1, · · · ,K},∀d ∈ {1, · · · ,D−1}

x̂k ≥ (x̄d+1 + x̄d)xk− x̄d+1x̄d (29)

ŷk ≥ (ȳd+1 + ȳd)yk− ȳd+1ȳd (30)

Constraints (28) bounds the squared maximum distance Λ, whereas constraints
(29) and (29) enforce x̂k ≥ x2

k and ŷk ≥ y2
k , by convexity. Then the approach of [16]

applied to the k−center problem consists in solving the following MILP:

Minimize Λ

under constraints (20–25), (28–30).

As, on one hand, no theoretical bound on the approximation error is provided
in [16] and, on the other hand, no inclusion of the linear combinations of norms in
optimization models were tested in [19], we opt for an experimental comparison. We
consider a set of 60 instances of the k−center problem including 10 instances of each
of the following families, from small to medium size: N = 50/K = 5, N = 70/K = 7,
N = 80,K = 8, N = 100/K = 10, N = 120/K = 12, N = 130/K = 13. The N points
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have been randomly selected from a set of 157 points issued from the multibeam
satellite design application (see next section).

We compare our linearization scheme with ndirections ∈ {4,8,12,14,16,20} (de-
noted DIR), the linearization proposed by Liberti et al. [16] (denoted L) with D ∈
{10,20,30,40}. We also include in the experiments two linear combinations of norms
proposed by Mukherjee [19]: the linear combination of L1 with weight a = 0.39 and
L∞ with weight b = 0.55 and the linear combination of CWDeu with weight a = 0.47
and WtDisr with weight b= 0.51. These weights have been empirically determined as
good for minimizing the maximal relative error in [19]. For each of these two linear
combinations, we compare two linearizations. The first ones, denoted NL1LI for the
combination of L1 and L∞ and NWC for the second combination, are based on the
“natural” linearization of the max and absolute value operators, which here does not
require any adjunction of binary variables. We refer to proof of Proposition 3 for the
transformation of an upper bounding constraint on these operators in a conjunction
of linear contraints. The to other linearizations, denoted DL1LI and DWC, respec-
tively, are based on the equivalent representations of the norms by the discretization
of the directions of the planes established by Proposition 3. Hence we combine the
over-estimating distance with directions Un,0 and the underestimating distance with
directions Un, π

n with n ∈ {4,8}. To that purpose, proximity constraints have to be

checked for each pair of directions Un,0
u and U

n, π
n

v for u,v ∈ {1, · · · ,ndirections}. Con-
straints constraints (31) are thus replaced by:

∀c ∈ {1, · · · ,N},∀k ∈ {1, · · · ,K},∀u,v ∈ {1, · · · ,n},

λ≥ a
cos(θmax)

(
xk−Xc
yk−Yc

)
·

(
U

n, π
n

u,x

U
n, π

n
u,y

)
+b
(

xk−Xc
yk−Yc

)
·

(
Un,0

v,x

Un,0
v,y

)
−Mc(1−αc,k) (31)

All formulations are solved on an 8-core Intel i7-4770 processor clocked at 3.40GHz
with 8 GB RAM under Linux Ubuntu 4.4.0-135-generic by the parallel CPLEX 12.6
MILP solver with the default parameters. The results displayed in Tables 1 and 2
provide the average maximum distance, the number of verified optimal solutions and
the average CPU time obtained by each approach on each family of instances for a
maximum CPU time of 500s. The displayed objective values are the actual distances
computed a posteriori on the output solutions. The best solutions are underlined and
bolded.

