Emmanuel Hebrard
email: hebrard@laas.fr

George Katsirelos

A Hybrid Approach for Exact Coloring of Massive Graphs

The graph coloring problem appears in numerous applications, yet many state-of-the-art methods are hardly applicable to real world, very large, networks. The most efficient approaches for massive graphs rely on "peeling" the graph of its low-degree vertices and focus on the maximum k-core where k is some lower bound on the chromatic number of the graph. However, unless the graphs are extremely sparse, the cores can be very large, and lower and upper bounds are often obtained using greedy heuristics. In this paper, we introduce a combined approach using local search to find good quality solutions on massive graphs as well as locate small subgraphs with potentially large chromatic number. The subgraphs can be used to compute good lower bounds, which makes it possible to solve optimally extremely large graphs, even when they have large k-cores.

Introduction

The Vertex Coloring Problem (VCP) asks for the minimum number of colors that can take the vertices of a graph G so that no two adjacent vertices share a color. This number χ(G) is called the chromatic number of the graph.

The VCP has numerous applications. For instance, when allocating frequencies, devices on nearby locations should work on different frequencies to avoid interference. The chromatic number of this distance-induced graph is thus the minimum span of required frequencies [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF][START_REF] Park | Application of the graph coloring algorithm to the frequency assignment problem[END_REF]. In compilers, finding an optimal register allocation is a coloring problem on an interference graph of value live ranges [START_REF] Chaitin | Register allocation via coloring[END_REF]. In timetabling, assigning time slots to lectures so that no two classes attended by a common subset of student happen in parallel is a VCP [START_REF] De | An introduction to timetabling[END_REF].

The best performing approaches to the VCP often do not scale to extremely large graphs such as, for instance, social networks. In fact, on networks with several million nodes, even local search methods are seldom used and the best approaches rely on scale reduction and greedy heuristics both for lower and upper bounds [START_REF] Lin | A reduction based method for coloring very large graphs[END_REF][START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF]. Indeed, the main technique used for reducing the graph consists in removing vertices of degree lower than some lower bound on the chromatic number. This technique might be very effective on sparse graphs especially when a maximum or a maximal clique provides a good lower bound. Several realworld extremely large sparse graphs can be efficiently tackled, even via complete algorithms, after such preprocessing. However, even relatively sparse graphs can have a large core of vertices whose degree within the core is higher than the chromatic number. In this case, there are not many practical techniques for upper bounds and most proposed approaches rely on greedy heuristics, in particular Brelaz' Dsatur [START_REF] Brélaz | New Methods to Color the Vertices of a Graph[END_REF]. Likewise, in this context there is virtually no method for computing a lower bound other than finding a large clique in the graph. As a result, there is little hope to optimally solve an instance with a large core, and whose chromatic number is strictly larger than the size of its largest clique.

In this paper we consider two datasets of very large graphs. The first, dimacs10, contains 30 graphs from the 10th DIMACS challenge [START_REF] Bader | Graph partitioning and graph clustering[END_REF]. It consists of two subclasses, one of graphs with heavy-tailed distribution of degrees and the other quasi-regular graphs. The second, snap, contains 75 graphs from the Stanford Large Network Dataset Collection [START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF]. These graphs correspond to social, citation, collaboration, communication, road or internet networks. They range from tens of thousands to several million vertices and all have extremely low density.

Whereas about half of these graphs are easy or even trivial for the stateof-the-art approaches, the rest remain too large and hard to color even after preprocessing. By combining several methods including local search, heuristics and complete algorithms, we can solve a significant proportion to optimality (close to 40%) of these hardest instances, even if they contain hundreds of thousands of vertices after preprocessing and even if their chromatic number is larger than their clique number. We survey the related work in Section 2, describe our main contribution, a method to obtain good lower bounds on very large graphs in Section 3, an effective local search approach to obtain good upper bounds in Section 4, and a way to combine these in Section 5. We report on an experimental comparison with the state of the art in Section 6.

Related Work

Heuristic methods are very relevant since they easily scale to very large inputs. In particular, the Dsatur heuristic proposed by Brelaz [START_REF] Brélaz | New Methods to Color the Vertices of a Graph[END_REF] is instrumental in the state-of-the-art method on the datasets we consider, FastColor [START_REF] Lin | A reduction based method for coloring very large graphs[END_REF]. The Dsatur heuristic builds a coloring C mapping vertices to colors. It iteratively choses a vertex from a set U initially containing all vertices V of the graph. The chosen vertex v is the one with maximum saturation degree δ sat (v) defined as the number of colors among its neighbors N (v), i.e., δ sat (v) = |{C(u) | u ∈ (N (v)\U)}|. In case of a tie, the vertex with maximum degree |N (v)| is selected. Then it sets C(v) to the smallest possible color min(N\{C(u) | u ∈ (N (v)\U)}).

