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2 MIAT, UR-875, INRA, France, email: gkatsiQgmail.com **

Abstract. The graph coloring problem appears in numerous applica-
tions, yet many state-of-the-art methods are hardly applicable to real
world, very large, networks. The most efficient approaches for massive
graphs rely on “peeling” the graph of its low-degree vertices and focus on
the maximum k-core where k is some lower bound on the chromatic num-
ber of the graph. However, unless the graphs are extremely sparse, the
cores can be very large, and lower and upper bounds are often obtained
using greedy heuristics.

In this paper, we introduce a combined approach using local search to
find good quality solutions on massive graphs as well as locate small
subgraphs with potentially large chromatic number. The subgraphs can
be used to compute good lower bounds, which makes it possible to solve
optimally extremely large graphs, even when they have large k-cores.

1 Introduction

The Vertex Coloring Problem (VCP) asks for the minimum number of colors
that can take the vertices of a graph G so that no two adjacent vertices share a
color. This number x(G) is called the chromatic number of the graph.

The VCP has numerous applications. For instance, when allocating frequen-
cies, devices on nearby locations should work on different frequencies to avoid
interference. The chromatic number of this distance-induced graph is thus the
minimum span of required frequencies [1,23]. In compilers, finding an optimal
register allocation is a coloring problem on an interference graph of value live
ranges [6]. In timetabling, assigning time slots to lectures so that no two classes
attended by a common subset of student happen in parallel is a VCP [§].

The best performing approaches to the VCP often do not scale to extremely
large graphs such as, for instance, social networks. In fact, on networks with
several million nodes, even local search methods are seldom used and the best
approaches rely on scale reduction and greedy heuristics both for lower and upper
bounds [16, 28]. Indeed, the main technique used for reducing the graph consists
in removing vertices of degree lower than some lower bound on the chromatic
number. This technique might be very effective on sparse graphs especially when
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a maximum or a maximal clique provides a good lower bound. Several real-
world extremely large sparse graphs can be efficiently tackled, even via complete
algorithms, after such preprocessing. However, even relatively sparse graphs can
have a large core of vertices whose degree within the core is higher than the
chromatic number. In this case, there are not many practical techniques for upper
bounds and most proposed approaches rely on greedy heuristics, in particular
Brelaz” DSATUR [5]. Likewise, in this context there is virtually no method for
computing a lower bound other than finding a large clique in the graph. As a
result, there is little hope to optimally solve an instance with a large core, and
whose chromatic number is strictly larger than the size of its largest clique.

In this paper we consider two datasets of very large graphs. The first, dimacs10,
contains 30 graphs from the 10th DIMACS challenge [3]. It consists of two sub-
classes, one of graphs with heavy-tailed distribution of degrees and the other
quasi-regular graphs. The second, snap, contains 75 graphs from the Stanford
Large Network Dataset Collection [15]. These graphs correspond to social, cita-
tion, collaboration, communication, road or internet networks. They range from
tens of thousands to several million vertices and all have extremely low density.

Whereas about half of these graphs are easy or even trivial for the state-
of-the-art approaches, the rest remain too large and hard to color even after
preprocessing. By combining several methods including local search, heuristics
and complete algorithms, we can solve a significant proportion to optimality
(close to 40%) of these hardest instances, even if they contain hundreds of thou-
sands of vertices after preprocessing and even if their chromatic number is larger
than their clique number. We survey the related work in Section 2, describe our
main contribution, a method to obtain good lower bounds on very large graphs
in Section 3, an effective local search approach to obtain good upper bounds in
Section 4, and a way to combine these in Section 5. We report on an experimental
comparison with the state of the art in Section 6.

2 Related Work

Heuristic methods are very relevant since they easily scale to very large inputs.
In particular, the DSATUR heuristic proposed by Brelaz [5] is instrumental in
the state-of-the-art method on the datasets we consider, FastColor [16]. The
DSATUR heuristic builds a coloring C mapping vertices to colors. It iteratively
choses a vertex from a set U initially containing all vertices V of the graph.
The chosen vertex v is the one with maximum saturation degree 5% (v) defined
as the number of colors among its neighbors N(v), i.e., §°*(v) = {C(u) | u €
(N()\U)}|. In case of a tie, the vertex with maximum degree |N(v)] is selected.
Then it sets C'(v) to the smallest possible color min(N\{C'(u) | u € (N(v)\U)}).

DsATUR-based branch and bound algorithms [9, 26] are among the best com-
plete methods, alongside column generation approaches [18,20] and SAT-based
models and hybrid algorithms [11, 25,27, 30]. However, none of these scale to
graphs with more than a few thousands vertices.



2.1 Local Search

Local search and meta-heuristics have long been applied to graph coloring (e.g.
[12]), and with great success. All the best known colorings on the commonly used
dataset from the second dimacs challenge [13] were obtained by such methods?.

In principle, local search approaches seem very well suited for coloring large
graphs, and indeed most algorithms scale very well to relatively large graphs.
However, surprisingly, we could not find a report of a local search or a meta-
heuristic approach applied to the large graphs of the snap and dimacs10 datasets,
or on graphs of similar magnitude.