The linearization method of [16] L40 obtains the best results for instances from
N = 50 to N = 80 but the DIR20 approach is close. On the N = 80 instances, the linear
combination of the CWDeu and WtDisr norms obtain the best results. On the large
instances N = 120 and N = 130, the DIR linearization scheme obtains (by far) the best
results for 12 and 16 directions. This justifies to select the DIR scheme for the more
complex problem issued from the industrial context presented in section 5, for which
at most 100 stations have to be covered. For the DIR and L methods, the increase on
the solution quality brought by increasing the discretization level appears clearly for
for N = 50,70,80 instances. For the large instaces this motonone behavior still holds
for the L linearization while for the DIR scheme, the assigned CPU time is sometimes
not sufficient for the larger discretization levels. For modest CPU time allowance
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N = 50 N = 70 N = 80
DIR4 1031.5 10 0.3 833.2 10 1.0 772.3 8 203.4
DIR8 842.7 10 0.5 688.1 10 27.2 640.2 1 489.3
DIR12 822.2 10 0.8 662.4 10 127.4 624.3 0 500.0
DIR14 819.5 10 1.0 659.8 8 191.7 618.6 0 500.7
DIR16 815.9 10 1.2 658.2 8 195.1 616.5 0 500.1
DIR20 812.7 10 1.4 655.8 9 192.1 612.2 0 500.1
L10 819.0 10 1.6 675.2 10 17.9 632.6 10 63.7
L20 808.7 10 1.5 655.7 10 31.4 612.9 10 111.8
L30 806.7 10 1.6 652.7 10 44.8 610.6 9 167.7
L40 806.3 10 1.7 652.3 10 40.2 610.4 7 189.8
NL1LI 844.4 10 9.4 683.2 1 483.9 641.5 0 500.0
DL1LI 847.8 10 12.8 686.7 0 500.0 644.3 0 500.1
NWC 814.6 10 19.6 658.9 1 461.1 614.8 0 500.1
DWC 814.4 10 5.8 658.8 10 37.3 619.4 9 175.5

Table 1 Comparison of linearizations with a 500s CPU time limit for N = 50,70,80

N = 100 N = 120 N = 130
DIR4 703.9 0 500.1 618.4 0 500.2 598.9 0 500.4
DIR8 583.0 0 500.0 532.4 0 500.1 507.6 0 500.1
DIR12 562.6 0 500.0 515.6 0 500.1 502.6 0 500.1
DIR14 560.5 0 500.1 521.6 0 500.1 513.8 0 500.1
DIR16 557.7 0 500.1 518.7 0 500.1 500.8 0 500.1
DIR20 566.9 0 500.1 535.1 0 501.0 571.6 0 500.4
L10 581.6 3 464.8 610.9 0 500.0 664.1 0 500.1
L20 588.7 2 462.9 678.8 0 500.1 666.9 0 500.0
L30 593.8 0 500.1 685.4 0 500.1 716.4 0 500.0
L40 601.3 3 465.9 626.4 0 500.0 637.7 0 500.0
NL1LI 569.2 0 500.1 562.1 0 500.1 561.7 0 500.1
DL1LI 678.6 0 500.1 762.9 0 500.1 801.0 0 500.1
NWC 553.7 0 500.1 525.3 0 500.1 526.8 0 500.1
DWC 661.5 0 500.1 776.5 0 500.1 768.8 0 500.2

Table 2 Comparisons of linearizations with a 500s CPU time limit for N = 100,120,130

the DIR8 and DIR12 linearizations are very competitive. Remarkably, the natural
linearizations of the linear combinations NWC obtain consistently results close to
the best solution for all instance sets. However, except for N = 80, they are always
outperformed by at lest one DIR linearization. The linear combination NL1LI is less
competitive and most often ranked far behinf DIR8. Finally, it appears by comparing
rows that the linearizations of the linear combinations of norm following the plane
direction scheme (DL1LI and DWC) are less efficient for large instances than the
adhoc linearization NL1LI and NWC, respectively. Note that the different objective
values in the case that all instances are solved to optimality for example for N = 50,
DL1LI and NL1LI is explained by the fact that, although both formulations have the
same optimal value, the centers are not located at the same points and the true L2
distances can vary.

