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Magnetic force modelling and nonlinear switched control of an electromagnetic actuator

This paper presents the magnetic force modelling of a typical electromagnetic valve actuator system. In this work, the objective is to take into account two important features: the magnetic saturation phenomenon which is a physical problem and the positivity constraint of the magnetic force. Those issues are addressed with a switch modelling approach. The first proposed control law proves the stability in a limited set and the second one ensure the global stability of the closed loop system. For both controllers, the main part of the control consists of a two steps backstepping control, a first controller regulates the mechanical part depending on the expression of the magnetic force. And a second controller controls the coil current and the magnetic force implicitly. An illustrative example shows the effectiveness of the approach.

I. INTRODUCTION

For several years Electro-Magnetic Actuators (EMA) have caught much attention in the industrial activities, and especially in space [START_REF] Tai | Control of an electromechanical camless valve actuator[END_REF] and automotive industries [START_REF] Wang | Modeling and control of electromechanical valve actuator[END_REF], [START_REF] Ito | Electronic fuel injection system for an internal combustion engine having electromagnetic valves and a fuel damper upstream thereof[END_REF] and [START_REF] Wang | Modeling of an electromechanical valve actuator for a camless engine[END_REF]. In these two industrial sectors, the Electro-Magnetic Valves (EMV) are replacing the Electro-Pneumatic Valves for several factors, small sizes, an easier implementation, one needs only an electrical source and no fluid need to be present. It appears also that EMV may obtain better performances, and better reliability. That's the reason why for several years, the National Centre for Space Studies (CNES 1 ) investigates innovative technologies to expand the use of EMA in Ariane and Vega launchers. The CNES has been working with CSTM, a mechanical engineering company, to replace pneumatic valves with an electromagnetic actuator [START_REF] Tatiossian | Electronic pressure regulator for liquid propulsion rockets[END_REF]. The present study continues this work, in collaboration with the CNES and CSTM, and concentrate on the control issue.

EMA and EMV are usually controlled by linear control strategies such as PID [START_REF] Yaseen | A comparative study of stabilizing control of a planer electromagnetic levitation using pid and lqr controllers[END_REF], MPC [START_REF] Di Cairano | Model predictive control of magnetic automotive actuators[END_REF] and LQR controllers [START_REF] Forrai | Electromagnetic actuator control: A linear parameter-varying (lpv) approach[END_REF], [START_REF] Tai | Control of an electromechanical camless valve actuator[END_REF] or by nonlinear control laws like Flatness [START_REF] Koch | Modeling and control of solenoid valves for internal combustion engines[END_REF], Sliding mode [START_REF] Nguyen | Accurate slidingmode control of pneumatic systems using low-cost solenoid valves[END_REF], [START_REF] Al-Muthairi | Sliding mode control of a magnetic levitation system[END_REF], [START_REF] Goel | A novel high-order sliding mode control of magnetic levitation system[END_REF] [13], Sontag's feedback [START_REF] Peterson | Nonlinear control for magnetic levitation of automotive engine vales[END_REF] or backstepping [START_REF] Rao | Nonlinear modeling and control of servo pneumatic actuators[END_REF].

In [START_REF] Peterson | Extremum seeking control for soft landing of an electromechanical valve actuator[END_REF] and [START_REF] Tai | Control of an electromechanical camless valve actuator[END_REF], the expression of the magnetic force has been defined as F mag = N 2 i 2 k 2 (k 0 +k 1 x) 2 . F mag depends on the airgap x and the coil current i. N and k i are constant parameters depending on the structure of the EMA. However, this expression does not take into account some magnetic phemonon which occur in the magnetic circuit when the current increases. In order to overcome that difficulty [START_REF] Wang | Modeling and control of electromechanical valve actuator[END_REF] and [START_REF] Wang | Modeling of an electromechanical valve actuator for a camless engine[END_REF] have developed a method based on magnetic force measurement to give a switched analytical expression for the magnetic force. When the current is under the saturation current, the previous nonlinear expression is proposed (called "non-saturated expression"), when the current is above the saturation current, a custom expression (called "saturated expression"), uses a polynomial fitting optimisation based on measurement.