When the number of vertices grows really large, then one must be very care-
ful about the implementation details. As a matter of fact, several off-the-shelf
algorithms we tried used data structures with a space complexity quadratic in
the number of vertices, and are de facto irrelevant. Another critical point is the
size of the neighborhood. For instance, the most common tabu scheme consid-
ers all the (non-tabu) moves of any node sharing a color with a neighbor, to a
different color. Typical methods evaluate every such move and choose the one
that decreases the most the number of conflicts. The number of such moves to
consider in a graph with millions of vertices can be prohibitive, especially when
starting from low quality initial solutions. The state-of-the-art memetic algo-
rithm HEAD [21] uses a similar tabu search, and although we made superficial
changes to make it capable of loading massive graphs in memory, it performed
poorly on those. After a non-exhaustive review of the literature and of the avail-
able software, our belief is that these methods could be adapted to extremely
large and sparse graphs, but it would require non-trivial implementation work.

Blochliger and Zufferey’s local search algorithm [4] appears to be relatively
promising in this context. The idea is to try to complete a partial coloring, i.e., a
partition of the vertices into of k disjoint independent sets {C1, ..., Ci} plus an
extra set U of “uncolored” vertices. A move consists in swapping a node v € U
with the vertices N (v)NC; for some color ¢ € {1,...,k}. A move (v, i) minimizing
|N(v)NC;] is randomly chosen. In order to escape local minima, after each move
(v,14), the moves (u,4) for u € N(v) are added to a tabu list so that v will stay
with color i for a given number of iterations. When the set U becomes empty,
a k-coloring is obtained and the process can continue by randomly eliminating
one color 7, that is, setting U = C; and removing C; from the partition.

2.2 Independent Set Extraction

Whereas sequence-based coloring heuristics (such as DSATUR) explore the ver-
tices and insert them into the smallest possible color class (or independent set),
Leighton’s RLF heuristic [14] extracts one maximal independent set (or color
class) at a time. This technique has been shown to be more effective than DSATUR
on some graphs, however it has a higher computational cost.

Recent effective methods for large graphs rely on this principle. For instance,
Hao and Wu [10] recently proposed a method which iteratively extracts maximal

% http://www.info.univ-angers.fr/~porumbel/graphs/



independent sets until the graphs contains no more than a given number of
vertices. Then, any algorithm can be used on the residual graph to produce a k-
coloring which can be trivially extended to a k + p-coloring of the whole graph if
p independent sets have been extracted. Moreover, the authors show that it may
be effective to iteratively expand the residual graph by re-inserting the vertices
of some independent set extracted in the first phase and run again the coloring
method on the larger residual graph. This method, however, was not tested on
graphs larger than a few thousand vertices.

2.3 Peeling-based Approaches

The so-called “peeling” procedure is an efficient scale reduction technique in-
troduced by Abello et al. [2] for the maximum clique problem. Since vertices of
(k 4 1)-cliques have each at least k neighbors, one can ignore vertices of degree
k—1 or less. As observed in [28], this procedure corresponds to restricting search
to the maximum x!°%-core of G where x'°* is some lower bound on w(G):

Definition 1 (k-Core and denegeracy). A subset S C V s called a k-core
of the the graph G = (V, E) if the minimum degree of any vertex in the subgraph
of G induced by S is k. The mazimum value of k for which G has a non-empty
k-core is called the degeneracy of G.

As observed by Verma et al. [28], the peeling technique can also be used for
graph coloring, since low-degree vertices can be colored greedily.

Theorem 1 (Verma et al. 2015). G is k-colorable if and only if the mazimum
k-core of G is k-colorable.

Indeed, starting from a k-coloring of the maximum k-core of G, one can
explore the vertices of G that do not belong to the core and add them back in
the inverse of the degeneracy order, so that any vertex is preceded by at most
k — 1 of its neighbors, and hence can be colored without introducing a k + 1th
color. The other direction is trivial as the maximum k-core is a subgraph of G.

This preprocessing technique can be extremely effective on very sparse graphs,
and computing a lower bound of the chromatic number is relatively easy: com-
puting the clique number of a graph is NP-hard, but in practice it is much
easier than computing its chromatic number. However, the x!°“-core might be
too large, and therefore a second use of the peeling technique was proposed in
[28]. The idea is to find a coloring of the maximum (x“? — 1)-core of G where
X"? is an upper bound on x(G). The maximum (x"? — 1)-core has several good
properties: it is often small, its chromatic number is a lower bound on x(G), and
if there exists such a k-coloring with k£ < x"P, then it can be extended, in the
worst case, to a (x*? — 1)-coloring of G.

Therefore, Verma et al. proposed the following method: Starting from the
bounds x°* < x(G) < x"?, the algorithm solves the maximum (x“? — 1)-core of
G to optimality, and extends the corresponding k-coloring greedily following the
inverse degeneracy order to a k’-coloring. Then it sets x'°* to max(x'°?, k) and



X“P to k’. The algorithm converges since since x!°* cannot decrease and y“? is
guaranteed to decrease at each step.

Unfortunately, some graphs simply do not have small k-cores, even for k
larger than their chromatic number, so this method is limited to extremely sparse
graphs. Moreover, notice that the core must be solved to optimality in order to
extract relevant information from the iteration and converge.