To illustrate the approximation quality of the different linearizations, we provide
for each linearization the relative deviation from the estimated maximum distance
(MILP objective value) and the actual maximum distance. More precisely is λ̄ is the
actual maximum distance of the solution (computed a posteriori) and λ∗ is the MILP
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Average deviation Max deviation Min deviation
DIR4 -0.46% 0.00% -6.98%
DIR8 -0.12% 0.00% -1.10%
DIR12 -0.03% 0.00% -0.65%
DIR14 -0.07% 0.00% -0.67%
DIR16 -0.04% 0.00% -0.70%
DIR20 -0.03% 0.00% -0.51%
L10 -1.40% -0.95% -1.85%
L20 -0.22% -0.21% -0.22%
L30 -0.12% -0.05% -0.19%
L40 -0.02% -0.02% -0.02%
NL1LI 5.63% 6.00% 0.54%
DL1LI 5.77% 6,00% 3,63%
NWC 1.92% 2,05% 0.93%
DWC 1.89% 2.01% 1.01%

Table 3 Average, Maximum and Minimum deviation from the actual Euclidean distance

objective function value. The deviation is λ̄−λ∗
λ∗ . Table 3 gives the average, maximal

and minimal deviation obtained by the methods on the 60 instances.
The figures illustrate that the DIR and L linearizations provide over-approximations

of the Euclidean distance. The impact of the discretization level on the magnitude of
the error appears clearly, with a negligible error from Ndirections ≥ 12 for DIR and
from D≥ 40 for L. On the opposite, the linear combinations of norms tend to under-
estimate the maximal distance (although the distance is generally neither an under-
nor an over-approximation) with rather high deviations for the L1LI linear combina-
tion and better deviations for the WC linear combination, which is consistent with
the findings in [19].

5 A more complex application with non convex distance constraints: the beam
layout optimization problem in multibeam satellite systems

5.1 Coordinate system used to define the optimization problem

This paragraph describes the coordinate system used to identify the points on the
Earth’s surface in the context of satellite communications. It is a necessary informa-
tion to understand the beam layout optimization problem as it is presented in the next
paragraph. A well-known reference system in this application (see [4] for instance) is
the satellite-centered (x,y,z) coordinate system, presented on Fig. 4(a). The z axis is
in the satellite-Earth centre direction, the x axis is perpendicular to the meridian plane
of the satellite (defined by the North, the z axis, and the position of the satellite) and
is oriented toward the east, and the y axis is perpendicular to the equatorial plane and
oriented in such a way as to complete a right-handed coordinate system (i.e. the south
for a geostationary satellite). On the figure, S represents the satellite, O the centre of
the Earth, P a point on the Earth’s surface and P̂ its projection on the equatorial plane.
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(a) (b)

Fig. 4 (a) Satellite-centered coordinate system and true view angles (b) True view representation

Let us denote by A the set of points on the Earth’s surface that are visible from the
satellite. Let Θ be the set of possible angles between the −→z direction and the

−→
SP di-

rections when P ∈ A , and let Φ be the set of possible (
−→
HP̂,
−→
HP) angles when P ∈ A

with H being its projection on the
−→
SO line and P̂ being its projection on the equatorial

plane. Then, a useful property is that there exists a subset Z of Θ×Φ and a bijection
from A into Z that allows us to use the couple of true view angles (θ,ϕ) ∈ Z, as
they are called, to completely identify any point P in A , as shown in Fig. 4(a). In this
figure, there is also an illustration of the notion of angular separation of two points on
the surface of the Earth from the point of view of the satellite, which is crucial for the
problem we addressed in this paper: there is indeed an example of such an angular
separation with θ, which is the angle between the sub-satellite point (on the surface
of the Earth) and the point P.

There exists a very convenient representation of these true view angles in the xy
plane. To the two true view angles (θ,ϕ) of a given point P in A , we associate the so
called projected true view angles θx ∈Θx and θy ∈Θy defined as follows:

θx = θcosϕ (32)
θy = θsinϕ (33)

which bijectively defines Θx and Θy from Z, as represented in figure (b) of Fig. 4. A
well known result on these projected true view angles is that, for any two points P1
and P2 in A , the following approximation∣∣∣(−→SP1,

−→
SP2)

∣∣∣'√(θx,P2 −θx,P1)
2 +(θy,P2 −θy,P1)

2 (34)

is perfectly acceptable in the case of geostationary satellites (see [4] for instance for
more details on this point). This means that the angular distance from the point of
view of the satellite between two points on the surface of the Earth can be computed
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with a simple Euclidean norm in the projection space Θx×Θy. For this very reason,
these coordinates have been chosen for our study and our models.

