
HAL Id: hal-02076871
https://laas.hal.science/hal-02076871

Submitted on 22 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid multi-core CPU and GPU-based B&B
approaches for the blocking job shop scheduling problem

Adel Dabah, Ahcène Bendjoudi, Abdelhakim Aitzai, Didier El Baz, Nadia
Nouali Taboudjemat

To cite this version:
Adel Dabah, Ahcène Bendjoudi, Abdelhakim Aitzai, Didier El Baz, Nadia Nouali Taboudjemat. Hy-
brid multi-core CPU and GPU-based B&B approaches for the blocking job shop scheduling problem.
Journal of Parallel and Distributed Computing, 2018, 117, pp.73-86. �10.1016/j.jpdc.2018.02.005�.
�hal-02076871�

https://laas.hal.science/hal-02076871
https://hal.archives-ouvertes.fr


Hybrid Multi-core CPU and GPU-based B&B Approaches for the Blocking Job
Shop Scheduling Problem.

Adel Dabaha,b, Ahcène Bendjoudia, Abdelhakim AitZaib, Didier El-Bazc, Nadia Nouali Taboudjemata

{adabah,abendjoudi,nnouali}@cerist.dz; {h.aitzai,adel.dabah}@usthb.dz; elbaz@laas.fr

aCERIST Research Center, Algiers, Algeria.
bUniversity of Sciences and Technology Houari Boumedienne (USTHB) Algiers, Algeria.
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Abstract

The Branch and Bound algorithm (B&B) is a well known method for solving optimally Combinatorial Optimization
Problems (COPs). This method is based on intelligent enumeration of all feasible solutions which reduce considerably
the search space. Nevertheless, it remains inefficient when using the sequential approach to deal with large problem
instances due to its huge resolutions time. However, the execution time can be reduced considerably by using parallel
computing architectures. With the huge evolution of the multi-cores CPUs and GPUs, It is quite hard to design
schemes that efficiently exploit the different hardware architectures simultaneously. As a result, most of the existing
works focus on exploiting one hardware architecture at a time. In this paper, we propose five parallel approaches
to accelerate the B&B execution time using Multi and Many-core systems at the same time. Our goal is to solve
optimally the Blocking Job Shop Scheduling problem (BJSS) which is one of the hardest scheduling problem. The
first proposed approach is a multi-search parallelization based on Master/Worker paradigm, exploiting the Multi-
Core CPU-processors. The second and the third approaches represent a GPU based parallelization schemes having
different level of parallelism and GPU occupancy. The forth and fifth approaches represent a hybridization between
the Muli-core approach and the GPU based parallelization approaches. The goal of this hybridization is to benefit
from the power of both the CPU-cores and the GPU at the same time. This hybridization is based on concurrent
kernels execution provided by Nvidia Multi process Service (MPS) which allows multiple host processes (Master and
workers) to use at the same time the GPU to launch their kernels in order to accelerate the bounding of one or several
nodes at a time. Experiments using the well known Taillard instances confirm the efficiency of our proposals and
show a relative speedup of 160x as compared to an optimized sequential B&B algorithm.

Keywords: Job shop scheduling; Parallel Branch-and-Bound algorithm; Multi-core and Many-core computing;
Nvidia MPS.

1. Introduction

The job shop scheduling problem (JSSP) consists in
scheduling a set of n jobs on a set of m machines. Each
job has its own sequence of crossing on machines. The
execution of a job on a machine is called operation and
each one uses the machine for an uninterrupted process-
ing time. The classical JSSP assumes an infinite stor-
age space between machines which is not realistic. The
Blocking Job Shop Scheduling problem (BJSS) is a ver-
sion of the classical JSSP with no storage space between
machines, where a job has to wait on the current ma-
chine until the next one becomes available. Our goal is
to minimize the completion time of all jobs (Makespan).

The classical JSSP is known to be NP-hard in the strong
sense and its search space is equal to (n!)m [13]. The
BJSS problem wich is an extension of the JSSP, appears
to be even more difficult to solve [17]. This problem
has several application areas such as manufacturing sys-
tems with no storage space, train scheduling, hospital
resource scheduling, etc.

The B&B algorithm is a well known method to solve
optimally the COPs. It is based on intelligent enumera-
tion of all feasible solutions, which reduce considerably
the search space. Nevertheless, its sequential version
requires a huge execution time to solve small instances
and it remains inefficient when dealing with large or
real-world instances. Therefore, using parallel comput-
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ing architectures such as the Multi-core CPUs and the
GPUs is unavoidable to improve its running time of this
method.

Nowadays, most of processors are based on Multi-
core architectures. They are composed of two or more
independent central processing units (cores) that can run
multiple instructions at the same time. In addition to the
power provided by multi-core architectures, Graphics
Processing Units (GPUs) have emerged as a new pop-
ular support for massively parallel computing. GPUs
are many-core co-processor devices that provide a hier-
archy of memories having different sizes and access la-
tencies and providing a highly multi-threaded environ-
ment where the threads are scheduled and executed as
warps (group of threads) using the SIMT model [27].

With the huge evolution of the Multi-core CPUs and
GPUs, it is quite hard to design schemes that efficiently
exploit different hardware architectures simultaneously.
As a result, most of the proposed parallel B&B algo-
rithms in the literature [8, 15, 2, 7, 4] exploit only the
CPU-core or only the GPU which may lead to an under-
utilization of these resources and a loss of a significant
computing power. The major contribution of this pa-
per is the new parallelization schemes that exploit and
combine different parallelization levels of the B&B al-
gorithm using Multi and Many-core systems simultane-
ously. The proposed schemes are based on the Nvidia
Multi Process Service (MPS) that allows us to increase
the GPU occupation over time. Therefore, achieving a
high relative speedup for large instances.

The first approach (Multi-core B&B) is a tree
based parallelization, exploiting the Multi-core CPU-
processors available in all recent PCs. The proposed
approach is based on Master/Worker paradigm where
the workers independently explore the branches sent by
the master. The performance of this approach depends
on the number of used CPU-cores.

The second and the third approaches are a GPU based
parallel B&B schemes. The second approach: Parallel
Evaluation of the Bound (PEB) is a node-based paral-
lelization exploiting the idea that the evaluation (bound-
ing) of each node of the search tree can be calculated
in parallel on the GPU using several GPU-threads. The
proposed scheme here is very important to reduce the
B&B execution time since the bounding phase con-
sumes over 85% of the whole execution time. There-
fore, at each iteration of this scheme, one node is eval-
uated in parallel on the GPU by several threads orga-
nized in one GPU block. Experiments validate our idea
and show the benefit of accelerating the bounding pro-
cess on GPU by achieving a speedup up to 18x. The
third approach (Parallel Evaluation of Several Bounds

(PESB)) represents a generalization of the second ap-
proach (PEB) obtained by sending at each iteration a
pool of nodes to the GPU for evaluation instead of one
node at a time in the PEB approach. The number of
nodes sent varies according to the size of instances. This
approach allows us to achieve a relative speedup of 66x.