Dsatur-based branch and bound algorithms [START_REF] Furini | Lower bounding techniques for dsatur-based branch and bound[END_REF][START_REF] San | A new dsatur-based algorithm for exact vertex coloring[END_REF] are among the best complete methods, alongside column generation approaches [START_REF] Malaguti | An exact approach for the vertex coloring problem[END_REF][START_REF] Mehrotra | Trick. A column generation approach for graph coloring[END_REF] and SAT-based models and hybrid algorithms [START_REF] Hebrard | Clause Learning and New Bounds for Graph Coloring[END_REF][START_REF] Schaafsma | Dynamic Symmetry Breaking by Simulating Zykov Contraction[END_REF][START_REF] Van Gelder | Another Look at Graph Coloring via Propositional Satisfiability[END_REF][START_REF] Zhou | An exact algorithm with learning for the graph coloring problem[END_REF]. However, none of these scale to graphs with more than a few thousands vertices.

Local Search

Local search and meta-heuristics have long been applied to graph coloring (e.g. [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF]), and with great success. All the best known colorings on the commonly used dataset from the second dimacs challenge [START_REF]Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop[END_REF] were obtained by such methods 3 .

In principle, local search approaches seem very well suited for coloring large graphs, and indeed most algorithms scale very well to relatively large graphs. However, surprisingly, we could not find a report of a local search or a metaheuristic approach applied to the large graphs of the snap and dimacs10 datasets, or on graphs of similar magnitude.

When the number of vertices grows really large, then one must be very careful about the implementation details. As a matter of fact, several off-the-shelf algorithms we tried used data structures with a space complexity quadratic in the number of vertices, and are de facto irrelevant. Another critical point is the size of the neighborhood. For instance, the most common tabu scheme considers all the (non-tabu) moves of any node sharing a color with a neighbor, to a different color. Typical methods evaluate every such move and choose the one that decreases the most the number of conflicts. The number of such moves to consider in a graph with millions of vertices can be prohibitive, especially when starting from low quality initial solutions. The state-of-the-art memetic algorithm HEAD [START_REF] Moalic | Variations on memetic algorithms for graph coloring problems[END_REF] uses a similar tabu search, and although we made superficial changes to make it capable of loading massive graphs in memory, it performed poorly on those. After a non-exhaustive review of the literature and of the available software, our belief is that these methods could be adapted to extremely large and sparse graphs, but it would require non-trivial implementation work.

Blöchliger and Zufferey's local search algorithm [START_REF] Blöchliger | A graph coloring heuristic using partial solutions and a reactive tabu scheme[END_REF] appears to be relatively promising in this context. The idea is to try to complete a partial coloring, i.e., a partition of the vertices into of k disjoint independent sets {C 1 , . . . , C k } plus an extra set U of "uncolored" vertices. A move consists in swapping a node v ∈ U with the vertices N (v)∩C i for some color i ∈ {1, . . . , k}. A move (v, i) minimizing |N (v) ∩ C i | is randomly chosen. In order to escape local minima, after each move (v, i), the moves (u, i) for u ∈ N (v) are added to a tabu list so that v will stay with color i for a given number of iterations. When the set U becomes empty, a k-coloring is obtained and the process can continue by randomly eliminating one color i, that is, setting U = C i and removing C i from the partition.

Independent Set Extraction

Whereas sequence-based coloring heuristics (such as Dsatur) explore the vertices and insert them into the smallest possible color class (or independent set), Leighton's RLF heuristic [START_REF] Frank | A Graph Coloring Algorithm for Large Scheduling Problems[END_REF] extracts one maximal independent set (or color class) at a time. This technique has been shown to be more effective than Dsatur on some graphs, however it has a higher computational cost.

Recent effective methods for large graphs rely on this principle. For instance, Hao and Wu [START_REF] Hao | Improving the extraction and expansion method for large graph coloring[END_REF] recently proposed a method which iteratively extracts maximal independent sets until the graphs contains no more than a given number of vertices. Then, any algorithm can be used on the residual graph to produce a kcoloring which can be trivially extended to a k + p-coloring of the whole graph if p independent sets have been extracted. Moreover, the authors show that it may be effective to iteratively expand the residual graph by re-inserting the vertices of some independent set extracted in the first phase and run again the coloring method on the larger residual graph. This method, however, was not tested on graphs larger than a few thousand vertices.

Peeling-based Approaches

The so-called "peeling" procedure is an efficient scale reduction technique introduced by Abello et al. [START_REF] Abello | External memory algorithms[END_REF] for the maximum clique problem. Since vertices of (k + 1)-cliques have each at least k neighbors, one can ignore vertices of degree k -1 or less. As observed in [START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF], this procedure corresponds to restricting search to the maximum χ low -core of G where χ low is some lower bound on ω(G):

Definition 1 (k-Core and denegeracy). A subset S ⊆ V is called a k-core of the the graph G = (V, E) if the minimum degree of any vertex in the subgraph of G induced by S is k. The maximum value of k for which G has a non-empty k-core is called the degeneracy of G.

As observed by Verma et al. [START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF], the peeling technique can also be used for graph coloring, since low-degree vertices can be colored greedily.

Theorem 1 [START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF]. G is k-colorable if and only if the maximum k-core of G is k-colorable.