The algorithm FastColor proposed by Lin et al. [16] also uses peeling, but
in a slightly different way. A k-bounded independent set is an independent set
whose vertices all have a degree strictly smaller than k. Their method iteratively
finds a maximal clique using a very effective sampling-based heuristic; removes
a x'°“-bounded independent set where x!°" is the size of the clique from the
graph; and computes an upper bound using the DSATUR heuristic.

This method is very effective, outperforming the approach of Verma et al.
on graphs with large cores. However, notice that the vertices in a x'°“-bounded
independent set cannot be in a x!°*-core since their degree is strictly thess than
x'°%, and therefore this variant of peeling is less effective than Verma’s. The
two main components are the method to find a clique and the DSATUR heuristic
to find upper bounds. The former essentially samples a set of vertices to be
expanded to a maximal clique. When extending a clique, a number p of neighbors
are probed and the one that maximizes the size of the residual candidate set
of vertices to expand the clique is chosen. Several runs are performed with the
parameter p growing exponentially at every run. However, it cannot prove a lower
bound greater than the clique number. The runs of DSATUR are randomized and
augmented with the recolor technique [24]: when a new color class i is created
for a vertex v, if there exist two color classes C;, C}, with j < k and a vertex u
such that N(v) N C; = {u} and N(u) N Cy = 0, then v and u can be recolored
to 7 and k respectively, thus leaving the color 7 free.

3 Iterated Dsatur

The overwhelmingly most common lower bound technique is to find a large
clique. Several other lower bounds have been used. For instance, two extra lower
bounds were proposed in [9]: the Lovasz Theta number [17] and a second lower
bound based on a mapping between coloring and independent sets on a refor-
mulation of the graph [7]. Another lower bound based on finding embedded
Mycielskian graphs [22] was proposed in [11]. Moroever, the bounds obtained by
linear relaxation of either the standard model or the set covering problem from
the branch & price approach are very strong. However, it is difficult to make any
of these methods scale up to graphs with millions of vertices.

Many graphs of the dimacs10 and snap datasets have a chromatic number
equal to their clique number. Morever, finding a maximum clique turns out to
be much easier in practice than solving the VCP. Therefore, it is often possible
to find a maximum clique and they often provide a good lower bound.

In this section, we introduce a method to solve the VCP that scales up to
very large graphs. Moreover, it may compute non-trivial lower bounds, that is,



Algorithm 1: Tterated Dsatur
Algorithm: I-Dsatur

Data: Graph G, Initial order O, color assignment C°, bounds y'°%, x*?
Result: x(G)
10
while Y/ < x*? do
p <+ 1+max{j| C%0}) < x'°¥ Vk < j}
O™« {of,...0L}
14—1+1
Ceore = ExactColoring(Gopi)
if max(Ceope) > Xlow then

Xlow — maX(Ocore)
L O« Ci!
else

Cz <_ CCOT'E

(01, C*) <« Dsatur(O¢, C?)

if max(C?) < x“? then

| x*? + max(C")

return (x*w) 7/ = x(G)

larger than the clique number. As a consequence, this method can produce opti-
mality proofs, even when w(G) < x(G). The principle is to iteratively compute
a coloring with DSATUR, and optimize its prefix up to the first occurrence of the
color x'°¥ + 1. If there exists a x'°?“-coloring of the prefix, then the next itera-
tion of DSATUR will follow the optimized prefix, whose length will thus increase.
Otherwise, the lower bound can be incremented.

Algorithm 1 uses a variant of DSATUR which takes a total order O of a
subset of the vertices and a coloring C' for these vertices. It assigns first vertices
in the given order and coloring, then colors the rest of the vertices using the
standard DSATUR heuristic. It returns the coloring C' as well as the total order
O = <01, .. .,0|V|> that it followed. In the following, we write max(C') for the
maximum color used, and C(v) for the color of v.

Algorithm 1 proceeds as follows. Given initial bounds x!°* and x“?, as well
as a coloring and ordering that witness the upper bound, we extract the core
graph, which is the subgraph Go1 of G induced by the vertices {01, ..., 0,} where
p is the maximum index for which all vertices o1,...,0,-1 are assigned colors
in [1,x!°%]. In other words, p is the index of the first vertex that is assigned a
color greater than the current lower bound x!°*. The order of these p vertices is
fixed for all subsequent runs of DSATUR. We then compute x(Go1), using any
exact coloring algorithm. In our implementation this is the satisfiability-based
algorithm from [11]. If x(Go1) > x!°% then we can update x'°* = x(Gp1). This
is because G o1 is an induced subgraph of G, so x(Go1) is a lower bound on x(G).



On the other hand, if x(Gp1) < x!°%, we fix the first p vertices to their order
and color them as in the optimal coloring of Gp:1 and use them as the starting
point for a run of Dsatur?. In either case, we proceed to the next iteration.

Algorithm 1 converges because at every iteration a growing subset of the
vertices are included in the core. Indeed, if x(Go:) > X', then the lower
bound is increased, which means that Go:+1 is larger. If x(Go:) < x'°%, then
the next run of Dsatur is constrained to assign at least o, to a color in [1, x!*¥],
so the core graph at the next iteration contains at least one more vertex. In the
extreme, the algorithm will terminate when Go: = G.