The main objective of this paper is to consider a more realistic model of the actuator in order to take into account the magnetic phenomenon. The "non-saturated expression" was derived from a reluctance network with PLECS [START_REF]Plecs blockset edition info@plexim[END_REF], and had been compared with finite element method simulations with COMSOL [START_REF][END_REF].The "saturated expression" was designed to fit to the experiments we made on a testbench. This approach leads to a nonlinear switched model for the magnetic force. Two nonlinear controls have then been designed to achieve the desired closed-loop performances. The first control law, called "local controller" is based on a backstepping control. It has been developed in two steps: firstly it stabilizes the mechanical subsystem by calculating a desired magnetic force. The second step of the control drives the current in order to maintain the desired magnetic force. This control is a "local controller" because it works only in a validity region: the electromagnet can only attract the moving part of the system and the control law computes a force that repulses the moving part. So this control only works in the region where the desired computed force is positive. In some papers , [START_REF] Peterson | Nonlinear control for magnetic levitation of automotive engine vales[END_REF] or [START_REF] Schwarzgruber | Nonlinear control of an electro-magnetic actuator under highly dynamic disturbances[END_REF] the solution was to send no power to the system (u = 0V or bound the desired force to 0 if it is negative), but a sliding mode motion can appear and no proof of convergence is given. In [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF], [START_REF] Rao | Nonlinear modeling and control of servo pneumatic actuators[END_REF] and [START_REF] Lee | A new 3-dof z-tilts micropositioning system using electromagnetic actuators and air bearings[END_REF] the expression of the desired force can be negative for some condition and can induce instabilities. In this work, a second control is developed with two switching strategies that prove the global stability of the closed-loop system and avoid the problem of a negative desired force. This new control is also developped in two steps using a backstepping control: a first control is used to stabilize the position and the speed of the moving part by computing the desired force. Then a second control is used to drive the force to this latter variable.

II. SYSTEM DESCRIPTION AND MODELING

A. Description of the EMA

A schematic representation of the considered EMV is shown in Fig. 1. This is a typical setup for EMV as presented in [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF], [START_REF] Mercorelli | An antisaturating adaptive preaction and a slide surface to achieve soft landing control for electromagnetic actuators[END_REF] and [START_REF] Peterson | Extremum seeking control for soft landing of an electromechanical valve actuator[END_REF]. The electromagnetic system is composed of an electromagnet (made with a coil winding a magnetic circuit) and a spring. The spring is used to counteract the electromagnet, which only attract the moving part and to ensure that the system returns to the open position if not powered. In order to control the opening of the valve, a nonlinear stabilizing control law has been designed for this EMA. We firstly develop a nonlinear model, which takes into account the magnetic saturation by a switching expression of the magnetic force. The switching feature stems from the magnetic saturation of the circuit, when the current increases, that saturates the magnetic force. The following subsections develop the modeling steps to derive a nonlinear switched model. This EMA is modeled as a 3 dimensional system with the state vector x = (x 1 , x 2 , x 3 ) T . The state components are the position x 1 of the moving part, its velocity x 2 and the current in the coil x 3 . The actuator input u is the voltage at the terminals of the coil.

B. Experimental measurements

The expression of the magnetic force F mag , the inductance L and the reluctance ρ defined in the control and electronic litterature [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF], [START_REF] Yaseen | A comparative study of stabilizing control of a planer electromagnetic levitation using pid and lqr controllers[END_REF], [START_REF] Forrai | Electromagnetic actuator control: A linear parameter-varying (lpv) approach[END_REF] and [START_REF] Woodson | Electromechanical dynamics[END_REF]:

F mag (x 1 , x 3 ) = 1 2 x 2 3 dL(x 1 ) dx 1 , L(x 1 ) = N 2 ρ(x 1 ) , ρ(x 1 ) = ρ x (x 1 ) + ρ 0 , (1) 
with N the number of coil's turn, ρ 0 the magnetic circuit airgap and ρ x (x 1 ) the airgap reluctance ( = 0 ∀x 1 ). Notice that this model has been assessed with numerical simulations in [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF], using PLECS [START_REF]Plecs blockset edition info@plexim[END_REF] and Comsol softwares [START_REF][END_REF]. Nevertheless, even if this model fits well the inductance L, its derivative w.r.t. x 1 is required to calculate the magnetic force F mag . It generally leads to inaccurate model of the force. For that reason an experimentation setup has been designed in order to measure the EMA force for given airgap and current. The schematic of the measurement bench is depicted in Fig. 2: Fig. 2. Schematic of the bench for measuring the force The Fig. 3 shows experimental measurements of the magnetic force as a function of the current and for different fixed airgaps. It shows that the proposed analytical model ( 1) is only valid for small values of the current. This is due to the magnetic saturation of the magnetic circuit. 

C. Magnetic force identification

In [START_REF] Wang | Modeling of an electromechanical valve actuator for a camless engine[END_REF] and [START_REF] Wang | Modeling and control of electromechanical valve actuator[END_REF] an identification method is developped to take into account the magnetic saturation in the force modelling. This method was adapted in this paper with the experimental result of the previous paragraph. The magnetic force was split in two regions: for each airgap, it is possible to find a limit current i s such that, for 0 < x 3 < i s the magnetic force can be modeled by

F mag = 1 2 x 2 3 dL dx 1
, this region is called the "non-saturated" region. For x 3 > i s , the equation ( 1) is not valid anymore, this region is called saturation region. In this latter region a parameter identification [START_REF] Wang | Modeling of an electromechanical valve actuator for a camless engine[END_REF], gives an analytical expression of F sat mag = p 1 (x 1 )e p 2 (x 1 )x 3 + p 3 (x 1 )e p 4 (x 1 )x 3 + cor(x 1 ) where p i (x 1 ) are polynomials and cor(x 1 ) is a corrective term that ensures the continuity between both expressions of F mag .

Remark 1: The limit current i s is also identified as i s = k 6 x 1 + k 7 where k 6 and k 7 are identification constants.

D. Magnetic force modeling

Finally, the expression of the magnetic force is:

F mag (x 1 , x 3 ) F lin mag if x 3 ≤ i s (x 1 ), F sat mag if x 3 > i s (x 1 ).
(

) with    F lin mag = 1 2 x 2 3 dL dx 1 F sat mag = p 1 (x 1 2 
)e p 2 (x 1 )x 3 + p 3 (x 1 )e p 4 (x 1 )x 3 + cor(x 1 ).

(3) The results of the force computation is depicted in Fig. 4. The originality of the model is to use a switched state-Fig. 4. Comparaison between analytical model (2) and measurements dependent expression for the expression of F mag and a new expression of the inductance L. These expressions take into account two magnetic phenomenon arisen in the magnetic circuit called flux fringing (it affects ρ in equation ( 1)) and magnetic saturation (it affects the equations ( 2)). A previous work on the flux fringing was done in [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF].

E. Magnetic force properties

Due to the particular form of the magnetic force F mag in equation ( 2) , it is important to emphasize some properties that will be considered in the control design.

Property 1: ∀(x 1 , x 3 ) ∈ R 2 , F mag (x 1 , x 3 ) ≥ 0. Property 2: ∀(x 1 , x 3 ) ∈ R 2 , the function F mag (x 1 , x 3
) is a continous and bounded function.

Property 3: For a fixed x 1 ∈ R, ∀x 3 ∈ R, F mag x 1 (x 3 ) is monotonically increasing. Property 4: ∀F d > 0, ∀x 1 , ∃ ! x 3 , F mag (x 1 , x 3 ) = F d
Proof: By using the properties 2 and 3, for a fixed x 1 means that F mag x 1 (x 3 ) is bijective. So it is possible to find an application

F -1 mag such that F -1 mag (x 1 , F d ) = x 3 F. Electrical part
Applying an input voltage u at the terminals of the coil the electrical dynamic is described by [20] [22]:

u = Rx 3 + L(x 1 ) dx 3 dt + x 3 dL(x 1 ) dt , (4) 
with R the coil internal resistance. A dynamical equation for the current x 3 is formulated as

dx 3 dt = 1 L(x 1 ) u -Rx 3 + x 2 x 3 ∂ L(x 1 ) ∂ x 1 . (5) 

G. Mechanical part

The application of the Newton's second law to the moving part gives:

m dx 2 dt = -F mag + F ext , ( 6 
)
where F ext is the sum of the external forces: F ext = F f riction + F spring . F f riction represents the friction force which is proportional to the speed, F f riction = -λ x 2 , λ > 0. F spring is the force due to the spring, proportional to the position, F spring = -K(x 1x 0 ), K > 0 and x 0 the spring free length.

