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A certificate-based approach to formally verified1
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Abstract5

We present a library to verify rigorous approximations of univariate functions on real numbers, with6

the Coq proof assistant. Based on interval arithmetic, this library also implements a technique of7

validation a posteriori based on the Banach fixed-point theorem. We illustrate this technique on8

the case of operations of division and square root. This library features a collection of abstract9

structures that organise the specfication of rigorous approximations, and modularise the related10

proofs. Finally, we provide an implementation of verified Chebyshev approximations, and we discuss11

a few examples of computations.12
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1 Introduction16

While numerical analysis offers sophisticated computational methods to solve various function17

space problems, the numerical errors caused by floating-point computations, discretisations or18

finite iterations, are a major concern in domains like safety-critical engineering or computer19

assisted proofs in mathematics. To address these issues, rigorous numerics [34] provides20

algorithms to compute validated enclosures of the exact solution. However, their correctness21

is ensured by pen-and-paper mathematical proofs. In particular, there is no guarantee22

concerning their implementations.23

In this regard, formal proof offers the highest level of confidence. Several noteworthy works24

use formally proved rigorous numerics to completely formalise highly nontrivial mathematical25

results, like the Flyspeck project [16] for the Kepler conjecture or the formal verification [19]26

of the computer-aided proof of the Lorenz attractor [33]. However, those methods often27

require intensive computations, which rapidly becomes restrictive inside proof assistants. In28

the context of formal verification, certificate-based methods is an appealing strategy [1]. It29

consists in discharging part of the computation work load to external oracles, while correctness30

remains guaranteed via a posteriori validation steps performed inside the proof assistant.31

This approach has mostly been used for the purpose of verifying symbolic computations, e.g.32

primality proofs [15], but we illustrate here how it can also by used in the context of rigorous33

numerical analysis.34

Interval arithmetic. Invented in the 60s by Moore [29] and significantly developed in the35

80s by Kulisch et al., interval arithmetic is an essential building block of rigorous numerics.36

The key idea consists in using real intervals with representable endpoints (e.g., floating-37

point numbers) as rigorous enclosures of real numbers, and providing operations preserving38

correctness. For example, from π ∈ [3.1415, 3.1416] and e ∈ [2.7182, 2.7183], one obtains39

π + e ∈ [3.1415, 3.1416]⊕ [2.7182, 2.7183] = [5.8597, 5.8599]. Efficient implementations are40

available, as MPFI [30], IntLab [31], C-XSC [24], ARB [20]. The CoqInterval library [28]41

moreover provides a fully verified implementation inside the Coq proof assistant.42

Rigorous Chebyshev approximations. Interval arithmetic is however not a panacea,43

and replacing all operations on real numbers by interval ones should always be considered44

with caution: the dependency phenomenon may lead to disastrous over-approximations. In45
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such cases, higher order methods such as rigorous polynomial approximations (RPAs) are46

preferable. A pioneer work is that of Berz and Makino on Taylor models [4]. Those provide47

not only a polynomial, but also a remainder s.t. the latter contains the difference between the48

former and the represented function. Since then, efforts were made to clarify the definition49

of RPAs and extend them to other bases, in particular the Chebyshev basis [10, 22], due to50

their far better approximation properties than Taylor expansions [32].51

On the formal proof side, the CoqInterval library includes an implementation of Taylor52

models called CoqApprox [27], allowing in particular for an automated rigorous evaluation53

procedure of definite integrals inside Coq [26]. Unfortunately, an equally accomplished54

equivalent with Chebyshev approximations does not exist now. Our contribution is a first step55

towards a formally proved counterpart of the popular Chebfun package [13] for Matlab.56

Fixed-point based a posteriori validation. Some operations in function spaces admit57

straightforward self-validating algorithms by replacing all operations in R by interval ones.58

Unfortunately, more complicated operations (e.g., division, square root, differential equations)59

face several obstructions: the intervals may fail to give sufficiently tight enclosures, bounds for60

the remainders may be unknown, or only asymptotic, or depend on noneffective quantities.61

In such cases, a posteriori validation techniques are an attractive alternative, widely62

used in rigorous numerics. They consist in reconstructing afterwards an error bound for63

a candidate approximation. Dating back from the works of Kantorovich about Newton’s64

method, they gained prominence with the rise of modern computers and were applied to65

numerous functional analysis problems [23, 36, 35, 25]. Even more recently, those methods66

were used to compute RPAs for solutions of linear ODEs [2, 8]. Broadly speaking, the67

function of interest is characterised as a fixed-point of a contracting operator, from which68

an error bound is recovered thanks to the Banach fixed-point theorem [3, Thm. 2.1]. Such69

techniques are of special interest for formal verification, for they allow one to rely on efficient70

but untrusted external tools while keeping the trusted codebase small: it suffices to formalise71

the theory about contracting operators and provide means of computing with those operators.72

Contributions and outline. We present a Coq library that makes it possible to compute73

rigorous Chebyshev approximations of functions on reals. We support basic operations like74

multiplication or integration in the standard way. For more complex operations like division75

and square root, we resort to a posteriori validation techniques, thus making a first step76

towards a potential cooperation between external numerical tools and Coq.77

We use the interval arithmetic provided by CoqInterval, but we design our abstractions78

for RPAs from scratch: this allows us to experiment with different design choices, with more79

flexibility. We first describe the main lines of the hierarchy (Section 2): we rely on canonical80

structures to abstract over the concrete implementation details of interval arithmetic, and81

we use them to denote both real valued functions and their rigorous approximations. We82

also abstract away from the concrete basis for approximations, to work in the future with83

different bases, even non polynomial ones (e.g., Bessel functions). We provide instances for84

the monomial and Chebyshev bases, the latter being described in Section 3.85

The main theorem we need to perform a posteriori validation is the Banach fixed-point86

theorem, whose formalisation is described in Section 4. We show in Section 5 how to apply87

this theorem to compute rigorous approximations for division and square root using Newton-88

like operators. We finally discuss the benefits of our approach on two examples (Section 6):89