Indeed, starting from a k-coloring of the maximum k-core of G, one can explore the vertices of G that do not belong to the core and add them back in the inverse of the degeneracy order, so that any vertex is preceded by at most k -1 of its neighbors, and hence can be colored without introducing a k + 1th color. The other direction is trivial as the maximum k-core is a subgraph of G.

This preprocessing technique can be extremely effective on very sparse graphs, and computing a lower bound of the chromatic number is relatively easy: computing the clique number of a graph is NP-hard, but in practice it is much easier than computing its chromatic number. However, the χ low -core might be too large, and therefore a second use of the peeling technique was proposed in [START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF]. The idea is to find a coloring of the maximum (χ up -1)-core of G where χ up is an upper bound on χ(G). The maximum (χ up -1)-core has several good properties: it is often small, its chromatic number is a lower bound on χ(G), and if there exists such a k-coloring with k < χ up , then it can be extended, in the worst case, to a (χ up -1)-coloring of G.

Therefore, Verma et al. proposed the following method: Starting from the bounds χ low ≤ χ(G) ≤ χ up , the algorithm solves the maximum (χ up -1)-core of G to optimality, and extends the corresponding k-coloring greedily following the inverse degeneracy order to a k -coloring. Then it sets χ low to max(χ low , k) and χ up to k . The algorithm converges since since χ low cannot decrease and χ up is guaranteed to decrease at each step.

Unfortunately, some graphs simply do not have small k-cores, even for k larger than their chromatic number, so this method is limited to extremely sparse graphs. Moreover, notice that the core must be solved to optimality in order to extract relevant information from the iteration and converge.

The algorithm FastColor proposed by Lin et al. [START_REF] Lin | A reduction based method for coloring very large graphs[END_REF] also uses peeling, but in a slightly different way. A k-bounded independent set is an independent set whose vertices all have a degree strictly smaller than k. Their method iteratively finds a maximal clique using a very effective sampling-based heuristic; removes a χ low -bounded independent set where χ low is the size of the clique from the graph; and computes an upper bound using the Dsatur heuristic.

This method is very effective, outperforming the approach of Verma et al. on graphs with large cores. However, notice that the vertices in a χ low -bounded independent set cannot be in a χ low -core since their degree is strictly thess than χ low , and therefore this variant of peeling is less effective than Verma's. The two main components are the method to find a clique and the Dsatur heuristic to find upper bounds. The former essentially samples a set of vertices to be expanded to a maximal clique. When extending a clique, a number p of neighbors are probed and the one that maximizes the size of the residual candidate set of vertices to expand the clique is chosen. Several runs are performed with the parameter p growing exponentially at every run. However, it cannot prove a lower bound greater than the clique number. The runs of Dsatur are randomized and augmented with the recolor technique [START_REF] Rossi | Coloring large complex networks[END_REF]: when a new color class i is created for a vertex v, if there exist two color classes C j , C k with j < k and a vertex u such that N (v) ∩ C j = {u} and N (u) ∩ C k = ∅, then v and u can be recolored to j and k respectively, thus leaving the color i free.

Iterated Dsatur

The overwhelmingly most common lower bound technique is to find a large clique. Several other lower bounds have been used. For instance, two extra lower bounds were proposed in [START_REF] Furini | Lower bounding techniques for dsatur-based branch and bound[END_REF]: the Lovász Theta number [START_REF] Lovász | On the shannon capacity of a graph[END_REF] and a second lower bound based on a mapping between coloring and independent sets on a reformulation of the graph [START_REF] Cornaz | A one-to-one correspondence between colorings and stable sets[END_REF]. Another lower bound based on finding embedded Mycielskian graphs [START_REF] Mycielski | Sur le coloriage des graphes[END_REF] was proposed in [START_REF] Hebrard | Clause Learning and New Bounds for Graph Coloring[END_REF]. Moroever, the bounds obtained by linear relaxation of either the standard model or the set covering problem from the branch & price approach are very strong. However, it is difficult to make any of these methods scale up to graphs with millions of vertices.

Many graphs of the dimacs10 and snap datasets have a chromatic number equal to their clique number. Morever, finding a maximum clique turns out to be much easier in practice than solving the VCP. Therefore, it is often possible to find a maximum clique and they often provide a good lower bound.

In this section, we introduce a method to solve the VCP that scales up to very large graphs. Moreover, it may compute non-trivial lower bounds, that is, Algorithm 1: Iterated Dsatur Algorithm: I-Dsatur

Data: Graph G, Initial order O 0 , color assignment C 0 , bounds χ low , χ up Result: χ(G) i ← 0 while χ low < χ up do p ← 1 + max{j | C i (o i k) ≤ χ low ∀k < j} O i+1 ← {o i 1 , . . . o i p } i ← i + 1 C core = ExactColoring(G O i) if max(C core) > χ low then χ low ← max(C core) C i ← C i-1 else C i ← C core (O i , C i) ← Dsatur(O i , C i) if max(C i) < χ up then χ up ← max(C) return (χ low) // = χ(G)
larger than the clique number. As a consequence, this method can produce optimality proofs, even when ω(G) < χ(G). The principle is to iteratively compute a coloring with Dsatur, and optimize its prefix up to the first occurrence of the color χ low + 1. If there exists a χ low -coloring of the prefix, then the next iteration of Dsatur will follow the optimized prefix, whose length will thus increase.