H. State space model

The state variables have been defined in Paragraph II-A, and gathering equations ( 5) and ( 6), a state space model is obtained in [START_REF] Di Cairano | Model predictive control of magnetic automotive actuators[END_REF]. Note that the control input u(t) has effect only on the third equation. Let x ini be the initial state of the actuator.

               ẋ1 = x 2 , ẋ2 = 1 m [-F mag (x 1 , x 3 ) -λ x 2 -K(x 1 -x 0 )] , ẋ3 = 1 L(x 1 ) u -Rx 3 + x 2 x 3 ∂ L ∂ x 1 . ( 7 
)
In the two following parts, two types of controllers have been developed. Both methods proposed use a backstepping control which takes into account the switched model of the force and the positivity constraint. These controllers make the closed loop system states converge to the desired equilibrium point, which depends on the position reference signal y r the state x 1 must track.

III. LOCAL BACKSTEPPING CONTROL

In this first subsection, a local backstepping control is designed to control the EMA. This control reveals itslef local since it is only valid in the region for which F mag ≥ 0, called validity region.

1) Control of the mechanical subsystem: The controller design starts by the control of the position and velocity states. The choice of the backstepping method is natural due to the cascade form of the subsystem [START_REF] Forrai | Electromagnetic actuator control: A linear parameter-varying (lpv) approach[END_REF],

     ẋ1 = x 2 , ẋ2 = 1 m [-F mag (x 1 , x 3 ) -λ x 2 -K(x 1 -x 0 )] . (8) 
We aim at finding the desired current x 3d that stabilises the subsystem (8) to the equilibrium point [y r ; 0] T . As it may be complicated to express the desired current x 3d due to the switched expression of F mag , it is more convenient to find the desired magnetic force F d to stabilize this susbsytem. Theorem 1: Consider α 1 , α 2 two positives scalars, the virtual control law

F d = m (az 1 + (b + α 2 )z 2 -d) with a = 1 -α 2 1 + λ m α 1 - K m , b = α 1 - λ m and d = K m (y r -x 0 )
. makes the subsystem (8) converge to (y r , 0).

Proof: Consider the classical change of variable

   z 1 = x 1 -y r , z 2 = x 2 + α 1 z 1 , (9) 
with α 1 a positive scalar. The subsystem (8) can be rewritten as:

         ż1 = -α 1 z 1 + z 2 , ż2 = 1 m [-F d -λ (z 2 -α 1 z 1 ) -K(z 1 + y r -x 0 )] , + α 1 z 2 -α 2 1 z 1 .
(10) In order to achieve the desired closed-loop properties, let us consider a Lyapunov function of the form:

V 1 = 1 2 z 2 1 + 1 2 z 2 2 . ( 11 
)
The derivative of V 1 along the trajectories of (10) leads to:

V1 = -α 1 z 2 1 + az 1 z 2 + bz 2 2 -z 2 d -z 2 1 m F d , ( 12 
)
with a = 1-α 2 1 + λ m α 1 - K m , b = α 1 - λ m and d = K m (y r -x 0 ). Consider the control law F d = m (az 1 + (b + α 2 )z 2 -d)
where α 2 is a positive scalar. V1 can then be rewritten as:

V1 = -α 1 z 2 1 -α 2 z 2 2 ≤ 0 ∀z 1 , z 2 (13) 
Remark 2: The dynamic of the closed loop system (10) is linear with the control of theorem (1) :

ż1 ż2 = -α 1 1 -1 -α 2 z 1 z 2 ( 14 
)
and the choice of gains α 1 and α 2 adjusts the convergence speed.

Remark 3: Notice that, by construction F mag is always positive, due to property 1, while the expression of the desired force F d may be not always positive.