5.2 Definition of the problem: variables, constraints and objective

A multibeam satellite is a particular type of telecommunication satellite that pro-
vides service to its users thanks to a plurality of relatively narrow beams, a beam
being a zone of significant electromagnetic power on the surface of the Earth for a
given radiofrequency source. After receiving the signals from a gateway connected
to the terrestrial network, the satellite payload converts in frequency, amplifies, and
retransmits the input signals in the different beams through the reflector antennas,
as depicted in Fig. 5 where we have 13 beams transmitted by 4 reflector antennas
(one per color in the figure). In the coordinate system presented in section 5.1, and

Fig. 5 Standard architecture of a multibeam satellite system

with the antenna technology considered in this work, a beam can be represented as a
disk of a certain diameter and with a certain center on the surface of the Earth. The
telecommunication mission is defined by a finite set S = {1, · · · ,NS} of NS user sta-
tions, each station s ∈ S being characterized by a traffic demand Ts ∈R+ in Megabits
per second and coordinates Scoord,s = (Xstations,s,Ystations,s) ∈ R2. The traffic of a sta-
tion is considered covered if the station belongs to at least one disk representation
of a beam: this condition makes the connection with our work in section 2 on Eu-
clidean proximity constraints. We denote by NB the number of beams than can be
embarked on the satellite, and by B the set indexing them. When optimizing a beam
layout, each beam b∈B must be assigned a beam center (xb,yb)∈R2 and a diameter
in a finite set W = {1, · · · ,NW} of possibilities: {W1, · · · ,WNW } ⊂ R+. Each beam
b ∈ B is transmitted by exactly one of the NR available satellite reflectors, indexed
by R = {1, · · · ,NR}. For antenna feasibility reasons detailed in [5], two beams as-
sociated to the same reflector must have sufficiently separated beam centers, which
makes the link with our work on Euclidean separation constraints in section 2 . The
rule adopted in this study is that this separation distance is proportional to the mean
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of two beam diameters, according to a proportionality coefficient κ ∈R+ (physically
realistic values varying in [ 3

2 ,
√

3]). Finally, the objective is to maximize the covered
traffic.

5.3 NP-hardness of the beam layout optimization

The Circle Covering Problem (CCP) is defined as the following decision problem:

Let x1, · · · ,xn ∈ R2 be n points of the Euclidean plane and let p ∈ N∗.
Can we find p unit disks D1, · · · ,Dp ⊂ R2 such that each point is covered by at least

one disk ?

In [18], the authors prove that the Circle Covering Problem (CCP) is NP-complete.
The beam layout decision problem (BLDP) associated to the beam layout optimiza-
tion problem defined in the previous paragraph is the following

Let ζ ∈ R+.
Can the aggregate covered traffic ∑Ts be greater than or equal to ζ under the

constraints of section 5.2 ?

Proposition 4 CCP can be reduced polynomially to BLDP. The beam layout opti-
mization problem is therefore NP-hard.

Proof Let n and p be two positive integers defining an instance I of CCP. We are look-
ing for an instance I′ of BLDP polynomially defined from I and such that I true ⇔
I′ true. Let therefore I′ be defined as follows: NS = n, Ts = 1 for all s ∈ S , ζ = n,
NB = p, NR = NB, κ = 0, NW = 1 and W1 = 2. Finally, for all s ∈ S , the position of
the station s in the plane coincides with the sth point of I. Since there is one reflector
per beam there is no reflector selection problem. There is no diameter selection con-
straint neither. Finally, since κ = 0, there is no separation constraints (the circles can
be as close as needed). The problem becomes: can all the NS stations be covered by
NB beams of radius 1 (no further constraints) ? Thus, the equivalency with I follows.
ut