The drawback of the previous approaches is the
under-utilization of either CPU or GPU resources which
represents a wast of significant computing power. To
increase the GPU occupation and benefit from both the
multi-core CPU and the GPU at the same time, we pro-
pose a hybridization between the Multi-core CPU ap-
proach and the two GPU based approaches. This Hy-
bridization is based on the concurrent kernels execution
provided by Nvidia MPS i.e. Multiple host processes
(master and workers) can execute simultaneously their
kernels on the GPU. The forth approach, H-PEB repre-
sents a hybridization between the Multi-core approach
and the PEB GPU based approach which mean that sev-
eral host processes (Master and workers) can use the
GPU simultaneously to accelerate the bounding of each
node on the GPU according to the PEB scheme. In-
creasing the GPU occupation by this approach allows
us to reach a relative speedup of 93x as compared to an
optimized sequential B&B. In the same way, the fifth
parallel approach H-PESB represents a hybridization
between the Multi-core approach and the PESB GPU
based approach. Therefore, all host processes (Master
and workers) can use simultaneously the GPU to eval-
uate several nodes on the GPU instead of one node in
the H-PEB approach. The obtained results for this last
approach show a relative speedup of 160x as compared
to an optimized sequential B&B approach.

The remainder of this paper is organized as follows:
Section 2 describes the blocking job shop scheduling
problem, the alternative graph model and related work.
Section 3 contains a brief description of the sequential
B&B algorithm and its components. Section 4 presents
the proposed parallelization approaches of the B&B al-
gorithm. Section 5 discusses computational results. Fi-
nally conclusions and perspectives are presented in Sec-
tion 6.

2. Blocking job shop scheduling problem

2.1. Problem Formulation
The classical JSSP can be defined by a set J of n jobs

(J1, ..., Jn) to be processed on a set M of m machines
(M1, ...,Mm). Each machine can process at most one
job at a given time. The execution of a job on a machine
is called operation. We note by O the set of all oper-
ations (o1, ..., on∗m). Each operation oi needs to use a
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machine M(i) for an uninterrupted duration called pro-
cessing time pi. Each job has its own sequence of cross-
ing on machines which creates precedence constraints
between consecutive operations of the same job. A so-
lution (schedule) for this problem consists to assign a
starting and finishing times ti and ci for each operation
oi (i = 1, ..., n ∗ m); while satisfying all constraints. Our
goal is to minimize the Makespan (Cmax). The JSSP
assumes an unlimited intermediate buffer capacity be-
tween consecutive operations of a job which is impos-
sible in real manufacturing. The BJSS is a version of
the classical JSSP with no intermediate buffers, where
a job has to wait on the current machine until the next
machine becomes available for processing. This prob-
lem can be modelled as an alternative graph represen-
tation introduced by Mascis et al. [1] which is a gen-
eralization of the disjunctive graph of Roy and Suss-
man [4]. This model can be defined as G = (N, F, A).
N represents a set of nodes (operations) with two ad-
ditional dummy nodes (start and finish) modelling the
start and the finishing of the schedule. F represents a
set of fixed arcs imposed by precedence constraints be-
tween consecutive operations of the same job and fqp is
the length of arc (q, p) ∈ F. Finally, A is a set of alterna-
tive pairs ((i, j), (h, k)) representing the processing order
for concurrent operations on the same machine and ai j

is the length of alternative arc (i, j). Each alternative
pair contains two alternative arcs and each one of them
expresses the fact that one operation must be completed
on the target machine before starting the processing of
the other operation. Moreover, subsection 2.1.1. de-
scribes the alternative arcs generation. A selection S 1
is a set of alternative arcs obtained from A by choosing
at most one alternative arc from each alternative pair,
and G(S 1) = (N, F ∪ S 1) represents the graph repre-
sentation of the selection. We note that a selection S 1
is feasible if there is no positive length cycle in G(S 1)
and the evaluation (Makespan) of feasible selection S 1
is the longest path in G(S 1). We say that S 1 is a com-
plete selection if exactly one arc is chosen from each
pair, therefore |A| = |S 1|. We define a schedule (solu-
tion of the problem) as a complete feasible selection.
Finally, given a feasible selection S 1, let l(i, j) be the
length of the longest path from operation i to j in G(S 1).
We call the last operation of each job (example or) an
ideal operation because the machine becomes immedi-
ately available after the end of its processing time pr. If
oi is a blocking operation, we denote by σ(i) the opera-
tion immediately following oi in the same job.

2.2. Forming the graph of all possibilities (Search
graph)

The search graph represents the graph of all possibil-
ities which is used by the B&B algorithm as search tree
root. This graph is obtained by generating all alterna-
tive pairs, knowing that each alternative pair represents
the processing order between every two concurrent op-
erations. Therefore, if a machine has four concurrent
operations, we need six alternative pairs to show all the
possibilities on how these operations are executed on
the machine. The alternative pair between every two
concurrent operations is generated as follow.

2.2.1. Alternative pair generation

Let us consider two blocking operations oi, o j and one
ideal operation or, where M(i) = M( j) = M(r). Since
the three operations cannot be executed at the same
time, we associate them with pairs of alternative arcs.

i

σ(j)

σ(i)

j

0

0

Pi

Pj

i σ(i)

r

0

Pi

Pr

Case 1. Case 2.

Figure 1: Alternative pairs between blocking and ideal operations.

Case 1: the alternative pair between operations oi and
o j (Fig. 1): The first alternative arc (σ(i), j) having
length 0 represents the situation where oi is processed
before o j. Since oi is a blocking operation, M(i) can
begin the processing of o j only after the starting time
of σ(i)(when oi leaves M(i)). The same method is fol-
lowed for the other alternative arc(σ( j), i) since o j is a
blocking operation.

Case2: the alternative pair between operations oi and
or (Fig. 1): It is the same process as in the first case for
the alternative arc (σ(i), r) since oi is a blocking opera-
tion. The other alternative arc depends on the fact that
or is an ideal operation therefore, we add the alternative
arc(r, i) with length pr.

2.3. Example

Table 1 represents a BJSS instance with two products
(jobs) and three machines. The first product (J1) has 5
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Table 1: BJSS instance with two jobs and three machines.

job sequence processing times

J1 M1,M2,M3 5, 3, 8
J2 M2,M1,M3 8, 2, 7

min processing time on machine M1, 3 min on M2 and
8 min on machine M3. The second product (J2) has 8
min processing time on machine M2, 2 min on M1 and
7 min on machine M3.
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Figure 2: Alternative graph for BJSSP instance of table 1.