In the next subsection, we aim at finding an estimation of the region for which the calculated magnetic force is positive. This estimation is called validity region.

2) Estimation of the validity region: lemma 1: An estimation of the validity region is the largest level line of V (z 1 , z 2 ) where there is a single intersection point between V (z 1 , z 2 ) and F d (z 1 , z 2 ) = 0. This set is defined as:

∃C ∈ R + such that D = {(z 1 , z 2 ) ∈ R 2 |V (z 1 , z 2 ) ≤ C}.
Proof: D is an invariant set for the closed-loop subsystem. Starting from D induces that the state will remain in D and therefore converges to the equilibrium point [y r ; 0] T . Moreover, if all the initials conditions of the EMA are in the estimated validity region then the desired force F d will remain non negative.

The Fig 5 shows the estimated validity region. 3) Design of the local EMA controller:

The full system ( 15) is now considered:

                     ż1 = -α 1 z 1 + z 2 , ż2 = 1 m [-F mag (z 1 , x 3 ) -λ (z 2 -α 1 z 1 ) -K(z 1 + y r -x 0 )] + α 1 z 2 -α 2 1 z 1 . ẋ3 = 1 L(z 1 ) u -Rx 3 + (z 2 -α 1 z 1 )x 3 ∂ L ∂ z 1 . = f x 3 (z 1 , z 2 , x 3 ) + g x 3 (z 1 , z 2 , x 3 )u. ( 15 
) Theorem 2: Assume the initial condition x ini ∈ D, then the control u = 1 g F (z) -α 3 (F mag -F d ) + z 2 m + Ḟd -f F (z) , (16) 
with α 3 > 0, z = (z 1 , z 2 , x 3 ) and Ḟmag = f F (z) + g F (z)u where

f F (z) =            f x 3 (z)x 3 dL dz 1 + 1 2 x 2 3 ˙ dL dz 1 if x 3 ≤ i s
ṗ1 e p 2 x 3 + ṗ3 e p 4 x 3 + ċ or + (p 1 p 2 e p 2 x 3 + p 3 p 4 e p 4 x 3 ) f x 3 (z) +p 1 ṗ2 x 3 e p 2 x 3 + p 3 ṗ4 x 3 e p 4 x 3 if x 3 > i s and

g F (z) =    g x 3 (z)x 3 dL dz 1 if x 3 ≤ i s (p 1 p 2 e p 2 x 3 + p 3 p 4 e p 4 x 3 ) g x 3 (z) if x 3 > i s
makes the system (15 ) stable and makes the position converges to y r . Proof: Consider the following Lyapunov function candidate

V = V 1 (z 1 , z 2 ) + 1 2 (F mag (z 1 , x 3 ) -F d (z 1 , z 2 )) 2 .
The calculation of the desired equilibrium point of the system [START_REF] Rao | Nonlinear modeling and control of servo pneumatic actuators[END_REF] gives the equilibrium force desired F d = -K(z 1 + y rx 0 ). In other words, the electromagnet has to compensate the spring at the equilibrium. So it is possible to find the equilibrium current x 3eq = F -1 mag (y r , K(y rx 0 )). V is a Lyapunov function candidate in (z 1 , z 2 , x 3 ) since V (z * ) = 0 with z * = (0, 0, x 3eq ) Let us derive V along the trajectories of ( 15)

V = -α 1 z 2 1 + az 1 z 2 + bz 2 2 -dz 2 -z 2 m F mag + Ḟmag -Ḟd (F mag -F d ) = -α 1 z 2 1 + az 1 z 2 + bz 2 2 -dz 2 -z 2 m F d -z 2 m (F mag -F d ) + Ḟmag -Ḟd (F mag -F d ) = -α 1 z 2 1 -α 2 z 2 2 -z 2 m (F mag -F d ) + Ḟmag -Ḟd (F mag -F d ) . ( 17 
) If Ḟmag = -α 3 (F mag -F d ) + z 2 m + Ḟd , with α 3 > 0 then V = -α 1 z 2 1 -α 2 z 2 2 -α 3 (F mag -F d ) 2 (18) 
with

u = 1 g F (z 1 , z 2 , x 3 ) -α 3 (F mag -F d ) + z 2 m + Ḟd -f F (z 1 , z 2 , x 3 ) . (19) 
We obtain the desired value of Ḟmag because it can be expressed as Ḟmag