5.4 Mixed Integer Linear Programming model

Relying fully on the principles of section 2 a MILP model can be obtained from the
following MINLP:
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Maximize ∑
(s,b)∈S×B

Ts αs,b (35)

under the following constraints

∀s ∈ S , ∑
b∈B

αs,b ≤ 1 (36)

∀b ∈ B, ∑
w∈W

ωb,w = 1 (37)

∀b ∈ B, ∑
r∈R

ρb,r = 1 (38)

∀s ∈ S ,∀b ∈ B,√
(xb−Xstations,s)2 +(yb−Ystations,s)2 ≤ ∑

w∈W

Ww

2
ωb,w +(1−αs,b)Ms (39)

∀b,b′ ∈ B such that b′ > b,∀r ∈ R , βb,b′ +ρb,r +ρb′,r ≤ 2 (40)

∀b,b′ ∈ B such that b′ > b,√
(xb′ − xb)2 +(yb′ − yb)2 +Nβb,b′ ≥

κ

2

(
∑

w∈W
Wwωb,w + ∑

w∈W
Wwωb′,w

)
(41)

Variables: αs,b,ωb,w,ρb,r,βb,b′ ,γb,b′,u ∈ {0,1}, xb,yb ∈ R

For each beam b∈B , we introduce beam center variables (xb,yb)∈R2, beam diameter,
satellite reflector and station allocation variables (respectively ωb,w,ρb,r,αs,b ∈ {0,1}
for all w ∈W ,r ∈ R ,s ∈ S ) and corresponding “at most one” and “exactly one” con-
straints: (36), (37) and (38). They help write linearly the objective (35): covered traffic
maximization. The proximity constraint that states that a station must be inside the
disk of a beam to be covered by it is expressed in constraint (39). Ms ∈ R+ (pre-
cisely tuned) relaxes the constraints when b ∈ B does not cover s ∈ S (αs,b = 0).
Constraints (40) force the βb,b′ ∈ {0,1} variables to be equal to 0 if b,b′ ∈ B (b 6= b′)
use the same reflector. The antenna separation constraint occurs when two beams use
the same reflector ( βb,b′ = 0), equation (41) formulates that separation involving the
Euclidean distance between the two beams, the mean of the two beam diameters and
the proportionality coefficient κ.

The model (35) - (41) is non-linear because of constraints (39) and (41). How-
ever, thanks to Proposition 1 (approximation by P ′) and in the same way we did for
the k-center problem in section 4, constraint (39) can be replaced by

∀s ∈ S ,∀b ∈ B,∀u ∈U,(
xb−Xstations,s
yb−Ystations,s

)T (Uu,x
Uu,y

)
≤ 1

2
cos(θmax) ∑

w∈W
Wwωb,w +(1−αs,b)Ms (42)
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In the same manner, constraint (41) can be replaced by a set of two constraints
presented below :

∀b,b′ ∈ B such that b′ > b, βb,b′ + ∑
u∈U

γb,b′,u ≥ 1 (43)

∀b,b′ ∈ B such that b′ > b,∀u ∈U,(
xb′ − xb
yb′ − yb

)T (Uu,x
Uu,y

)
≥ κ

2

(
∑

w∈W
Wwωb,w + ∑

w∈W
Wwωb′,w

)
−N(1− γb,b′,u) (44)

The antenna separation constraints are activated in that case, first through con-
straints (43) that force at least one γb,b′,u ∈ {0,1} (u ∈ U) to be equal to 1. Con-
straints (44) operate the separation according to Proposition 2 and coefficient κ when
γb,b′,u = 1 (approximation by P ). They are relaxed by N ∈ R+ when γb,b′,u = 0.