Figure 2 represents an alternative graph of the BJSS
instance in Table 1. This graph has three alternative
pairs, two between blocking operations and one be-
tween ideal operations. Both operations 2 and 4 need
the same machine M2 and since M2 can not process
both operations at the same time, we associate them
with an alternative pair. Since operations 2 and 4 are
blocking operations the first alternative arc (3, 4) rep-
resents the choice where operation 2 must be finished
before the beginning of operation 4. Its mate, arc (2,
5) represents the choice whereby operation 4 must be
finished before the beginning of operation 2. We use
the same process to generate the alternative pair ((2,5),
(6,1)) between operations 1 and 5. The alternative pair
between operations 3 and 6 is ((3, 6), (6, 3) ) because
both operations 3 and 6 are ideal.
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Figure 3: Schedule for BJSS Problem in table 1 whit Cmax=26.

Figure 3 represents a feasible schedule (solution) for
the BJSS instance in Table 1, obtained by choosing one
arc from each pair in the alternative graph of Figure
2. The Makespan (Cmax = 26) of this schedule is the
longest path in the obtained graph. The Gantt chart in
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Figure 4: Gantt chart of the schedule in figure 3.

Figure 4 represents both the processing and blocking
times of the solution of Figure 3. For example, after the
end of its processing time the job J1 blocks the machine
M1 until machine M2 becomes available for processing
J1.

2.4. Related works

The BJSS problem can be solved using either ex-
act or approximate methods. In the literature, several
heuristics and metaheuristics has been proposed to solve
the BJSS problem as in [3,8,10,9,5,6]. In addition,
heuristics as in [30, 29] and studies on meta-heuristics
based on multi-agent systems has proven theirs effi-
ciency in solving other optimization problems, among
them [31, 32, 33].

In this paper, we focus on accelerating the B&B al-
gorithm using multi-cores CPUs and GPUs simultane-
ously. Most of B&B methods for the job shop problem
are based on the one machine scheduling problem pro-
posed by Carlier et al. [10].

Only a few authors tried to solve optimally the BJSS
problem, the most effective one which is the base of our
sequential version is proposed by Mascis et al. [17].
The authors formulate the problem by means of an al-
ternative graph model which is a generalization of the
disjunctive graph of Roy and Sussman [22]. Based on
this model, they solve optimally the 10 × 10 benchmark
instances of this problem.

Ait Zai et al. [1], proposed an original B&B method
based on graph theory to solve the BJSS problem. The
idea of its branching scheme relies on the implicit enu-
meration of all possible combinations on a given ma-
chine. The authors gave solutions for local instances
only.
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The B&B algorithms are not efficient when dealing
with large problem instances, therefore computing ac-
celerators like GPUs are required. Several authors have
proposed to accelerate the B&B method using GPUs.
This work represents an extension of our work in [6],
in which we added three parallel approaches in order
to fully occupy the GPU. This extension allows us to
increase the performance of our approaches by 74% to
reach a speedup of 164x compared to 90x in [5]. In [6],
we propose a preliminary version of the B&B algorithm
dedicated to treat small instances (less than 50 jobs), the
concept of the parallelization is kept for the two GPU
approaches. However, to treat large instances we had
to redesign the code and the GPU memory management
to deal with such huge generated data. The performance
obtained in this paper boost the speedup to reach a 164X
compared to 60x in [6].

Chakroun et al. [8] and [15], take the classical ap-
proach of sending nodes to be evaluated on GPU to
solve the Flow shop scheduling problem since this step
takes more than 98% of the global execution time.
Therefore, each GPU thread supports the evaluation of
a single node of the search tree. In [2, 9] the authors ex-
tend the approach below to exploit the Multi-core CPU
processors in the generalization of sub-problems that
are going to be sent to the GPU for evaluation.

In [7], Alami et al. proposed a CPU-GPU based B&B
applied to the knapsack problem. In the proposed par-
allelization scheme the branching and bounding can be
done either on the CPU or the GPU according to the
size of the search tree. This approach uses less CPU-
GPU communication and better management of data-
structures in GPU memory.

In [4], Carneiro et al. apply the B&B to the travel-
ing salesman problem where a pool of nodes is sent to
the GPU for evaluation. Each GPU-thread applies the
branching and bounding operators to a single node and
builds its own local tree. The resulting nodes are moved
back to the CPU where the promising nodes are inserted
into the tree.

In [18], the authors proposed multi-core and many-
core parallel B&B for big optimization problems. The
authors propose two B&B implementations, the first one
focuses on exploiting the traditional multi-core CPU
processors while the seconds one is dedicated for In-
tel Xeon Phi coprocessors considering both native and
ofload modes. The reported results show that the many-
core approaches (native and offload) are twice faster as
compared with the multi-core approach.

In [23], the authors proposed a parallel B&B al-
gorithm exploiting the advantage of instance specific
computing on Field Programmable Gate Array (FPGA)

which has proven to be highly efficient in term of area,
energy consumption, and performance. In addition,
the proposed parallelization is based on work stealing
strategies to ensure dynamic load-balancing between
the parallel threads. The authors approach was applied
on the reconstruction of corrupted AES keys problem,
the reported results show an overall speedup of 47x.

In [25], Trong and Bilel proposed parallel B&B for
large scale heterogeneous distributed platforms with
several distributed CPUs and GPUs. The proposed ap-
proaches address the critical issue of how to map B&B
workload with the different levels of parallelism ex-
posed by the target compute platform. The reported re-
sults show the significant impact of the adaptive load
balancing among the heterogeneous compute resources
on the performance.

Most of the previously cited works focus on exploit-
ing the GPU part and ignoring the available CPU-cores.
Also, most authors use the parallel evaluation of bounds
model in which each GPU thread supports the bounding
of a single search tree node. This represents a lot of cal-
culation and lot of resources for a single thread which
may limit the performance. For this reason, we propose
in this paper new parallelization schemes, that exploit
and combine different parallelization levels to acceler-
ate the B&B execution time using Nvidia MPS.

3. The Branch and Bound algorithm for BJSS

The B&B algorithms make an intelligent enumera-
tion of all feasible solutions. They are mainly charac-
terized by two operators: branching and bounding. The
branching is a recursive process, which consists in re-
placing the search space of a given problem by a set
of smaller sub-problems. The bounding operator con-
tains two bounds: the Lower Bound (LB) and the Upper
Bound (UB). The LB represents an estimation of the
lowest evaluation of all feasible solutions in the consid-
ered sub-problem, while the UB represents the upper
limitation of the evaluation of each search tree node.
Any solution of the problem can be considered as initial
value for the UB which is used by other operators and it
is updated as soon as a new better solution is found by
the B&B algorithm. The B&B algorithm is based essen-
tially on the bounds to make an intelligent enumeration
of the search space. The elimination operator uses the
bounds (LB and UB) to eliminate the sub-problems that
cannot lead to improve the current best solution found
for the problem.