Otherwise, the lower bound can be incremented. Algorithm 1 uses a variant of Dsatur which takes a total order O of a subset of the vertices and a coloring C for these vertices. It assigns first vertices in the given order and coloring, then colors the rest of the vertices using the standard Dsatur heuristic. It returns the coloring C as well as the total order O = o 1 , . . . , o |V | that it followed. In the following, we write max(C) for the maximum color used, and C(v) for the color of v.

Algorithm 1 proceeds as follows. Given initial bounds χ low and χ up , as well as a coloring and ordering that witness the upper bound, we extract the core graph, which is the subgraph G O 1 of G induced by the vertices {o 1 , . . . , o p } where p is the maximum index for which all vertices o 1 , . . . , o p-1 are assigned colors in [1, χ low]. In other words, p is the index of the first vertex that is assigned a color greater than the current lower bound χ low . The order of these p vertices is fixed for all subsequent runs of Dsatur. We then compute χ(G O 1), using any exact coloring algorithm. In our implementation this is the satisfiability-based algorithm from [START_REF] Hebrard | Clause Learning and New Bounds for Graph Coloring[END_REF]

. If χ(G O 1) > χ low then we can update χ low = χ(G O 1). This is because G O 1 is an induced subgraph of G, so χ(G O 1) is a lower bound on χ(G).
On the other hand, if χ(G O 1) ≤ χ low , we fix the first p vertices to their order and color them as in the optimal coloring of G O 1 and use them as the starting point for a run of Dsatur 4 . In either case, we proceed to the next iteration.

Algorithm 1 converges because at every iteration a growing subset of the vertices are included in the core. Indeed, if χ(G O i) > χ low , then the lower bound is increased, which means that G O i+1 is larger. If χ(G O i) ≤ χ low , then the next run of Dsatur is constrained to assign at least o p to a color in [1, χ low], so the core graph at the next iteration contains at least one more vertex. In the extreme, the algorithm will terminate when

G O i = G.

Local Search for Massive Graphs

As far as we know, the best upper bound for the datasets we consider were obtained using either Brelaz' heuristic [START_REF] Lin | A reduction based method for coloring very large graphs[END_REF], or by greedily extending the optimal solution of a k-core [START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF]. Therefore, whether local search can help remains to be seen. In this section we describe the modifications we made to Blöchliger and Zufferey's tabu-search algorithm in order to adapt it to extremely large graphs.

Initialization A first very modest, but significant, addition is a method to efficiently initialize the solution of the local search. The algorithm described in [START_REF] Blöchliger | A graph coloring heuristic using partial solutions and a reactive tabu scheme[END_REF] is given an integer k and tries to find a k-coloring. Since our method produces colorings during preprocessing (from the computation of the degeneracy ordering and from Dsatur) it is immediate to initialize the solution with such a coloring whereby the vertices of any one color class are considered "uncolored". However, we observed that it was important to choose a small color class, as they can be extremely unbalanced and chosing randomly could lead to a prohibitively large neighborhood to explore in the initial steps.

Chained Flat Moves Recall that a move consists in swapping a node v from the set U of uncolored vertices with its neighbors N (v) ∩ C i in some color class i. When N (v) ∩ C i = ∅ this is an improving move as we have one less uncolored node. Now we call a move (v, i) such that |N (v) ∩ C i | = {u} a flat move. We know that no strictly improving move was possible, so if there is an improving or a flat move involving u it is likely to be selected next. Therefore, in the event of a flat move we greedily follow chains of flat moves from the previous vertex until reaching an improving move, or until no flat or improving move is possible for that vertex. This technique does not change the neighborhood, but explores it in a more greedy way and is often beneficial. Moreover, we observed that it was relatively easy to assess if such moves were effective, by counting how many of them lead to an improving move, and by checking their length.

Algorithm 2 is a pseudo-code of our implementation of Blöchliger and Zufferey's tabu search. We denote C i the set of vertices of color i, that is

C i = {v | C(v) = i}.
Data: Graph G = (V, E), Coloring C, Parameters I, t Result: A coloring of G best ← C, k ← 0 foreach v ∈ V , 1 ≤ i ≤ max(C) do T i v = 0 while k ≤ I do 1 c ← arg min i (|C i |) U ← C c while i ≤ I and C i = ∅ do v, i ← arg min u∈U,j =c|T j u ≤k (|N (u) ∩ C j |) 2 if |N (v) ∩ C i | = 1 then repeat C(v) ← i v ← v, i ← i v, i ← arg min u∈C i ,j ∈{c,i }|T j u ≤k (|N (u) ∩ C j |) until |N (v) ∩ C i | = 1 if |N (v) ∩ C i | > 1 then C(v) ← c T i v ← k + t 3 else C(v) ← i foreach u ∈ N (v) ∩ C i do C(u) ← c T i u ← k + t k ← k + 1 if U = ∅ then best ← C return best
implementation, as well as the random path of flat moves corresponding to the lines between 2 and 3. Notice that ties are broken randomly in every "arg min" operator. Moreover, the management of the tabu list (T i v) as well as of the iteration limit, and the choice of applying a random path move is more complex than the pseudo-code shows. We set the parameters as follows.