4 Local Search for Massive Graphs

As far as we know, the best upper bound for the datasets we consider were
obtained using either Brelaz’ heuristic [16], or by greedily extending the optimal
solution of a k-core [28]. Therefore, whether local search can help remains to be
seen. In this section we describe the modifications we made to Blochliger and
Zufferey’s tabu-search algorithm in order to adapt it to extremely large graphs.

Initialization A first very modest, but significant, addition is a method to effi-
ciently initialize the solution of the local search. The algorithm described in [4]
is given an integer k£ and tries to find a k-coloring. Since our method produces
colorings during preprocessing (from the computation of the degeneracy ordering
and from DSATUR) it is immediate to initialize the solution with such a coloring
whereby the vertices of any one color class are considered “uncolored”. However,
we observed that it was important to choose a small color class, as they can be
extremely unbalanced and chosing randomly could lead to a prohibitively large
neighborhood to explore in the initial steps.

Chained Flat Moves Recall that a move consists in swapping a node v from the
set U of uncolored vertices with its neighbors N(v) N C; in some color class i.
When N(v) N C; = 0 this is an improving move as we have one less uncolored
node. Now we call a move (v,¢) such that |[N(v) N C;| = {u} a flat move. We
know that no strictly improving move was possible, so if there is an improving
or a flat move involving w it is likely to be selected next. Therefore, in the event
of a flat move we greedily follow chains of flat moves from the previous vertex
until reaching an improving move, or until no flat or improving move is possible
for that vertex. This technique does not change the neighborhood, but explores
it in a more greedy way and is often beneficial. Moreover, we observed that it
was relatively easy to assess if such moves were effective, by counting how many
of them lead to an improving move, and by checking their length.

Algorithm 2 is a pseudo-code of our implementation of Blochliger and Zuf-
ferey’s tabu search. We denote C; the set of vertices of color ¢, that is C; = {v |
C(v) = i}. The outer loop and the color selection in line 1 are not in the original

4 Dsatur denotes our implementation of the DSATUR heuristic.



Algorithm 2: Local Search
Algorithm: TabuSearch

Data: Graph G = (V, E), Coloring C, Parameters I,
Result: A coloring of G
best +— C,k+ 0
foreach v € V', 1 < i <max(C) do T} =0
while k£ < I do
1 ¢ < arg min, (|C;])
U<+ C,
while i < I and C; # 0 do
v, 14— argminueU’j#‘TgSk(\N(u) NCjl)
2 if |IN(v)NC;| =1 then
repeat
Cv) «1
v v, 4
Uy =AM, o oo iy <k (Y (@) N Cj)

until |[N(v)NC;| =1
if |[N(v) N C;| > 1 then
C(v) + ¢
TV — k+t
3 else
Cv) «1

foreach v € N(v) N C; do

C(u) ¢
Ti« k+t

ke kt1

if U =0 then best «— C
return best

implementation, as well as the random path of flat moves corresponding to the
lines between 2 and 3. Notice that ties are broken randomly in every “argmin”
operator. Moreover, the management of the tabu list (7)) as well as of the it-
eration limit, and the choice of applying a random path move is more complex
than the pseudo-code shows. We set the parameters as follows.

Tabu list. Here we used a relatively straightforward scheme which is in fact a
simplified version of what is done in the original code. Every 10000 iterations,
the tabu tenure parameter t is decremented, unless it is null or the delta between
the lowest and largest size for U (the set of “uncolored” vertices) is lower than
or equal to 1 since the last update of the tabu tenure. In both of the latter cases,
t is increased by its initial value (the initial value was 10 in all our experiments).



Tteration limit. In order to dynamically adapt the number of iterations to the
progress made by the tabu search, we used the following policy: Let k be the
current number of iterations and I the current limit. When the limit is reached
within the outer loop, we check if there was any progress on the upper bound
X“P since the last limit update. If there was some progress, then we increase the
limit by the current number of iterations (I = I + k). Now, let § be the value of
I — k at the start of the inner loop. When the limit is reached within the inner
loop, we check if there was any progress on the number of uncolored vertices
(|U]) since the last limit update. If there was some progress, then we increase
the limit by 0, otherwise we increase it by J/2. We used an initial limit of 250000.

Limit on chains of flat moves. In some cases it is possible to explore very long
paths of flat moves hence slowing down the algorithm. We introduce a parameter
p (originally set to 1) controling the probablity 1/p of prefering such moves. Then
we simply check the average length [ of these moves and their frequency f and
adjust p in consequence. In practice, we double p when [ x f > 20 and decrement
it when it is strictly greater than 1 and [ x f < 3.

5 Overall Approach

Our approach combines the peeling preprocessing from Section 2, the tabu search
described in Section 4 and the iterated DSATUR scheme described in Section 3.