The most effective B&B algorithms, for the JSSP, are
based on the disjunctive graph model [3]. Our B&B is
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based on the adaptation of this approach to the block-
ing case (alternative graph) [17]. Our method which is
based on [17] consists in fixing an order (precedence
order) between every two concurrent operations, which
leads to fix the corresponding alternative pair (from A)
and a set of fixed arcs represents a selection.

Table 2: The description of the symbols used in our B&B algorithm.

Symbol Description

UB, LB Upper Bound, Lower Bound.
LIS T A set of nodes (sub-problems).
s∗ The optimal solution.
Ri The ith successor of node R.
LB(Ri) Lower bound of node Ri.

Algorithm 1 and Table 2 describes the used B&B al-
gorithm.

Algorithm 1 Pseudo-code of the sequential B&B algo-
rithm

LIS T ← {original problem};
UB← ∞;
while LIS T != ∅ do

R← LIS T (Choose a Node R from LIS T );
Generate successors Ri from R | (i = 1, ..., n);
for Each successour Ri do

if LB(Ri) < UB then
if Ri represents one solution then

UB = LB(Ri);
s∗ = solution in Ri;

else
LIS T = LIS T ∪ Ri;

end if
end if

end for
end while
return s∗

In the following, we describe the different operators
of the used B&B algorithm for the BJSS problem.

3.1. Branching

The B&B algorithm can be represented by a search
tree. The tree is rooted by the original problem i.e. no
alternative pairs are fixed (|S 0|=0). A search tree node
R is characterized by (S R, AR) and represented by the
graph G(S R)=(N, F ∪ S R). S R denotes the set of fixed
alternative arcs and AR represents a set of unselected
alternative pairs in this node. The branching creates
two immediate successors (R1, R2) of R by fixing an

alternative pair ((i, j), (h, k)) ∈ AR that has a direct im-
pact on the longest path in the graph. The node R1
(resp. R2) is characterized by S R1 = S R ∪ (i, j) (resp.
S R2 = S R ∪ (h, k)) and ARi = AR − {((i, j), (h, k))}. Each
successor represents the sub-search space related to the
fixed alternative arc. After this, each successor is han-
dled recursively in the same way until we find a com-
plete selection or eliminate the sub-problem and prune
the tree if the lower bound value is bigger than the upper
bound. Finally, the exploration strategy represents the
way the search tree is explored in order to find the solu-
tion with minimum makespan (optimal solution). Sev-
eral exploration strategies exist in the literature such-
as, best first exploration, worst first exploration, and
breadth first exploration. The exploration strategy used
in our case consists to choose the after a branching pro-
cess the node with the biggest Makespan (worst first).
For the BJSS problem, and as compared with best first
strategy, the worst first exploration strategy has more
chance to reach leaf nodes (solutions) therefore more
chance to improve the UB and eliminate a large number
of branches.
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Figure 5: Alternative graph for BJSS instance with two jobs and two
machines.

Figure 5 represents the alternative graph of a BJSS
instance with 2 jobs and 2 machines. The Figure shows
also the existence of two alternative pairs: the first pair
((2, 3), (4, 1)) is between operations 1 and 3 and the
second pair ((2, 4), (4, 2)) is between operations 2 and
4.

Figure 6 represents the search tree of the BJSS in-
stance in Figure 5 which contains two alternative pairs.
At each level, one pairs is fixed which generate two sub-
problems. This process is repeated until a complete fea-
sible selection is obtained or infeasibility is detected.

Figure 7 represents the alternative graph of the opti-
mal solution obtained from the search tree in Figure 6.

3.2. Evaluation (Bounding)
Any solution of the problem can be considered as an

initial value for the Upper Bound (UB) which is updated
as soon as a new better solution is found. In our case,
the UB=+∞.
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Figure 6: Search tree for the BJSS instance in Figure 5.
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Figure 7: Alternative graph of the optimal solution (Cmax=20).

After the branching operation, the bounding process
consists to calculate the Lower Bound (LB) for each
sub problem. The LB used in our case is the one used
by Carlier et al. [10] to solve optimally the classical
JSSP, it is based on the one machine scheduling prob-
lem. Therefore, we calculate the lower bound for each
machine l using cuncurent operations on it:

LBl =Min ri + Σpi+Min qi / M(i) = l, l = {1, ..,m}.

The LB for the subproblem is equal to the maximum
value of LBl.

LB= Max {LBl} /,l = {1, ..,m}.

To do a link with the alternative graph model, each
search tree node represents an alternative graph. This
lower bound can not be calculated without the new
Head and Tail values for each operation affected by the

branching process. (Hi = l(0, i),Ti = l(i, n ∗ m) / (i =

1, ..., n ∗ m) The process of adjusting the Head and Tail
values is very expensive and consumes 70% of global
execution time. This process is done sequentially for all
operations affected by the change made and can be re-
peated several times for the same operation if there are
multiple paths leading to this operation.

3.2.1. Immediate selection
The immediate selection represents several tech-

niques which allows to accelerate the B&B algorithm by
reducing the number of branching necessary to obtain
the optimal solution. This process is done sequentially
and costs 18% of the global processing time since there
is a large number of alternative pairs (99000 for big in-
stances). This process uses also the head and tail val-
ues computed in the bounding process. Given a search
tree node (sub-problem) R with a feasible selection S R

and a set of unselected pairs AR. For each unselected
pair ((i, j), (h, k)) ∈ AR: if l(0, h) + ahk + l(k, n) ≥ UB
then S R=S R ∪ (i, j). This rule expresses the fact that
adding the arc (k, h) (resp. (i, j)) to S R will produce a
sub-problem with a lower bound greater than the upper
bound. Consequently the arc (i, j) (resp. (h, k)) is added
to S R. If both alternative arcs (i, j) and (h, k) do not sat-
isfy the condition of LB < UB, we prune the branch
by eliminating node R, since this latter cannot contain a
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solution that can improve the best solution found by the
B&B algorithm.

The complexity of the evaluation process depends on
the number of operations (n×m) in the treated instance.
Therefore, the evaluation time increases by increasing
the size of the instances. The implementation of the
evaluation process, requires six data structures. The ma-
trix Succ ((n ∗ m) × n) contains the successors of each
operation, i.e. row i represents the successors of opera-
tion oi. Similarly, the matrix Pred ((n ∗m)× n) contains
the predecessors of each operation. Vector S contains
all selected and unselected pairs. Vector H (resp. T)
contains the Head (resp. Tail ) of each operation. The
element H[i]=l(0, i) represents the longest path from o0
to oi. The same T[i]=l(i, n ∗ m) the longest path from oi

to the last operation in the graph on∗m.

4. The proposed parallelization approaches for the
B&B algorithm

The fact that each node of the B&B search-tree can
be explored independently amplifies the parallelization
of this algorithm. The only global information in the
algorithm is the value of the upper bound.