Tabu list. Here we used a relatively straightforward scheme which is in fact a simplified version of what is done in the original code. Every 10000 iterations, the tabu tenure parameter t is decremented, unless it is null or the delta between the lowest and largest size for U (the set of "uncolored" vertices) is lower than or equal to 1 since the last update of the tabu tenure. In both of the latter cases, t is increased by its initial value (the initial value was 10 in all our experiments).

Iteration limit. In order to dynamically adapt the number of iterations to the progress made by the tabu search, we used the following policy: Let k be the current number of iterations and I the current limit. When the limit is reached within the outer loop, we check if there was any progress on the upper bound χ up since the last limit update. If there was some progress, then we increase the limit by the current number of iterations (I = I + k). Now, let δ be the value of I -k at the start of the inner loop. When the limit is reached within the inner loop, we check if there was any progress on the number of uncolored vertices (|U |) since the last limit update. If there was some progress, then we increase the limit by δ, otherwise we increase it by δ/2. We used an initial limit of 250000.

Limit on chains of flat moves. In some cases it is possible to explore very long paths of flat moves hence slowing down the algorithm. We introduce a parameter p (originally set to 1) controling the probablity 1/p of prefering such moves. Then we simply check the average length l of these moves and their frequency f and adjust p in consequence. In practice, we double p when l × f ≥ 20 and decrement it when it is strictly greater than 1 and l × f ≤ 3.

Overall Approach

Our approach combines the peeling preprocessing from Section 2, the tabu search described in Section 4 and the iterated Dsatur scheme described in Section 3.

The principle we use for choosing the exact sequence of techniques is to apply first those that have the greatest effect for the least computational cost. Therefore, we first call DegeneracyOrder to compute not only the dengeracy of the graph, but also the smallest-last ordering [START_REF] Matula | Smallest-last ordering and clustering and graph coloring algorithms[END_REF] O, which is the order in which vertices are processed by the degeneracy algorithm and the array D, which contains the degrees of the vertices during the elimination procedure. The actual degeneracy D is only implicitly contained there as the maximum value in the array, and D +1 is an upper bound on the chromatic number. We also compute a lower bound by finding a clique. Using this lower bound and the order O, we can compute the peeled graph H by removing the vertices whose degree D during the degeneracy computation is at most k.

Although finding the maximum clique is NP-hard, it turns out to be much easier than coloring in the dataset we used, so we solve the problem exactly rather than use a heuristic. It also has a great effect on the rest of the algorithm, as a better initial lower bound results in greater scale reduction from peeling and hence improves all heuristics used further on.

After peeling, we first improve the upper bounds using the Dsatur heuristic (Dsatur) and then local search. Finally, we switch to iterated Dsatur (I-Dsatur), which is exact and hence the most computationally expensive phase.

One complication is that the iterated Dsatur phase is initialized with the current best solution. If this solution was found by the local search algorithm, there is no ordering that I-Dsatur can use to extract a core. We can produce a relevant ordering from the local search solution simply by sorting the vertices by

χ up ← max(D) + 1 χ low ← |FindClique(G)| H ← subgraph of G induced by {o k , . . . , o |V | } with k = max{i | j ≥ i or D(j) < χ low } (O, C) ← Dsatur(H) χ up ← max(χ up , max(C)) /* Local search phase */ C ← TabuSearch(H, C, I, t) χ up ← min(χ up , max(C)) foreach v ∈ V do δ sat (v) ← |{C(u) | u ∈ N (v)}| 2 O = {o 1 , . . . , o |V | } with i < j =⇒ δ sat (o i) ≥ δ sat (o j) /* Iterated Dsatur phase */ (O, C) ← Dsatur(H, O, C) return I-Dsatur(H, O, C', χ low , χ up)
saturation degree within the local search coloring5 as shown in line 2. However, this coloring may not use the smallest colors for the first vertices in the order, therefore, we apply the following transformation:

We run Dsatur following the ordering O. When processing node v, we check if the color C(v) assigned by the tabu search to v has already been mapped to some color, if not, we map it to the minimum color c that v can take and assign c to v. We do the same if the color C(v) happens to be already mapped to c. Otherwise, we switch to the standard Dsatur from that point on.

The resulting coloring is similar (at least in the prefix) to the LS solution, however it is in a form that might have been produced by Dsatur.

Experimental Results

Our implementaton uses dOmega [START_REF] Walteros | Why is maximum clique often easy in practice? Optimization Online[END_REF] for finding the initial maximum clique, and MiniCSP6 as the underlying CDCL CSP solver during the I-Dsatur phase. 7We compare it to the state of the art: the FastColor approach [START_REF] Lin | A reduction based method for coloring very large graphs[END_REF]. Unfortunately, we could not compare with the approach described in [START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF] since the coloring part of this code is now lost. 8 However, this latter approach is dominated by FastColor on instances with large cores, hence the hardest.