The principle we use for choosing the exact sequence of techniques is to
apply first those that have the greatest effect for the least computational cost.
Therefore, we first call DegeneracyOrder to compute not only the dengeracy
of the graph, but also the smallest-last ordering [19] O, which is the order in
which vertices are processed by the degeneracy algorithm and the array D, which
contains the degrees of the vertices during the elimination procedure. The actual
degeneracy D is only implicitly contained there as the maximum value in the
array, and D+ 1 is an upper bound on the chromatic number. We also compute a
lower bound by finding a clique. Using this lower bound and the order O, we can
compute the peeled graph H by removing the vertices whose degree D during
the degeneracy computation is at most k.

Although finding the maximum clique is NP-hard, it turns out to be much
easier than coloring in the dataset we used, so we solve the problem exactly
rather than use a heuristic. It also has a great effect on the rest of the algorithm,
as a better initial lower bound results in greater scale reduction from peeling
and hence improves all heuristics used further on.

After peeling, we first improve the upper bounds using the DSATUR heuristic
(Dsatur) and then local search. Finally, we switch to iterated DSATUR (I-Dsatur),
which is exact and hence the most computationally expensive phase.

One complication is that the iterated DSATUR phase is initialized with the
current best solution. If this solution was found by the local search algorithm,
there is no ordering that I-Dsatur can use to extract a core. We can produce a
relevant ordering from the local search solution simply by sorting the vertices by



Algorithm 3: Graph Coloring
Algorithm: LS+I-Dsatur

Data: Graph G = (V, E), Parameters I,¢
Result: The chromatic number of G

/* Preprocessing phase x/
1 (O, D) < DegeneracyOrder(G)

X"P + max(D) + 1

X% < |FindClique(G)|

H < subgraph of G induced by {oy,...,o0y|} with

k=max{i|j>ior D(j) < x"*}
(O,C) < Dsatur(H)
X"P +— max(x“?, max(C))

/* Local search phase */
C < TabuSearch(H, C, I, t)
X"P <+— min(x*?, max(C))
foreach v € V' do §°*(v) + |[{C'(u) | u € N(v)}|
2 0= {017 . >0|V’\} with i < j = 6sat(0i) > 6sat(0j)

/* Iterated DSATUR phase */
(O,C") + Dsatur(H, O, C)
return I-Dsatur (H, O, C’, x'°%, x“P)

saturation degree within the local search coloring® as shown in line 2. However,
this coloring may not use the smallest colors for the first vertices in the order,
therefore, we apply the following transformation:

We run Dsatur following the ordering O. When processing node v, we check
if the color C'(v) assigned by the tabu search to v has already been mapped to
some color, if not, we map it to the minimum color ¢ that v can take and assign
¢ to v. We do the same if the color C'(v) happens to be already mapped to c.
Otherwise, we switch to the standard DSATUR from that point on.

The resulting coloring is similar (at least in the prefix) to the LS solution,
however it is in a form that might have been produced by DSATUR.

6 Experimental Results

Our implementaton uses dOmega [29] for finding the initial maximum clique, and
MiniCSP® as the underlying CDCL CSP solver during the I-DSATUR phase.”

® ties broken by overall degree
5 Sources available at: https://bitbucket.org/gkatsi/minicsp.
" Sources available at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.



We compare it to the state of the art: the FastColor approach [16]. Unfor-
tunately, we could not compare with the approach described in [28] since the
coloring part of this code is now lost.® However, this latter approach is dominated
by FastColor on instances with large cores, hence the hardest.

Every method was run 20 times with different random seeds and with a time
limit of one hour and a memory limit of 10GB. The memory limit was an issue
only for dOmega which exceeded the memory limit on 3 instances. We raised the
limit to 50GB in these three cases. We used 4 cluster nodes, each with 35 Intel
Xeon CPU E5-2695 v4 2.10GHz cores running Linux Ubuntu 16.04.4.

FastColor LS+I-Dsatur
[V|/|E| (scaled) CPU time (ms) CPU time (ms)
min avg max min avg max

as-22july06 23K/48K 144/2758 13 18 23 2666 6083 9700
caidaRouterLevel 192K /609K 2861/56K 229 432 694 430 2785 29066
citationCiteseer 268K/1157K 2779/33K 489 1131 3143 404 552 661
cnr-2000 326K/2739Kk 0/0 1997 2360 2649 375 426 548
coAuthorsCiteseer 227K /814K 0/0 107 189 383 215 300 367
coAuthorsDBLP 299K /978K 0/0 130 301 564 321 434 592
coPapersCiteseer 100K /498K 0/0 25 49 93 73 96 147
coPapersDBLP 540K/15M 0/0 1175 1439 1903 1769 2091 2541
cond-mat-2005 40K/176K 0/0 19 41 74 23 40 54
eu-2005 333K/3949k 2128/106k 3383 3912 4844 542 690 824
in-2004 163K/2602K 0/0 721 1726 2042 206 263 331
rgg-n-2-17-s0 131k /729K 0/0 108 235 319 155 217 281
rgg-n-2-19-s0 524K/3270K 0/0 615 1678 2888 843 1233 1702
rgg-n-2-20-s0 1049K/6892K 59/637 1486 3131 7094 1953 2962 4056
rgg-n-2-21-s0 2097K/14M 0/0 5386 10664 15991 4476 6329 8262
rgg-n-2-22-s0 4194K/30M 0/0 9673 24810 45292 10642 14192 17222
rgg-n-2-23-s0 8389k /64M 0/0 17501 56107 92511 24693 30174 36390
rgg-n-2-24-s0 17M/133M 0/0 33786 137946 439554 56001 63153 89313
belgium_osm 1441x/1550K 5/8 229 342 905 1061 1398 1665
ecologyl 1000k /1998k 1000kK/1998k 500 907 4008 1288 1568 1816
luxembourg_osm 115K/120K 0/0 9 19 46 38 65 85
preferentialAttachment  100K/500K 0/0 266 1199 3146 136 187 242
Average CPU time 3538 11302 28553 4923 6147 9358