MAJ UB

Sub−problem

CPU core

Worker Pool

Master Pool 

Master

Worker 2 Worker NWorker 1

Figure 8: Global architecture of the proposed Master/Worker paral-
lelization.

The algorithm parallelization may depend on the ar-
chitecture of the processing machine, synchronization,
granularity of tasks and communication between differ-
ent processes. There are several classes of the B&B par-
allelization. For more details the reader may refer to
[12]. In the following, we present our proposed parallel
B&B approaches for the BJSS problem.

4.1. Multi-search parallel B&B on Multi-core CPU
In this section, we describe the proposed parallel

B&B algorithm exploiting the CPU-cores available in
all recent computers. The proposed approach (see Fig-
ure 8) is based on the master/worker paradigm. A work
pool represents a set of active sub-problems. There is a
unique master work pool owned and managed only by
the master process which contains the sequential search
tree and several local work pools, empty initially, owned
by the different workers. Both of the master and work-
ers work pools are managed in the same way. The ex-
ploration of the search-tree is done simultaneously by
the master and workers since each one of them has its
own B&B algorithm and its own work pool. The results
given by a worker can influence others. Therefore, our
approach can be seen as a multi-search parallelization in
which the goal is to accelerate the exploration of master
search tree stored in the master pool. We call blocked
worker a worker with an empty work pool waiting for
a sub-problem to explore. The master process initial-
izes the search by creating the root node, launches its
own B&B algorithm which generates a set of active sub-
problems stored in the master work pool. After that, the
master wakes up the blocked workers by sending them
sub-problems from master work pool. After that, each
worker launches its own B&B algorithm. During the
search, the work pools evolve continuously and when
they become empty, the corresponding workers send a
request to the master and wait for sub-problems. When
the master receives a request, it satisfies the request if
the global pool is not empty. When the global work
pool is empty, the master sends a request to all work-
ers to send him back a sub-problem. Two states are
then reserved to each process (blocked or active). Each
time the global work pool is empty, the master checks
the state of all workers. If all the workers are blocked,
then the master ends the calculation and frees the work-
ers. The workers perform a depth-first strategy in or-
der to reach quickly feasible solutions or eliminate the
branches if the lower bound is greater than the upper
bound. A worker which finds a better solution than the
current best one broadcasts the new value to all workers
via the master to ensure efficient branching process. An
extended version of this approach that exploits the com-
puting power provided by cluster architectures is pre-
sented in [7].

4.2. The Proposed GPU-based B&B schemes

In this section, we describe our GPU-based paralleliza-
tion schemes for the B&B algorithm, these schemes
were firstly tested for small instances then adapted here
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Figure 9: GPU Evaluation of a single node.

for large Taillard instances. To handle such huge in-
stances, we had to readjust the memory allocation and
the distribution of the work-units over the threads of a
block since the number of the graph operations for large
instances is much bigger than the maximum number of
threads in GPU block.

The GPU architectures are based on SIMT (Single
Instruction, Multiple Threads) paradigm. According to
this paradigm, the same program called kernel is exe-
cuted simultaneously by a set of parallel threads with
different data. The threads are organized according to
a grid of thread-blocks hierarchy specified in the kernel
call. The grid represents a set of thread-blocks. Threads
of the same block can cooperate by using a private
shared memory and barrier of synchronization. Threads
can access multiple memory spaces: constant memory
and texture memory are read-only cached memory ac-
cessible by all threads. The global memory is a read-
write memory, also accessible by all threads. Unlike the
global memory the shared memory is a cached memory
accessible only by threads in the same block [27].
4.2.1. Parallel Evaluation of the Bound (PEB)

We have seen in section 3 that the evaluation process
and the immediate selection consume together more
than 85% of the global execution time, therefore, it is
crucial to accelerate this phase in order to reduce the
B&B execution time.

In the following, we present our proposed node-based
parallelization scheme for the B&B algorithm exploit-
ing GPU-based architectures. The proposed scheme re-
ferred to as Parallel Evaluation of the Bound (PEB),
exploits the idea that the evaluation and immediate-
selection for each node can be done in parallel using

GPU

Selection Process

Branching Process

Creation of two nodes

Elimination Process

Begin

End

CPU

Evaluation of Node i

G
P

U
 M

em
o

ry

Block 0

Immediate−Selection node i

Node i

Node i’

Evaluation Node i

Figure 10: Parallel Evaluation of one Bound (PEB scheme).

several threads.

As shown in Figures 9 and 10, this approach uses
the same design as the sequential B&B algorithm ex-
cept that the evaluation (bounding) of each node is done
in parallel on GPU. As already presented, each node of
the search tree represents a graph of n × m operations.
The bounding process consists in updating the head and
tail values for each operation in the graph. The parallel
PEB scheme is based on the idea that each GPU-thread
updates the head and tail values for a single operation
in the graph. This scheme exploits the fact that the up-
dating process can be done independently for each op-
eration. Therefore, the GPU block size is equal to the
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number of operations in the graph (n × m). As shown
in Figure 9, at each iteration, only one node is sent to
the GPU for evaluation and immediate selection using
one thread-block. The bounding begins by copying the
head and tail vectors to the shared memory, i.e. each
thread copies the head and tail values relative to its id.
After that, each thread updates the head and tail values
(H[i], T[i]) for the operation relative to its id (i) using
respectively the head of its predecessors and the tail of
its successors.

H[i] =Max {H[r] + pri} / r ∈ Pred[i].

T [i] =Max {T [r] + pir} / r ∈ S ucc[i].

At the end of this computation, each thread waits for
the other threads of the block using a barrier of synchro-
nization to ensure the visibility of the new head and tail
values to all threads of the block which is important to
have a valid update process.

The work is repeated several times until there is no
update of the head or the tail values for all threads or an
infeasibility is detected.

After the end of the bounding process, each thread
computes the immediate selection for a set of unselected
alternative pairs using the new head and tail values. Fi-
nally, the new results are sent back to the CPU to be
used by the branching and elimination process. As can
be seen in Figure 9, a single block is used on the GPU
to evaluate one node while the other blocks are idle.

The weakness of this solution lies in the under-
utilization of the GPU capacity and thus a waste of a
significant computing power. To overcome this draw-
back, we propose a second level of parallelization.

4.2.2. Parallel Evaluation of Several Bounds (PESB)
We propose in this section a second level of paral-

lelization which allows to more occupy the GPU. This
level represents a generalization of the first scheme
(PEB) called Parallel Evaluation of Several Bounds
(PESB). The goal here is to increase the GPU occupa-
tion by generalizing the idea of the first level (Bounding
is faster) to exploit more efficiently the GPU computing
power. Therefore, at each iteration of the B&B algo-
rithm, a pool of nodes is sent to the GPU for evaluation
and immediate-selection instead of one. i.e. each GPU-
block supports the evaluation of a single node. Then,
the new results for each node are sent back to the CPU
to be used by the selection, branching and elimination
process as shown in Figure 11. The nodes sent to the
GPU for evaluation are chosen among the nodes re-
cently added in the B&B work pool which allows to
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Figure 11: GPU evaluation of several nodes.

avoid memory saturation by exploring the search tree
in depth first.