6 Experiments

In addition to the fact that the new linearization scheme outperformed the one of [16]
for large instances in our experiments (see Section 4), there are two other reasons in
favor of choosing the new scheme instead of more classical linearizations. First, the
separation constraint (41) has 2 variable points, the centers of beams b and b′. Hence,
to follow the approach of [16], there would be 6 non linear terms to linearize (x2

b,
x2

b′ , xbxb′ , y2
b, y2

b′ and ybyb′ ). Second, separation constraint (41) is non-convex, which
was not addressed in [16]. Although using a linear combination of an under- and an
over-estimated norm is likely to produce infeasible solutions, we nevertheless include
the combinations (L1,L∞) and (CWDeu,WtDisr) [19]. Although the plane direction
linearization scheme allows to model such combinations thanks to to properties es-
tablished in Section 6.1, we found that the linearization was less efficient than the
adhoc one. Hence we use this latter scheme to make the fairest comparison

6.1 Comparison of the proposed linearization with linear combination of norms

To compare the proposed linearization scheme with existing approximation we con-
sider 10 instances of NS = 100 stations, NB = 10 beams, NR = 4 stations a single beam
diameter W = 0.85. The traffic demand distribution Ts is randomly generated between
1 and 200 while the fixed beam capacity is set to 500. We set κ =

√
3. We compare

the linearizations based on 4, 8 and 12 plane directions (DIR2, DIR8 and DIR12)
with natural linearizations of the (L1,L∞) and (CWDeu,WtDisr) linear combinations
of norms (NL1LI and NWC) and the linearizations of these norms by the plane di-
rections approach (DL1LI and DWC). We also design a MILP where the distance for
proximity constraints (39) is over-estimated by the CWDeu norm and the distance for
separation constraints (41) is under-estimated by the WtDisr) norm, both linearized
in the natural way. This variant is named NWC*. Due to the property established in
Section 3, NWC* has in theory the same approximation quality as the DIR8 MILP.
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est. traffic real traffic # viol ct (39) # viol ct (41)
DIR4 3907,72 3907,72 0 0
DIR8 4336,132 4336,132 0 0
DIR12 4363,202 4363,202 0 0
NL1I 4105,987 3691,305 6,8 0,3
DL1I 4319,118 3510,509 14,4 0,7
NWC 3609,625 3423,058 3,4 0
DWC 3119,605 2797,824 5,8 0
NWC* 3802,439 3802,439 0 0

Table 4 Comparison of linearizations on the beam layout problem with a 500s CPU time limit

For the natural linearization of the non convex separation constraints L1, L∞,
CWDeu and WtDisr, we need the introduction of additional binary variables. For the
CWDeu norm, three binary variables by pair (beam,stations) are needed to linearize
the max, absolute x value and absolute y value operators. For the WtDisr norm, one
more binary variables by pair (beam,stations) is needed because of the global max
operator. For L1 and L∞, two and three binary variables are needed for each pair
(beam,station), respectively. In terms of number of binary variables this gives an ad-
vantage to the natural linearizations as none of them need more binary variables than
the DIR4 linearization.

Table 4 gives for each MILP under a 500s time limit, the average estimated cov-
ered traffic on the 10 instances, the real average covered traffic, the average number
of violated proximity constraints (39) and the average number of violated separation
constraints (41). The estimated covered traffic correspond to the returned objective
function. For the linear combination of norms, there may exist violated proximity
and separation constraints. Hence for each violated proximity constraint between a
station s and its assigned beam b (within a tolerance of 0.01W/2), the traffic demand
of s has to be subtracted from the total covered traffic. The real covered traffic is ob-
tained by this process. The time limit of 500s was reached by each MILP on each
instance.

The results show that the DIR12 MILP outperforms all other MILPs. The linear
combination of norms L1 and L∞ (NL1I and DL1I) obtain an objective value close
to the best value but there are so many violated proximity constraints that the real
covered traffic is much lower. There are also violations of the separation constraints.
The linear combination of norms CWDeu and WtDisr (NWC and DWC) obtains dis-
appointing results. Even if there are much less violated proximity constraints and no
violated separation constraints than for L1LI, the estimated covered traffic is lower
than the DIR4 one. Notice that the natural linearizations obtain less constraints viola-
tions than the ones based on plane directions. The NWC* linearization obtains better
results and there are no violated constraints, as expected but it stays slightly behind
DIR4. Even if there are more binary variables in the linearizations based on place di-
rections, the solver converges faster toward better solutions. For the experiments on
larger and more complex instances, we consequently select the DIR linearizations.
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6.2 Experiments on larger and more complex industrial instances