Table 1: CPU Time (easy dimacs10 instances)

The first two columns of Tables 1, 2, 3 and 5 give the size of the graph
(number of vertices/edges) before and after scale reduction. In all these tables,
bold font is used to highlight the (strictly) best outcomes. In Tables 1 and 2 we
report the CPU time in milliseconds for the “easy” instances of the dimacs10 and
snap sets, respectively. We say that an instance is easy when both I-Dsatur and
FastColor solved to optimality. We give the minimum, maximum and average
CPU time — parsing excluded — across the 20 random runs on the same instance.

Tables 3 and 5 show the lower (x/°*) and upper bounds (x“?) found by
I-Dsatur and FastColor on the rest of the dataset (“hard” instances). Both

8 Personnal communication with the authors.



FastColor

LS+ I-Dsatur

CPU time (ms)

CPU time (ms)

[VI/|E| (scaled)
min avg max min avg max

as-skitter 1696K/11Mm 4410/318x 9168 12775 15628 24464 36847 75037
ca-AstroPh 19K/198k 0/0 12 32 68 18 27 32
ca-CondMat 23K/93K 0/0 10 18 28 9 19 34
ca-GrQc 5246,/14K 0/0 1 3 8 0 2 3
ca-HepPh 12K/118k 0/0 39 44 83 8 13 18
ca-HepTh 9880/26K 0/0 2 4 6 1 5 8
cit-HepPh 35K/421k 8491/188k 110 5095 40103 5827 34997 194368
athletes_edges 14K /87K 42/793 6 14 28 10 17 26
com-amazon .ungraph 335K/926K 0/0 174 290 532 423 555 704
com-dblp.ungraph 317K /1050K 0/0 157 302 722 415 510 715
com-1j .ungraph 3925K/34M 383/73k 17624 49986 74537 17069 23097 29383
company-edges 14K /52K 0/0 5 8 12 6 10 13
government_edges 7057/89K 856/26K 6 25 54 48 67 77
new_sites_edges 28K /206K 36/615 16 47 74 25 37 47
politician_edges 5908 /42K 527/11K 25 46 74 5012 5596 6467
public_figure_edges 12K /67K 544 /16K 13 48 73 40 54 66
tvshow_edges 3892/17K 0/0 1 2 5 0 2 3
wiki-topcats 1788k /25M 106K/5163K 20920 50524 85890 74802 91791 103097
loc-gowalla_edges 197K /950K 3420/121K 181 556 920 509 624 775
loc-gowalla_totalCheckins 5669Kk/6442K 841k/1630k 5260 7083 13508 5833 6842 8193
Amazon0302 262K/900K 0/0 175 366 681 323 515 776
Amazon0312 401K/2350K 0/0 417 671 1023 899 1109 1811
Amazon0505 410K/2439K 0/0 442 694 1185 943 1185 1789
Amazon0601 403K/2443K 0/0 415 705 1176 715 1124 1649
roadNet-CA 1965K/2767K 0/0 507 835 1902 1916 2491 3264
roadNet-PA 1088k /1542K 0/0 269 520 1303 948 1323 2089
roadNet-TX 1380K/1922K 0/0 304 498 1023 1356 1584 1973
soc-sign-epinions 132K/711k 251/21K 352 1131 1673 300 361 417
HU_edges 48K /223K 0/0 22 144 405 56 69 86
RO_edges 42K/126K 147/722 18 59 101 22 46 71
soc-LiveJournall 4847k /43M  474/106K 79695 107923 129442 22337 29664 35301
soc-pokec-relationships 1633K/22M 262K/8307K 8430 54346 149444 22600 27607 31308
twitter_combined 81K/1342K 699/48K 1252 1836 3548 319 422 487
web-BerkStan 685K /6649 392/41k 4893 5350 6718 969 1209 1907
web-Google 876K /4322K 48/1121 692 1662 4137 1328 1863 3197
web-NotreDame 326K/1090k 1367/108K 122 182 259 302 385 514
web-Stanford 282K/1993k 1252/72k 940 1457 1794 470 606 746
wiki-RfA 38K /94K 7286 /65K 48 56 71 100 119 137

Average CPU time 4019 8035 14164 5011 7179 13331

Table 2: CPU Time (easy snap instances)

for the lower and upper bound, we give the best and average value across the
20 random runs on the same instance. We use an asterisk (*) to denote that
the maximum lower bound found over the 20 runs is as high as the minimum
upper bound, signifying that the method is able close the instance. Moreover,
for the results of I-Dsatur, we denote via a superscript in which phase of the
approach the best outcome was found. A value of 0 stands for the computation
of the degeneracy ordering, 1 for the preprocessing phase, 2 for the local search

and 3 for the iterated DSATUR phase.