As we have already seen, five data structures are used
for the bounding of each node on the GPU. The vec-
tors Head (H [m ∗ n]), Tail (T [n ∗ m]) and alternative
pairs (S [nbpair]) are sent from the CPU to the GPU.
Therefore, they are stored in the global memory of the
GPU. The matrices Succ and Pred are also stored in the
GPU global memory. These two matrices are calculated
on the GPU using the vector S as an initialization for
the bounding. To accelerate this initialization phase the
calculation is divided across all the threads of the block.

The access to the global memory is much longer than
the shared memory, but the latter is smaller compared
to the global memory. The number of blocks that can
run in parallel on each Streaming Multiprocessor de-
pends on the amount of shared memory used by each
block. Therefore, we use the shared memory only for
the Head and Tail vectors in order to have a large num-
ber of blocks running in parallel and since there is a high
number of accesses to these vectors.

The weakness of the previous approaches lies in the
under-utilization of the GPU capacity in addition to the
multi-core CPU processors and thus a waste of signifi-
cant computing power. To overcome this drawback, we
propose a hybridization (Multi-core CPU/ GPU based)
to increase the GPU occupation.

4.3. Hybrid Master-worker/GPU based parallelization

In this section, we present two hybrid Master-
worker/GPU approaches based on the three approaches
presented above. This hybridization is based on Nvidia
Multi Processes Service (MPS), which is a client-server
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runtime implementation of the CUDA API used to in-
crease the overall GPU utilization. Without MPS, only
one host process can use the GPU at a given time, there-
fore, it potentially my underutilize the GPU resources.
To overcome this problem, Nvidia provides the MPS
to enable multiple host processes like MPI processes to
use the Hyper-Q capability on the Nvidia Kepler GPUs.
Hyper-Q allows a single host process to process multi-
ple CUDA kernels concurrently on the same GPU. As
we can see in Figure 12, the MPS consists of several
components: the Control Daemon Process is responsi-
ble for starting and stopping the MPS server, as well as
coordinating connections between clients and the server
[28].

  

Figure 12: MPS compnents.

The server process provides the connection between
clients and the GPU which allows concurrency. Each
process (server, clients) has its own CUDA context for
its GPU operations. When the MPS client connects to
the control daemon, the later creates an MPS server if no
server is active, then the client proceed to connect with
the server [28]. Note that all communications between
MPS clients/server and MPS control daemon is done us-
ing a named Pipe. Furthermore, Figure 13. shows how
to use the Multi Processes Service (MPS) to run MPI
applications.

  

mkdir /tmp/mps /tmp/mps-log

export CUDA_VISIBLE_DEVICES=0    # SELECT GPU 0.

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps            # NAMED PIPES

export CUDA_MPS_LOG_DIRECTORY=/tmp/mps-log            # LOGFILES

nvidia-cuda-mps-control -d                                                             # START THE DAEMON

unset CUDA_VISIBLE_DEVICES

mpirun -x CUDA_MPS_PIPE_DIRECTORY=/tmp/mps -np 35 ./BB

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps    # SELECT THE LOCATION OF MPS DAEMON

echo quit | nvidia-cuda-mps-control   # STOP MPS DAEMON

rm -rf /tmp/mps /tmp/mps-log

Figure 13: Running MPI application using MPS.

4.3.1. Hybrid Parallel Evaluation of the Bound (H-
PEB)

We propose in this section a hybridization of the first
two approaches (Multi-core and GPU node based) to in-
crease the GPU occupation and then improve the run-
time. This version generalizes the idea of the PEB ap-
proach to exploit the advantages of both the Multi-core
CPU processors and the GPU at the same time. The hy-
brid approach is based on concurrent kernels execution
provided by Nvidia in devices of compute capability 2.x
and higher. The maximum number of kernels that a de-
vice can execute concurrently varies between 16 and 32
according to device compute capability [27].
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Figure 14: Hybrid Multi-core CPU/GPU approach.

Therefore, in our proposed scheme, several CPU pro-
cesses from the Multi-core approach (the Master or
the workers) launch their kernels simultaneously on the
GPU in order to accelerate the bounding of one node at
a time according to the PEB scheme. Each host (MPI)
process launches its own kernel in the default stream
and the MPS server manages to execute the kernels in
parallel by using different CUDA-Streams. The advan-
tage of our hybrid approach based on concurrent ker-
nel execution is the occupation of the GPU over time.
i.e. at each moment, our hybrid approach can have si-
multaneously several workers executing instructions on
the GPU while others perform data-transfer from/to the
GPU and yet others apply the selection and elimination
operators on the CPU. Using this approach, we have
been able to increase the occupation of the GPU but this
later still not yet fully occupied because of the limited
number of parallel processes and the number of nodes
sent by each process. For this reason, we propose in
the following an other hybrid parallel approach to fully
occupy the GPU.
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4.3.2. Hybrid Parallel Evaluation of Several Bounds
(H-PESB)

In order to fully occupy the GPU, we propose in
the following the last parallel approach called Hybrid
Parallel Evaluation of Several Bounds (H-PESB). This
approach represents a hybridization between the multi-
core approach and the PESB approach using the Nvidia
MPS allowing several MPI-processes to use the GPU at
the same time. Each mpi-process (master, workers) has
its own B&B algorithm and use the GPU to evaluate a
pool of node according to the PESB scheme. Thanks to
MPS-server, each MPI-process uses the GPU like it is
the only one using it, therefore, the communication be-
tween the CPU and the GPU is done exactly the same
way as it is in one host process case. This approach is
also similar to the H-PEB scheme, except that at each
iteration, each host process sends a pool of nodes to the
GPU for evaluation and immediate-selection instead of
one node at a time. i.e. several GPU-blocks are allo-
cated for each MPI-process and each one of them sup-
ports the evaluation of a single node. Therefore, each
thread of the block update the head and tail values for
one or several operations.The nodes sent by each mpi-
process to the GPU for evaluation are chosen among
the nodes recently added in the mpi-process B&B work
pool. At the end, the bounding results of nodes are sent
back to the CPU to be used by the corresponding mpi-
process for the selection, branching and elimination op-
erations. As shown in Figure 15, The master ho contains
the root node begins by dividing the search space be-
tween the workers. After that, each worker explores its
search space independently from the others and uses the
GPU to evaluate several nodes at a time. As explained
previously, The master and workers use the GPU simul-
taneously thanks to the Nvidia MPS that allows concur-
rent kernels execution while respecting the availability
of GPU resources.