= f F (z 1 , z 2 , x 3 ) + g F (z 1 , z 2 , x 3 )u. Finally, ∃α = max(α i ) such that V ≤ -αV ⇒ V (t) < V (0)e -αt ⇔    z 1 = 0 z 2 = 0 F mag = F d ⇒ x 3 = x 3d . (20)
Hence, the input variable u controls the system through the derivative of the magnetic force. That concludes the proof.

IV. GLOBAL BACKSTEPPING CONTROL

The previous controller is local because there is no proof of convergence if the states are not in the validity region. Besides, the control law (19) may be not feasible in practice if F d becomes negative. The following switching strategies can solve this problem by proving the global asymptotic stability of the closed loop system. The main idea is to find a control that makes the state convergent to a fixed point in D when the state is not in D. The strategies use the spring property: if u = 0, the state converges to the spring equilibrium point X0 = (x 0 , 0) but actually this equilibrium point is not in D as shown in Fig. 5.

A. Region of validity optimization

We aim at including the equilibrium point of the spring X0 = (x 0 , 0) into D by using the control define in Theorem 1: a virtual control law F d = m (-α 1 z 1α 2 z 2d), with α 1 , α 2 two positives scalars, stabilize the subsystem [START_REF] Nguyen | Accurate slidingmode control of pneumatic systems using low-cost solenoid valves[END_REF] for any initial conditions in D. In order to optimize the size of the domain D, let consider a more general Lyapunov function candidate.

V = Z T PZ, (21) 
with Z = (z 1 , z 2 ) and P a definite positive matrix. Theorem 3:

If F d = -K m (y r -x 0 ) -α 1 mz 1 -α 2 mz 2 , ∃P > 0, ∃Q > 0 such that V = A T P + PA < -Q and V < -αV with α > 0 and V = Z T PZ.
Proof: The derivative of V along the trajectories gives

V = a 1 z 2 1 + a 2 z 2 2 + a 3 z 1 z 2 + a 4 K m (y r -x 0 )z 1 + a 5 K m (y r -x 0 )z 2 -F d (-a 4 z 1 -a 5 z 2 ) . ( 22 
) If F d = -K m (y r -x 0 ) -α 1 mz 1 -α 2 mz 2 , then the dynamic of (z 1 , z 2 ) becomes ż1 ż2 = -α 1 1 α 1 -α 2 1 + α 1 λ /m -K/m α 1 + α 2 -λ /m z 1 z 2 (23) ż1 ż2 = A z 1 z 2 with A a stable matrix. ( 24 
)
And the equation ( 22) becomes:

V = (a 1 -α 1 ma 4 )z 2 1 + (a 2 -α 2 ma 5 )z 2 2 + (a 3 -α 1 ma 5 -α 2 ma 4 )z 1 z 2 , V = a 1 z 2 1 + a 2 z 2 2 + a 3 z 1 z 2 , V = -Z T A T P + PA Z, V = -Z T QZ, ( 25 
)
where P is positive definite by definition and as A is stable it means that Q is a positive definite matrix. So the following LMI procedure is used to find a P matrix under the following constraints [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in matlab[END_REF], [START_REF] Toh | Sdpt3a matlab software package for semidefinite programming, version 1.3[END_REF]. objective function Min tr(P) under constraints A T P + PA < -αP For a fixed α, the LMI solver is able to find a feasible P matrix. So equation ( 25

) becomes V < -Z T αPZ V < -αV (26) 
By minimizing tr(P), we minimize the eigenvalues of P and the constraints allow to find only positive eigenvalues, which concludes the proof.

Remark 4: This LMI is solved only once time offline in order to give a better estimation of the validity region D by using a new Lyapunov function (with a fixed control F d ). The parameter α is arbitrarily chosen to include the spring equilibrium point X0 in D. And the gains α i are design to respect the required closed-loop performances.