Finally, Tables 4 and 6 give a summary view for hard instances, of respec-
tively the dimacs10 and snap datasets, with the arithmetic and geometric mean
bounds; overall ratio of optimality; and overall mean CPU time.



FastColor LS+I-Dsatur

low up low up
V|/|E| (scaled) X X X X
max avg min avg max avg min avg

kron g500-logn16 55K/2456K 6885/1495K 136 136.00 151 152.42 136 136.00 3145 153.40

3335P 3713k/11M 2261k/6759k 4  4.00 5 500 4 400 ©°5  5.00
Gn_pin_pout 100k/501k  100k/501k 4 4.00 6  6.00 >4 395 25 5.00
audikwl 944K/38M  936K/38v 36 36.00 40 40.89 36 36.00 239 39.30
cagelb 5155K/47M  5134K/47mM 6  6.00 12 12.00 6 6.00 211 11.00
1door 952K/23M  952K/23m 21 21.00 32 32.75 °23 21.65 228 29.85
smallworld 100k/500k  100k/500k 6  6.00 7 7.00 '*6 6.00 26 6.00
wave 156K/1059k  156K/1058k 6  6.00 8 8.00 37 6.05 '8 8.00

Table 3: Lower and Upper Bounds (hard dimacs10 instances)

low up
method X X Opt. CPU

avg avg (G) avg  avg (G) avg avg

LS+I-Dsatur  27.456 11.752  32.194 14.857  0.125 635682
FastColor 27.182 11.680  32.792 15.814  0.000 346630

Table 4: Summary (hard dimacs10 instances)

We first observe that for many of these graphs (see Tables 1 and 2) finding
an optimal coloring is easy. One reason is that their clique and chromatic num-
bers are equal. However, this is also the case for some graphs classified here as
“hard”. Whereas we use a complete maximum clique algorithm in our approach,
FastColor does not and yet it finds a maximum clique in all the “easy” graphs
and in most of the “hard” ones. Moreover, both solvers were able to quickly find
a maximum clique and an optimal coloring. In particular, many easy graphs
are solved during the preprocessing phase, the maximum (y"°% — 1)-core being
very small. Those graphs are therefore trivial both for FastColor and for our
approach, which are in fact similar on those. There is a slight advantage to our
method in terms of average run time, both for easy dimacs10 and easy snap in-
stances, which can presumably be attributed to our peeling method being more
efficient than the independent set extraction in FastColor.

Of the hard dimacs10 instances in Table 3, all but kron_g500-lognl6 are
quasi-regular, i.e., every vertex has roughly the same degree. These graphs do
not have small cores, hence the peeling phase is irrelevant. We can see that on
these graphs, the tabu search algorithm significantly outperforms DSATUR and
therefore our approach dominates FastColor for the upper bound. For instance,
on ldoor, LS+I-Dsatur finds a 29.85-coloring on average whereas the best col-
oring found by FastColor has 32 colors. On the instance kron_g500-logni6,
the tabu search performs poorly and is on average dominated by FastColor. In
one run, however, the iterated DSATUR algorithm is able to find a much better