5. Experimentations

In this section, computational results are given using
benchmarks obtained from the well known classical job
shop instances by replacing the infinite buffer capacity
by a zero buffer capacity constraint. We tested our ap-
proaches using the benchmark instances proposed by
Taillard’s [24]. The different instances are denoted by n
×m, where n and m represent respectively the number of
jobs and the number of machines. The size of the Tail-
lard’s instances for the job shop problem varies between
15x15 and 100x20. The experiments have been carried
out using Intel Xeon E5640 CPU with four CPU-cores,
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Figure 15: Hybrid Parallel Evaluation of Several Bounds (H-PESB).

2.67 GHz clock speed each and Nvidia Tesla K40 with
2280 cuda cores and 12 GB GDDR5 of global mem-
ory. The approaches have been implemented using C-
CUDA 7.0, C++ and MPI [26] as a communication tool
between processes. All reported times in this paper rep-
resent the average time to explore an equal number of
nodes for each benchmark size. In our case, this num-
ber is fixed to 700,000 nodes, which is acceptebale since
an optimized sequantial B&B algorithm takes 19 hours
to complete this number of nodes.

For the 100 × 20 benchmark instances there are 2002
operations. Since the GPU hardware limit is 1024
threads par block, we adapt the PEB approach to enable
each thread to treat 2 operations instead of one which
enables us to treat such big instances.

Figure 16 shows the execution time needed for
the Multi-core CPU and H-PEB approaches to ex-
plore 700,000 nodes using different number of MPI-
processes. For the Multi-core approach, the best time
is reached for 5 MPI-processes. After that, we notice an
increase in execution time when increasing the number
of parallel MPI-processes. This can be explained by the
limited number of CPU-cores available in our worksta-
tion (4 cores). Therefore, the workers tasks are executed
sequentialy when the number of workers is above 4. For
the Hybrid H-PEB approach the best time is reached for
35 processes which is the maximum supported since the
Nvidia MPS support up to 35 connections to the MPS
server. This hybrid version supports large number of
workers compared to the Multi-core version since each
worker has less than 15% of its execution time on the
CPU.

For the H-PESB approach, there is no easy way
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Table 3: Average execution time (in seconds) of the proposed approaches to explore 700,000 nodes. nb-pr: The number of parallel (host) processes
running simultaneously. nb-nodes: The number of nodes evaluated simultaneously on the GPU by each parallel process.

Size B&BS eq. B&BMcore PEB (nb pr=1) H-PEB (nb pr=35) PESB (nb pr=1) H-PESB (nb pr=5)
nb-nodes time nb-nodes time nb-nodes Time nb-nodes Time

15×15 188 52 1 603 1 162 240 37 90 60
20×15 384 113 1 653 1 164 240 53 90 59
20×20 393 120 1 736 1 173 240 71 86 58
30×15 1076 375 1 795 1 180 240 104 54 60
30×20 1127 447 1 955 1 209 140 156 46 71
50×15 4246 1454 1 1162 1 270 80 280 34 103
50×20 10546 3728 1 1530 1 340 30 396 26 145

100×20 69300 19200 1 3760 1 741 20 1050 20 418
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Figure 16: Impact of using different number of MPI-processes to ex-
plore 700,000 nodes for Tai61 instance.

to find the best configuration. For each instance, we
have to test several configurations and take the best one
among them. Each configuration is defined as the num-
ber of MPI-processes and the number of nodes sent to
the GPU by each mpi-process at each iteration. As il-
lustrated in Figure 17 and unlike the H-PEB approach,
the best performance is reached for low number of MPI-
processes, because the MPS server can manage simul-
taneously a limited number of physical contexts (one
for each parallel process) because of the large amount
of virtual memory allocated to each process match-
ing the size of nodes sent to the GPU. For the H-PEB
approach we can simultaneously manage large num-
ber of physical context (35) because of the low virtual
memory allocated to each process matching the size of
one node only. We notice also from Figure 17 that it
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Figure 17: H-PESB execution time using diffrent configurations to
explore 700,000 nodes for Tai61 instance.

is more benific to increase the number of nodes sent
to the GPU instead of increasing the number of MPI-
process. Therefore for each instance, we fixed the num-
ber of MPI-processes to 5 and we increase the number
of nodes sent to the GPU while it reduces the execution
time needed to explore 700,000 nodes.

Table 3 reports the average execution times for each
approach to explore 700,000 nodes. The first column
(Size) reports the size of the benchmark instances. Col-
umn B&BS eq reports the average execution time of an
optimized sequential B&B algorithm. Column B&BMcore

gives the execution time obtained by our Master/worker
approach exploiting only the Multi-cores CPU using 4
workers. For the all other approaches columns Time and
nb-nodes report respectively the average execution time
needed by each approach to explore 700,000 nodes and
the number of nodes sent to the GPU at each iteration.
For each column the parameter nb pr indicates the num-
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ber of parallel processes running simultaneously on the
CPU according to the master/worker paradigm.

Column PEB reports the results of our GPU node-
based approach obtained by sending one node at a time
for parallel evaluation on the GPU. Column PES B re-
ports the results of our second GPU based approach ob-
tained by sending several nodes to the GPU to be eval-
uated simultaneously and each one of them is evaluated
in parallel using one block of GPU threads.

Columns H-PEB and H-PESB reports the results of
the hybridization between the Multi-core approach and
PEB, PESB GPU approaches using Nvidia MPS i.e.
both master and workers use simultaneously the GPU
to accelerate they respective bounding processes.

As mentioned before, 35 MPI-processes are used
in the H-PEB approach and each one uses the default
CUDA Stream to launch its kernel to evaluate one node
at a time. For the H-PESB approach, we fixed the num-
ber of parallel processes to 5 due to the huge amount of
virtual memory matching the number of nodes sent to
the GPU.

We notice from Table 3 that the complexity and the
execution time increase when increasing the size of in-
stances. Therefore, the need for parallelization is cru-
cial.
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Figure 18: Execution time of the proposed approaches.

Figure 18 shows the histogram representation of the
execution time for the different approaches. The first
result from Table 3 and Figure 18 is the positive impact
of using parallel architectures to reduce the execution
time needed to solve the BJSS problem.

The improvement obtained with the Multi-core ver-
sion is low which is expected since our workstation con-
tains only four CPU-cores. Therefore, increasing the

number of workers above four reduces further the ob-
tained performances. For the PEB version, we notice
a low performance for small instances (15x15-30x20)
against the Multi-core and sequential approaches. This
can be explained by the high ratio of communica-
tion to computing time on the GPU i.e. the approach
passes more time in sending data and recovering results
to/from the GPU. By increasing the size of instances,
we notice a significant improvement in execution time
as compared with the sequential and multi-core cases.
In addition to the efficiency in reducing the execution
time for large instances, the PEB approach does not de-
pend on the GPU capacity since it uses a small amount
of GPU resources. However, only one block is used and
the other blocks remain idle. Therefore, this approach
can not benefit from the entire GPU capacity.