Every method was run 20 times with different random seeds and with a time limit of one hour and a memory limit of 10GB. The memory limit was an issue only for dOmega which exceeded the memory limit on 3 instances. We raised the limit to 50GB in these three cases. We used [START_REF] Blöchliger | A graph coloring heuristic using partial solutions and a reactive tabu scheme[END_REF] The first two columns of Tables 1, 2, 3 and 5 give the size of the graph (number of vertices/edges) before and after scale reduction. In all these tables, bold font is used to highlight the (strictly) best outcomes. In Tables 1 and2 we report the CPU time in milliseconds for the "easy" instances of the dimacs10 and snap sets, respectively. We say that an instance is easy when both I-Dsatur and FastColor solved to optimality. We give the minimum, maximum and average CPU time -parsing excluded -across the 20 random runs on the same instance.

Tables 3 and5 show the lower (χ low) and upper bounds (χ up) found by I-Dsatur and FastColor on the rest of the dataset ("hard" instances). Both for the lower and upper bound, we give the best and average value across the 20 random runs on the same instance. We use an asterisk (*) to denote that the maximum lower bound found over the 20 runs is as high as the minimum upper bound, signifying that the method is able close the instance. Moreover, for the results of I-Dsatur, we denote via a superscript in which phase of the approach the best outcome was found. A value of 0 stands for the computation of the degeneracy ordering, 1 for the preprocessing phase, 2 for the local search and 3 for the iterated Dsatur phase. Finally, Tables 4 and6 give a summary view for hard instances, of respectively the dimacs10 and snap datasets, with the arithmetic and geometric mean bounds; overall ratio of optimality; and overall mean CPU time. We first observe that for many of these graphs (see Tables 1 and2) finding an optimal coloring is easy. One reason is that their clique and chromatic numbers are equal. However, this is also the case for some graphs classified here as "hard". Whereas we use a complete maximum clique algorithm in our approach, FastColor does not and yet it finds a maximum clique in all the "easy" graphs and in most of the "hard" ones. Moreover, both solvers were able to quickly find a maximum clique and an optimal coloring. In particular, many easy graphs are solved during the preprocessing phase, the maximum (χ low -1)-core being very small. Those graphs are therefore trivial both for FastColor and for our approach, which are in fact similar on those. There is a slight advantage to our method in terms of average run time, both for easy dimacs10 and easy snap instances, which can presumably be attributed to our peeling method being more efficient than the independent set extraction in FastColor.

Of the hard dimacs10 instances in Table 3, all but kron g500-logn16 are quasi-regular, i.e., every vertex has roughly the same degree. These graphs do not have small cores, hence the peeling phase is irrelevant. We can see that on these graphs, the tabu search algorithm significantly outperforms Dsatur and therefore our approach dominates FastColor for the upper bound. For instance, on ldoor, LS+I-Dsatur finds a 29.85-coloring on average whereas the best coloring found by FastColor has 32 colors. On the instance kron g500-logn16, the tabu search performs poorly and is on average dominated by FastColor. In one run, however, the iterated Dsatur algorithm is able to find a much better 4 show that LS+I-Dsatur outperforms FastColor both for the lower and upper bounds on this dataset.

The iterated Dsatur algorithm is also able to improve the lower bound of 2 instances out of 8 (ldoor and G n pin pout). However, for the latter, FastColor produces the same lower bound (4) which is larger than the maximum clique found by dOmega. We do not know how to explain this.

On hard instances of the snap dataset (Table 5), the picture is very different with in particular the tabu search being almost useless. The best coloring found by our method was obtained during the local search phase only once, for the instance HR edges. In all other cases the best coloring was produced either during preprocessing via Dsatur, or during the iterated Dsatur phase. Overall, as shown in Table 6, this is slightly less efficient for the upper bound than FastColor which repreatedly uses Dsatur and eventually finds better colorings in several instances whilst LS+I-Dsatur is best only on four instances.

The iterated Dsatur phase, however, is very effective with respect to the lower bound. It improves on the maximum clique found by dOmega in 25 out of 34 instances, and it matches the best upper bound for 14 instances. Here again, on three instances (cit-HepTh, email-Enron and p2p-Gnutella24) FastColor outputs a lower bound greater than that found by dOmega. Overall, our approach can close 14 of the hard instances, for 10 of which9 , the optimal coloring was not previously known, as far as we know. FastColor can only close one of them.

Conclusions

We have presented a new algorithm for exactly computing the chromatic number of large real world graphs. This scheme combines a novel local search component that performs well on massive graphs and gives improved upper bounds as well as an iterative reduction method that produces much smaller graphs than previous state of the art scale reduction methods. This scheme involves extracting more information than simply a coloring from the Dsatur greedy coloring heuristic and iteratively solving reduced instances with a complete, branch-and-bound solver, in such a way that lower bounds produced for the reduced graphs are also lower bounds of the original graph. Combined with the fact that we achieve more significant reduction than the current state of the art means that we can find nontrivial lower bounds even when peeling-based reduction cannot reduce the graph to fewer than hundreds of thousands of vertices. Indeed, in our experimental evaluation on a set of massive graphs, this method is able to produce both better lower and upper bounds than existing solvers and proves optimality on several (almost 75%) of them.