FastColor

LS+I-Dsatur

low

up

up

[VI/|E|  (scaled) X X X X

max avg min avg max avg min avg
cit-HepTh 28K /352K 6819/188K *23 23.00 23 23.68 °*23 22.25 323  24.00
artist_edges 51k/819k 18k/591k 18 18.00 19 19.94 '18 18.00 320 20.15
com-orkut .ungraph 3072K/117m 742K/57M 50 49.44 75 77.83 51 51.00 73 73.00
com-youtube.ungraph 1135K/2988K 27K/708k 17 17.00 23 23.00 318 18.00 '24 24.00
email-Eu-core 986/16K  527/13k 18 18.00 19 19.00 **19 19.00 319 19.00
email-Enron 37K/184K 2707/76K 20 20.00 23 23.47 320 19.05 324 24.00
email-EuAll 265K/364K 1570/40k 16 16.00 18 18.00 3*18 18.00 318 18.00
p2p-Gnutella04 11K/40K 6899/35k 4 4.00 5 5.00 %4 4.00 '5 5.00
p2p-Gnutella0s 8850/32k 4994/25k 4 4.00 5 5.00 4 400 '5 5.00
p2p-Gnutella06 8717/32k 5548/27k 4 4.00 5 5.00 24 400 '5 5.00
p2p-Gnutellaos 6301/21k 2541/13k 5 5.00 6 6.00 °*6 6.00 6 6.00
p2p-Gnutella09 8114/26K 3835/19x 5 5.00 6 6.00 3*6 6.00 6 6.00
p2p-Gnutella24 27K/65k  11k/46Kk 4 4.00 5 500 34 380 !5 5.00
p2p-Gnutella2s 23K/55K 7892/33k 4 4.00 5 5.00 4 400 's5 5.00
p2p-Gnutella30 37k/88k 12k/53k 4 4.00 5 5.00 Y4 400 's5 5.00
p2p-Gnutella3l 63K/148k 20Kk/87k 4 4.00 5 500 '4 400 '5 5.00
soc-sign-Slashdot081106  77K/469K 4760/164x 26 26.00 29 29.00 3*29 28.90 329 29.00
soc-sign-Slashdot090216  82K/498K 4654/163k 27 27.00 29 29.00 329 28.95 329 29.05
soc-sign-Slashdot090221  82K/500K 4703/165k 27 27.00 29 29.00 3*29 28.75 329 29.30
soc-sign-bitcoinalpha 3783/14k 400/5352 10 10.00 12 12.00 3*12 12.00 212 12.00
soc-sign-bitcoinotc 5881/21k 513/7516 11 11.00 12 12.00 3*12 12.00 312 12.00
HR_edges 55K/498K 20k/299x 12 12.00 13 13.00 12 12.00 213 13.00
Wiki-Vote 7115/101k 2262/83k 17 17.00 22 22.00 319 17.55 322 22.85
facebook_combined 4039/88k  480/29x 69 69.00 70 70.00 3*70 70.00 370 70.00
gplus_combined 108K/12M 13K/6831Kk 325 324.05 327 327.84 %*326 324.40 326 327.40
soc-Epinionsi 76K/406K 4782/205K 23 23.00 28 28.00 123 23.00 29 29.00
CollegeMsg 1899/14k  911/12k 7 7.00 9 9.00 3*9 830 39 9.05
sx-askubuntu 157K/456K 1834/59k 23 23.00 25 25.00 524 24.00 325 25.10
sx-mathoverflow 25K/188k 1584/80x 30 30.00 35 35.95 °32 31.90 336 36.45
sx-stackoverflow 2584K/28M 111k/11m 55 55.00 66 66.16 55 55.00 67 67.00
sx-superuser 192K/715K 2868/118k 29 29.00 30 30.00 °*30 30.00 330 30.00
wiki-talk-temporal 1094K/2788K 12K/643Kk 25 25.00 46 46.00 27 25.95 346 46.25
wiki-Talk 2394K/4660K 15K/771K 26 26.00 48 48.35 529 28.30 348 48.80
wiki-Vote 7120/101k 2262/83k 17 17.00 22 22.00 °19 17.80 322 22.70

Table 5: Lower and Upper Bounds (hard snap instances)
low up

method X X Opt. CPU
avg avg (G) avg avg (G) avg avg

LS+I-Dsatur  28.938 15.893  32.591 18.480  0.332 209093
FastColor 27.784 15.049  32.137 18.203  0.009 178857

Table 6: Summary (hard snap instances)

coloring using 6 fewer colors than the best one found by FastColor. The aggre-
gated results given in Table 4 show that LS+I-Dsatur outperforms FastColor
both for the lower and upper bounds on this dataset.



The iterated DSATUR algorithm is also able to improve the lower bound of 2
instances out of 8 (1door and Gn_pin_pout). However, for the latter, FastColor
produces the same lower bound (4) which is larger than the maximum clique
found by dOmega. We do not know how to explain this.

On hard instances of the snap dataset (Table 5), the picture is very differ-
ent with in particular the tabu search being almost useless. The best coloring
found by our method was obtained during the local search phase only once, for
the instance HR_edges. In all other cases the best coloring was produced either
during preprocessing via DSATUR, or during the iterated DSATUR phase. Over-
all, as shown in Table 6, this is slightly less efficient for the upper bound than
FastColor which repreatedly uses DSATUR and eventually finds better colorings
in several instances whilst LS+I-Dsatur is best only on four instances.

The iterated DSATUR phase, however, is very effective with respect to the
lower bound. It improves on the maximum clique found by dOmega in 25 out of
34 instances, and it matches the best upper bound for 14 instances. Here again,
on three instances (cit-HepTh, email-Enron and p2p-Gnutella24) FastColor
outputs a lower bound greater than that found by dOmega. Overall, our approach
can close 14 of the hard instances, for 10 of which?, the optimal coloring was not
previously known, as far as we know. FastColor can only close one of them.

7 Conclusions

We have presented a new algorithm for exactly computing the chromatic number
of large real world graphs. This scheme combines a novel local search component
that performs well on massive graphs and gives improved upper bounds as well as
an iterative reduction method that produces much smaller graphs than previous
state of the art scale reduction methods. This scheme involves extracting more
information than simply a coloring from the DSATUR greedy coloring heuristic
and iteratively solving reduced instances with a complete, branch-and-bound
solver, in such a way that lower bounds produced for the reduced graphs are also
lower bounds of the original graph. Combined with the fact that we achieve more
significant reduction than the current state of the art means that we can find non-
trivial lower bounds even when peeling-based reduction cannot reduce the graph
to fewer than hundreds of thousands of vertices. Indeed, in our experimental
evaluation on a set of massive graphs, this method is able to produce both
better lower and upper bounds than existing solvers and proves optimality on
several (almost 75%) of them.

We expect that finding a method to extract cores from other heuristics, such
as our local search procedure will further improve performance.

9email-Eu—core7 email-EuAll, Gnutella08/09, bitcoinalpha, bitcoinotc,

facebook, gplus, CollegeMsg and sx-superuser
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