The Fig. 6 shows the expansion of the validity region. The spring equilibrium point X0 is now included in D

The following two subsection will develop two control strategies in order to prove the global stability of the closed loop system. 

B. Intuitive switching control strategy

If the desired force F d is negative, the best answer is to force F d to zero. Because when the system is not controlled (u = 0), it converges asymptotically to the equilibrium point X0 of the spring, because it is a mass-spring system and X0 ∈ D. And finally, if x(t) ∈ D, the control (19) makes the equilibrium point [y r , 0] T stable and attractive.

This first switching strategy is explained with the following two cases:

• case 1 : x(t) ∈ D
The control u of theorem 1 and d) are choosen and the system converges to the desired equilibrium point y r

F d = m (-α 1 z 1 -α 2 z 2 -
• case 2: x(t) ∈ D
The control u = 0 is enforced and there is a time where the trajectorie x(t) hits D because X0 is attractive and it returns to the case 1.

The case 1 is already proven in Theorem 1. For the case 2, let prove that x(t) passes from

V (x) = c to V (x) = c 1 , c > c 1 > 0 in finite time lemma 2: If V (x) is a Lyapunov function for x(t), all the trajectories x(t) ∈ R 3 passes from V (x) = c to V (x) = c 1 , c > c 1 > 0 in finite time Proof: ∃c > 0, ε > 0 such that the sets {V (x) ≤ c} and Λ = {ε ≤ V (x) ≤ c} are compacts and D ⊂ Λ . ∃W (x) a continous function positive definite such that V (x) ≤ -W (x) ∀x ∈ Λ ∀t > t 0 choose k = min x∈Λ W (x), k is positive and exists because W (x) is continous and Λ is compact. It leads to W (x) ≥ k ∀x ∈ Λ V (x(t)) ≤ -k ∀x ∈ Λ , ∀t > t 0 V (x(t)) ≤ V (x(t 0 )) -k(t -t 0 ) ∀x ∈ Λ , ∀t > t 0 V (x(t)) ≤ c -k(t -t 0 ) ∀x ∈ Λ , ∀t > t 0 (27) It means that V (x(t)) < c 1 in the time interval t 0 ,t 0 + c -c 1 k
where t 0 is the initial time.

Remark 5: With this control strategy, no sliding mode motion can occured on F d = 0 because at most, it switches once: it occurs when the initial conditions x ini ∈ D, then once in D, the trajectory remains in D.The full system ( 15) is now considered.

Theorem 4: If the validity region D contains the spring equilibrium point X0 the following switched control law makes the system (15) convergent to (y r , 0, x 3eq ): Consider α 1 , α 2 , α 3 three positives scalars, z 3 = F mag -F d and z = (z 1 , z 2 , z 3 ) the error state vector.

u =      0 ; if z(t) ∈ D 1 g F (z) -α 3 z 3 + z 2 m + Ḟd -f F (z) ; else (28) with d = K m (y r -x 0 ), F d = m (-α 1 z 1 -α 2 z 2 -d)
and z(t) the trajectories of the errors states.

Proof: The proof is given by following those of Theorem 1 and lemma 2.

case 1 : In case of x ini ∈ D the derivative of the Lyapunov function

V = V 1 (z 1 , z 2 ) + 1 2 z 2 3 along the trajectories with z 3 = F mag -F d leads to: V = -α 1 z 2 1 + az 1 z 2 + bz 2 2 -dz 2 -z 2 m F mag + Ḟmag -Ḟd z 3 = -α 1 z 2 1 -α 2 z 2 2 -α 3 z 2 3
(29) case 2 : In case of x ini ∈ D, as the control u is set to zero, it leads to a mass-spring system which converges to the spring equilibrium point X0. But remembering that X0 ∈ D, by lemma 2, ∃t 1 > t 0 where x(t 1 ) ∈ D, the switching control leads to case 1 and ∀t > t 1 ,

V = -α 1 z 2 1 -α 2 z 2 2 -α 3 z 2 3 ( 30 
)
which concludes the proof Remark 6: This strategy is "intuitive" because we only have an action on the system in D which is a restricted set of the space. We essentially use the physical properties of the spring to ensure the global asymptotic stability. The next control law aims at enlarging the set where the control (28)is enabled.