We expect that finding a method to extract cores from other heuristics, such as our local search procedure will further improve performance.

 The outer loop and the color selection in line 1 are not in the original Algorithm 2: Local Search Algorithm: TabuSearch

Algorithm 3 :

 3 Graph Coloring Algorithm: LS+I-Dsatur Data: Graph G = (V, E), Parameters I, t Result: The chromatic number of G /* Preprocessing phase */ 1 (O, D) ← DegeneracyOrder(G)

Table 1 :

 1 cluster nodes, each with 35 Intel Xeon CPU E5-2695 v4 2.10GHz cores running Linux Ubuntu 16.04.4. CPU Time (easy dimacs10 instances)

					FastColor		LS+I-Dsatur
		|V |/|E|	(scaled)		CPU time (ms)		CPU time (ms)
				min	avg	max	min	avg	max
	as-22july06	23k/48k	144/2758	13	18	23 2666	6083	9700
	caidaRouterLevel	192k/609k	2861/56k	229	432	694	430	2785 29066
	citationCiteseer	268k/1157k	2779/33k	489	1131	3143	404	552	661
	cnr-2000	326k/2739k	0/0	1997	2360	2649	375	426	548
	coAuthorsCiteseer	227k/814k	0/0	107	189	383	215	300	367
	coAuthorsDBLP	299k/978k	0/0	130	301	564	321	434	592
	coPapersCiteseer	100k/498k	0/0	25	49	93	73	96	147
	coPapersDBLP	540k/15m	0/0 1175 1439 1903 1769	2091	2541
	cond-mat-2005	40k/176k	0/0	19	41	74	23	40	54
	eu-2005	333k/3949k	2128/106k	3383	3912	4844	542	690	824
	in-2004	163k/2602k	0/0	721	1726	2042	206	263	331
	rgg-n-2-17-s0	131k/729k	0/0	108	235	319	155	217	281
	rgg-n-2-19-s0	524k/3270k	0/0	615	1678	2888	843 1233 1702
	rgg-n-2-20-s0	1049k/6892k	59/637 1486	3131	7094 1953 2962 4056
	rgg-n-2-21-s0	2097k/14m	0/0	5386 10664 15991 4476 6329 8262
	rgg-n-2-22-s0	4194k/30m	0/0 9673 24810 45292 10642 14192 17222
	rgg-n-2-23-s0	8389k/64m	0/0 17501 56107 92511 24693 30174 36390
	rgg-n-2-24-s0	17m/133m	0/0 33786 137946 439554 56001 63153 89313
	belgium osm	1441k/1550k	5/8	229	342	905 1061	1398	1665
	ecology1	1000k/1998k 1000k/1998k	500	907	4008 1288	1568 1816
	luxembourg osm	115k/120k	0/0	9	19	46	38	65	85
	preferentialAttachment	100k/500k	0/0	266	1199	3146	136	187	242
	Average CPU time		3538 11302 28553 4923 6147 9358

Table 2 :

 2 CPU Time (easy snap instances)

Table 3 :

 3 Lower and Upper Bounds (hard dimacs10 instances)

						FastColor			LS+I-Dsatur
			|V |/|E|	(scaled)		χ low		χ up		χ low		χ up
					max avg min	avg	max	avg	min	avg
	kron g500-logn16 55k/2456k 6885/1495k 136 136.00 151 152.42 1 136 136.00 3 145 153.40
	333SP		3713k/11m 2261k/6759k	4	4.00	5	5.00	1 4	4.00	0 5	5.00
	G n pin pout		100k/501k	100k/501k	4	4.00	6	6.00	3 4	3.95	2 5	5.00
	audikw1		944k/38m	936k/38m	36 36.00 40	40.89 1 36 36.00 2 39 39.30
	cage15		5155k/47m	5134k/47m	6	6.00 12	12.00	1 6	6.00 2 11 11.00
	ldoor		952k/23m	952k/23m	21 21.00 32	32.75 3 23 21.65 2 28 29.85
	smallworld		100k/500k	100k/500k	6	6.00	7	7.00 1 * 6	6.00	2 6	6.00
	wave	156k/1059k 156k/1058k	6	6.00	8	8.00	3 7	6.05	1 8	8.00
	method			χ low			χ up		Opt.	CPU
			avg	avg (G)		avg	avg (G)		avg	avg
	LS+I-Dsatur	27.456	11.752		32.194		14.857	0.125	635682
	FastColor		27.182	11.680		32.792		15.814	0.000	346630

Table 4 :

 4 Summary (hard dimacs10 instances)

Table 5 :