More experiments are conducted on larger and more complex instances issued from
the industrial partner consisting of NS ∈ {100,200,300} user stations of fixed posi-
tion, with the traffic demand distribution Ts being generated randomly in a realistic
range: each draw defines an instance. The number of beams NB ∈ {10,20,30} grows
with NS. The number of reflectors has been set to NR = 4, the number of diameters to
NW = 2 (W1 = 0.3◦ and W2 = 0.5◦), κ =

√
3. We tested different values of ndirections

to assess its impact on the numerical complexity: 10 instances were generated per
number of user stations NS considered, the resulting 30 instances being all tested on
the numbers of discretized directions ndirections in the set J3;50K. The MILP solver
used is Gurobi with a timeout per instance set to 180 seconds. Some other minor
industrial constraints were integrated to the model but we chose not to discuss them
here. The results are given in Fig. 6(a) in the form of relative gaps between best so-
lution found and sum of traffic demands for the three types of instances tested. Each
point of the three curves is an average gap value obtained over the 10 instances of the
corresponding category of instances. As we could have predicted, the more beams
and stations, the harder the convergence toward the optimal solution, materialized by
higher average gaps in Fig. 6(a). Then, the main observation that can be made from
these results is that, for a too low number of directions (3 ≤ ndirections ≤ 8), the ap-
proximation of the disks by P (separation constraint) and P ′ (proximity constraint)
is too rough and does not allow to reach solutions of good quality. On the other hand,
for a too high number of directions (20 ≤ ndirections ≤ 50), the gain in approxima-
tion accuracy becomes so small that the solution quality improvements, if any, do not
compensate the increase in numerical complexity due to the growing model size: this
explains the degradation of the average gaps in Fig. 6(a) for these values of ndirections.
This is a general rule to keep in mind for applying this Euclidean norm linearization
technique.

For illustration purposes, Fig. 6(b) is an example of instance that has been solved
optimally with NS = 200 and NB = 20 (this particular optimum was reached with
ndirections = 12 in less than 1500s). The user stations are represented by black dots
covered by the 20 beams. Each beam color corresponds to a different satellite reflector
antenna. Note that only one beam uses the smallest diameter W1, all the others use
W2. Prior to using the proposed MILP approach, obtaining such a solution was out-
of-reach for the industrial partner.

7 Concluding remarks

We introduced a general methodology based on MILP for linearizing inequality con-
straints involving the L2 norm, even in the case of non convex constraints. This
methodology allows to obtain both under- and over estimations under the same frame-
work. We also showd that the L1, L∞, the euclidean Chamfering weighted distance
in 2-D, and the Inverse square root weighted t-cost distance in 2-D correspond to
particular cases of the proposed linearization and their linear combinations can also
be expressed directly. The quality of the approximation is demonstrated on an opti-
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Fig. 6 (a) Campaign of runs for varying numbers of discretized directions and varying numbers of user
stations (b) Example of instance with 200 user stations solved optimally with 12 discretized directions

mization problem involving euclidean distance: the continuous k-center problem. The
computational experiments indeed showed the efficiency and the competitiveness of
the proposed method that outperform other linearization techniques. We finally val-
idated this approach on the beam layout problem, a crucial industrial problem for
satellite manufacturers, for which we have reached significantly improved solutions
compared to the existing hand-crafted ones. The proposed MILP also outperforms
standard linearizations of existing approximations of the L2 norm on this problem.
Furthermore, we exhibit in this example that a minimum number of directions is
required to obtain good quality solutions. Nevertheless, it is inappropriate to over
approximate by considering a too high number of directions. In the latter case, the
quality improvements of the solution will not counterbalance the increasing the nu-
merical complexity. It seems that the tradeoff lives between 10 and 20 directions in
the cases we encountered so far. The next steps, that are already a work in progress,
will consist in improving the current model to remove symmetries and solve even
larger instances, for finally benchmarking the methodology with MINLP solvers.
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