C. Hybrid switching control strategy

If the region of validity D contains the equilibrium point X0, the following result develop a switching strategy in order to prove the global stability. The switching strategy is explained with the following 3 cases:

• case 1 : x ini ∈ D The control u of Theorem 1 and d) are choosen and the system converges to the desired equilibrium point [y r , 0] T

F d = m (-α 1 z 1 -α 2 z 2 -
• case 2: x ini ∈ {F d < 0} The control u = 0 is choosen and as the spring equilibrium point X0 ∈ D, there exists t 1 > t 0 where x(t 1 ) ∈ D. Then when x(t) ∈ D, the control of case 1 is enabled.

• case 3: d) are choosen and the trajectories x(t) have two options : F d remains positive and there is an instant where the trajectories x(t) enter in D and then the control of case 1 is enabled. Or, there is an instant where x(t) enter in {F d = 0} and then the control of case 2 is enabled. The case 1 is already proven in Theorem 4. For the cases 2 and 3, the use of lemma 2 proves that x(t 0 ) passes from

x ini ∈ {F d > 0} ∩ D The control u of Theorem 1 and F d = m (-α 1 z 1 -α 2 z 2 -
V (x(t 0 )) = c to V (x(t 1 )) = c 1 ⊂ D, c > c 1 > 0 in a finite time t 1 .
Remark 7: As the previous control strategy, there is no sliding on F d = 0 because at most, it switches twice: it occurs when the initial conditions x ini ∈ D, F d (x ini ) > 0 and when the trajectories lead in a finite time t 1 to F d (x(t 1 )) < 0.

Remark 8: This control strategy is an hybrid control and can be modeled in the framework proposed by [START_REF] Goebel | Hybrid dynamical systems[END_REF] using a token M to take into account the fact that the trajectory x(t) has ever been in region {F d < 0}.

So let consider the flow set

F f := {{M = 1} × {F d ≥ 0} or {M = 0} × {z|V (z) ≤ C}} . (31) Let consider the jump set D f := {{M = 1} × {F d ≤ 0} or {M = 0} × {z|V (z) > C}} .
(32) The closed loop system can be rewritten as

               ż = f (z(t), u M (z)) Ṁ = 0 if (z, M) ∈ F f z + = z M + = M -1 if (z, M) ∈ D f (33) 
where

u = u 1 (z) = 1 g F (z) -α 3 z 3 + z 2 m + Ḟd -f F (z) u 0 (z) = 0 (34) with d = K m (y r -x 0 ), F d = m (-α 1 z 1 -α 2 z 2 -d), z ( 
t) the trajectories the errors states, and M(t 0 ) = 1. Inspired by [START_REF] Goebel | Hybrid dynamical systems[END_REF], the closed loop system satisfies the standard conditions which ensures the well-posedness of the closed-loop system.

Theorem 5: Assume the closed-loop system (33), and consider the compact set A = x = x eq , M ∈ {0, 1} then A is globaly asymptotically stable.

Proof: The proof is made with two steps. Firstly, A is stable by construction following Theorem 4. Secondly A is attractive and the lemma 2 ensures that in the worst case ∃t 2 > t 0 where x(t 2 ) ∈ {F d < 0} and ∃t 3 > t 2 where x(t 3 ) ∈ D. Finally, the closed-loop system is globaly asymptotically stable which concludes the proof.

V. SIMULATION

The value of the EMA parameters is defined in [START_REF] Deschaux | Nonlinear control for an uncertain electromagnetic actuator[END_REF]. The results of these switched control are shown for different inital conditions (CI) in Fig. 7 in the plan (x 1 , x 2 ). For the two last initial conditions n o 2 and n o 3, the result of the hybrid control and the intuitive control are really close. For the first initial condition, the convergence time is slightly larger for the hybrid control than the intuitive control. In this case, the initial position is over the desired position, so to comeback to the desired position F mag has to be lower than the spring strenght. With the intuitive control F mag = 0 and with the hybrid control 0 < F mag < F spring so it is slower in this case. Future work consists in validating the control law on the testbed we developed.
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