 5 Lower and Upper Bounds (hard snap instances)

					FastColor		LS+I-Dsatur
			|V |/|E|	(scaled)	χ low	χ up		χ low	χ up
					max avg min avg max	avg	min	avg
	cit-HepTh		28k/352k 6819/188k * 23 23.00 23 23.68 3 * 23 22.25 3 23 24.00
	artist edges		51k/819k 18k/591k 18 18.00 19 19.94	1 18 18.00 3 20 20.15
	com-orkut.ungraph		3072k/117m 742k/57m 50 49.44 75 77.83	1 51 51.00 1 73 73.00
	com-youtube.ungraph		1135k/2988k 27k/708k 17 17.00 23 23.00	3 18 18.00 1 24 24.00
	email-Eu-core		986/16k 527/13k 18 18.00 19 19.00 3 * 19 19.00 3 19 19.00
	email-Enron		37k/184k 2707/76k 20 20.00 23 23.47	3 20 19.05 3 24 24.00
	email-EuAll		265k/364k 1570/40k 16 16.00 18 18.00 3 * 18 18.00 3 18 18.00
	p2p-Gnutella04		11k/40k 6899/35k	4 4.00	5 5.00	3 4	4.00	1 5	5.00
	p2p-Gnutella05		8850/32k 4994/25k	4 4.00	5 5.00	1 4	4.00	1 5	5.00
	p2p-Gnutella06		8717/32k 5548/27k	4 4.00	5 5.00	3 4	4.00	1 5	5.00
	p2p-Gnutella08		6301/21k 2541/13k	5 5.00	6 6.00	3 * 6	6.00	1 6	6.00
	p2p-Gnutella09		8114/26k 3835/19k	5 5.00	6 6.00	3 * 6	6.00	1 6	6.00
	p2p-Gnutella24		27k/65k 11k/46k	4 4.00	5 5.00	3 4	3.80	1 5	5.00
	p2p-Gnutella25		23k/55k 7892/33k	4 4.00	5 5.00	1 4	4.00	1 5	5.00
	p2p-Gnutella30		37k/88k 12k/53k	4 4.00	5 5.00	1 4	4.00	1 5	5.00
	p2p-Gnutella31		63k/148k 20k/87k	4 4.00	5 5.00	1 4	4.00	1 5	5.00
	soc-sign-Slashdot081106	77k/469k 4760/164k 26 26.00 29 29.00 3 * 29 28.90 3 29 29.00
	soc-sign-Slashdot090216	82k/498k 4654/163k 27 27.00 29 29.00 3 * 29 28.95 3 29 29.05
	soc-sign-Slashdot090221	82k/500k 4703/165k 27 27.00 29 29.00 3 * 29 28.75 3 29 29.30
	soc-sign-bitcoinalpha		3783/14k 400/5352 10 10.00 12 12.00 3 * 12 12.00 2 12 12.00
	soc-sign-bitcoinotc		5881/21k 513/7516 11 11.00 12 12.00 3 * 12 12.00 3 12 12.00
	HR edges		55k/498k 20k/299k 12 12.00 13 13.00	1 12 12.00 2 13 13.00
	Wiki-Vote		7115/101k 2262/83k 17 17.00 22 22.00	3 19 17.55 3 22 22.85
	facebook combined		4039/88k 480/29k 69 69.00 70 70.00 3 * 70 70.00 3 70 70.00
	gplus combined		108k/12m 13k/6831k 325 324.05 327 327.84 3 * 326 324.40 3 326 327.40
	soc-Epinions1		76k/406k 4782/205k 23 23.00 28 28.00	1 23 23.00 1 29 29.00
	CollegeMsg		1899/14k 911/12k	7 7.00	9 9.00	3 * 9	8.30	3 9	9.05
	sx-askubuntu		157k/456k 1834/59k 23 23.00 25 25.00	3 24 24.00 3 25 25.10
	sx-mathoverflow		25k/188k 1584/80k 30 30.00 35 35.95	3 32 31.90 3 36 36.45
	sx-stackoverflow		2584k/28m 111k/11m 55 55.00 66 66.16	1 55 55.00 1 67 67.00
	sx-superuser		192k/715k 2868/118k 29 29.00 30 30.00 3 * 30 30.00 3 30 30.00
	wiki-talk-temporal		1094k/2788k 12k/643k 25 25.00 46 46.00	3 27 25.95 3 46 46.25
	wiki-Talk		2394k/4660k 15k/771k 26 26.00 48 48.35	3 29 28.30 3 48 48.80
	wiki-Vote		7120/101k 2262/83k 17 17.00 22 22.00	3 19 17.80 3 22 22.70
	method		χ low	χ up	Opt.	CPU
			avg	avg (G)	avg	avg (G)		avg	avg
	LS+I-Dsatur	28.938	15.893	32.591	18.480	0.332	209093
	FastColor	27.784	15.049	32.137	18.203	0.009	178857

Table 6 :

 6 Summary (hard snap instances) coloring using 6 fewer colors than the best one found by FastColor. The aggregated results given in Table

http://www.info.univ-angers.fr/ ~porumbel/graphs/

ties broken by overall degree

Sources available at: https://bitbucket.org/gkatsi/minicsp.

Sources available at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.

email-Eu-core, email-EuAll, Gnutella08/09, bitcoinalpha, bitcoinotc, facebook, gplus, CollegeMsg and sx-superuser

The second author was partially supported by the french "Agence nationale de la Recherche", project DEMOGRAPH, reference ANR-16-C40-0028.