The performence of the PESB approach depends on
the number of nodes that the GPU can evaluate simul-
taneously which is determined by the amount of the
shared memory used by each GPU block to evaluate a
node. The number of nodes evaluated simultaneously
for small instances is equal to the maximum number of
block that our GPU can run simultaneously (240). By
increasing the size of instances, the number of nodes
evaluated simultaneously matching the number of par-
allel blocks that a GPU can handle decreases. This be-
haviour can be explained by the huge amount of shared
memory needed to each block for large instances. Since
the amount of shared memory is fixed, the number of
parallel block decreases by increasing the shared mem-
ory used by each block matching the generated data for
the handled instance used for synchronization. By send-
ing several nodes at a time instead of one in the PEB ap-
proach, we have been able to reduce the execution time
by a factor of 3 as compared with the PEB approach and
a factor of 18x as compared to the multi-core version.

The hybrid approach (H-PEB) reduces considerably
the execution time even for small instances against the
sequential approach. This performance represents the
results of exploiting both the CPU-cores and the GPU
at the same time by using concurrent kernels execution
provided by nvidia MPS which allows us to increase
the GPU occupation. Furthermore, the wasted time in
CPU/GPU communications is covered by the concur-
rent access to the GPU where several workers execute
their bounding operation at the same time. This hy-
bridization allows us to reduce the execution time by
a factor of 5x as compared with the PEB approach and
a factor of 26x as compared with the multi-core ver-
sion. Unlike smaller instances, the H-PEB approach
outperform the results of the PESB approach for large
instances due to limited number of nodes handled si-
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multaneously by this later.
Our last parallel approach (H-PESB) is also based

on the Nvidia MPS, it represents a hybridization be-
tween the multi-core approach and the PESB approach.
This approach fully occupies the GPU which explains
the good obtained performance even for the smaller in-
stances. The result of this approach is 2 times faster as
compared with PESB approach and 46 times faster as
compared with the multi-core version. The results of
our two hybrid approaches show clearly the benefit of
using both the multi-core CPU and the GPU at the same
time as compared with approaches exploiting only the
Multi-core CPU or only the GPU.

We notice for our experience of using Nvidia MPS
that the best performance is obtained for large number
of parallel host processes as we can notice from the H-
PEB results in table 3 and Figure 16. But, This depends
on the MPS server resources i.e. if he has enough virtual
memory space for the parallel processes which is not the
case in the H-PESB approach.

Table 4: The number of GPU communications needed for each ap-
proach to explore 700,000 nodes.

Approaches#processes #nodes sent GPU communications

Multi-core 5 0 0
PEB 1 1 1400,000
H-PEB 35 1 40,000
H-PESB 5 20 14,000

Table 4 shows the number of GPU communications
needed for each approach to explore 700,000 nodes. For
each approach, column processes reports the number
of used parallel processes. Column nodes reports the
number of nodes sent by each process. Finally, column
GPU communications reports the number communica-
tions between the CPU and the GPU. The PEB approach
has huge number of GPU communications (1400,000)
because at each iteration, only one node is sent to the
GPU then the results are move back to the CPU. For
the H-PEB approach we have 40,000 communications
since at each iteration, we can have 35 connections at
the same time to the GPU without blocking. The same
for the H-PESB approach, the later reduces more the
number of communications to the GPU which explains
the obtained performances.

Figure 19 shows the relative speedup of our proposed
approaches for different problem sizes. The speedup of
our Multi-core version is around 4 for all sizes which
is expected since it depends on the number of CPU-
cores available in our workstation. The speed-up of
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Figure 19: The speedup of the proposed approaches.

the other approaches is proportional to the size of in-
stances. Therefore, the maximum speed-up is obtained
for the 100x20 instances. This is logical because the
speedup of these approaches depends on the amount of
the computation on the GPU. The idea used in PEB ap-
proach to accelerate the bounding of one node at a time
on GPU using several threads organized into one GPU
block gave good results (18 times faster) compared to
the sequential version.

The PESB approach gave the best performance
against all approaches for small instances, however this
is not the case for large instances as compared with the
H-PEB and H-PESB approaches due to the limited num-
ber of nodes evaluated simultaneously on the GPU. This
can be explained by the limited amount of shared mem-
ory available in the device and the large amount of this
memory needed by each GPU block for synchroniza-
tion.

The speedup obtained by the hybrid H-PEB approach
is around 90 times faster which confirms the efficiency
and the benefit of using both CPU-cores and GPU at the
same time.

The H-PESB approach that fully occupy the GPU
has acheived the best performances for almost all sizes
agains all other approaches. It has acheived an im-
pressive speedup, especially for the largest instances
where it is up to 160 times faster than a sequential
B&B algorithm. In addition, the speedup of hybrid ap-
proaches grows according to the size of instances. This
is due to the ratio of computing to communication time
that increases by increasing the size of instances. This
proves that the hybrid approaches are scalable and can
easily deal with large instances. These last two ap-
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proaches are based on the concurrent kernels execu-
tion via Nvidia Multi Processes Service (MPS) which
is rarely exploited in scientific computing. The perfor-
mance (speedup) of the hybrid approaches is the result
of:
1- Using the PEB scheme which is 18 times faster as the
basis of our hybrid approaches.
2- Exploiting both the power of the CPU-cores and the
GPU at the same time using Nvidia MPS.
3- The occupation of the GPU over time i.e. several
workers run instructions on the GPU while others per-
form data-transfer from/to the GPU and yet others apply
elimination and branching operators on the CPU.

6. Conclusion

This paper investigates the acceleration of the B&B
method using Multi and Many-core systems in order to
solve the NP-hard Blocking Job Shop Scheduling prob-
lem. This problem represents a version of the classical
JSSP with no intermediate buffer between machines. In
this paper, five approaches have been proposed. The
first approach exploits only the CPU-core of our ma-
chine. The second one (PEB) is a GPU node based par-
allelization. Finally, the last two approaches (H-PEB
and H-PESB) are hybrid, they exploit the Multi-core
CPU and the GPU at the same time by combining the
first two approaches using concurrent Kernels execution
provided by Nvidia MPS. The obtained results confirm
the efficiency of our proposals and the positive impact
of using computing accelerators like GPUs to solve this
problem. The results show the advantage of increas-
ing the GPU occupation over time by using Hybrid ap-
proaches based on the cuncurent kernels execution pro-
vided by Nvidia MPS which allows us to achieve an
impressive speedup of 160x for large instances as com-
pared with an optimized sequential B&B approach.

As a future perspective, we plan to act on the granu-
larity of tasks assigned to each thread and explore more
heterogeneous architectures like Intel Xeon Phi.
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