RPAs for the absolute value function, and verified computation of integrals related to the90

second part of Hilbert’s 16th problem.91
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2 Approximating real numbers and functions92

Numerical errors come from the estimation of both real numbers, e.g. using floating-point93

numbers, and real functions, e.g. using polynomials. Rigorous estimations must take all these94

uncertainties into account. For this purpose, interval arithmetic provides an explicit enclosure95

and rigorous polynomial approximations attach an interval to a polynomial approximant,96

which bounds the method error on a given domain. Note that the coefficients of polynomial97

approximations are usually themselves obtained from evaluations of the function or of its98

derivatives, and therefore also subject to numerical errors. A formal library about rigorous99

approximation thus implements several variants of each operations, on real numbers, floats,100

intervals, mathematical functions, approximants, etc., whose relationships are made precise101

in the various layers of specifications. Our library features a small hierarchy of structures102

which formalises and organises the dependencies between these variants.103

2.1 Reals and Intervals104

At the bottom of the hierarchy, structure Ops0 collects the operations available on reals,105

floats, intervals, but also on polynomials and rigorous approximations. It provides the106

signature of a ring structure, with symbols +, −, ∗, 1 and 0 shared by all instances thanks107

to Coq’s system of canonical structures. Yet the ring equational theory is a priori only108

available for real numbers. These operations are also those trivially self-validating. A109

super-structure Ops1 collects other operations required on data-structures used for scalars:110

reals, floats, interval endpoints, intervals, etc. They are not meant to be implemented on111

polynomial approximations.112

Record Ops0 := {
car:> Type;
add: car → car → car;
sub: car → car → car;
mul: car → car → car;
zer, one: car }.

Record Ops1 := {
ops0:> Ops0;
fromZ: Z → ops0;
div: ops0 → ops0 → ops0;
sqrt, cos, abs: ops0 → ops0;
pi: ops0 }.

113

Structure Rel0 specifies the relationship between the operations of Ops0 on reals and those114

on intervals. The field rel is a relation between the two instances C and D, which share115

overloaded notations. The relation will eventually be instantiated with the containment116

relation between intervals and reals. When doing so, the requirements on the relation precisely117

correspond to the fact that interval operations properly approximate real operations. A118

record Rel1 is defined in the very same way for Ops1.119

120
Record Rel0 (C D: Ops0) := {121

rel:> C → D → Prop;122

radd: ∀ x y, rel x y → ∀ x’ y’, rel x’ y’ → rel (x+x’) (y+y’);123

rsub: ∀ x y, rel x y → ∀ x’ y’, rel x’ y’ → rel (x-x’) (y-y’);124

rmul: ∀ x y, rel x y → ∀ x’ y’, rel x’ y’ → rel (x*x’) (y*y’);125

rzer: rel 0 0;126

rone: rel 1 1 }.127128

As much as possible, we will work with polymorphic functions like the following one:129

130
Definition f (C: Ops1) (x: C): C := 1 / (1 + sqrt x).131132

First of all, this allows us to define at once a function on real numbers (here, x 7→ 1
1+
√
x
) and133

a function on intervals, whatever the implementation of intervals. Second, and even more134

importantly, the corresponding approximation correctness theorem will always hold—by a135

parametricity meta-result, such a function f will always satisfy the following lemma:136
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137
Lemma rf: ∀ C D (T: Rel1 C D), ∀ x y, T x y → T (f x) (f y).138139

This is only a meta-result: we need to provide a proof for each function f ; but the proof is140

always trivial, and we automatise it.141

There are however operations which cannot be implemented at this level of abstraction,142

even if we were to add some operations to the record Ops1. This is typically the case for143

division and square root of rigorous approximations, which require operations on intervals144

that do not make sense on real numbers (e.g., computing the range of a function and checking145

that it is bounded). In order to define those operations while remaining rather agnostic146

about the choice of interval implementation, we setup an intermediate layer of abstraction147

using the structure NBH (for neighbourhood):148

149
Record NBH := {150

II:> Ops1; (* abstract intervals *)151

contains: Rel1 II ROps1; (* containment relation; ROps1 is the Ops1 instance on R *)152

convex: ∀ Z x y, contains Z x → contains Z y → ∀ z, x≤z≤y → contains Z z };153

(* additional operations on intervals *)154

bnd: II → II → II; (* directed convex hull *)155

is_lt: II → II → bool; (* strict above test *)156

min,max: II → option II; (* min, max, if any *)157

bot: II; (* uninformative, contains all reals *)158

(* specification of the above operations *)159

bndE: ∀ X x, contains X x → ∀ Y y, contains Y y → ∀ z, x≤z≤y →contains (bnd X Y) z;160

is_ltE: ∀ X Y, wreflect (∀ x y, contains X x → contains Y y → x<y) (is_lt X Y);161

minE, maxE, botE: ... }.162163

We will also make use of the two following derived operations:164

165
Definition mag (N: NBH) (X: II): option II := max (abs X).166

Definition sym (N: NBH) (X: II): II := let X := abs X in bnd (-X) X.167168

The first one approximates the magnitude as an interval, if possible; the second one returns169

an interval centered in 0 that contains the argument. Note that we assume that intervals170

are convex. We provide an instance of this structure using the CoqInterval library, using171

intervals of floating point numbers from the Flocq library [6]. It is actually a family of172

instances indexed by the desired precision.173

2.2 Abstract functions174

The structure FunOps describes inductively the catalogue of expressions that the library can175

approximate.176

177
Record FunOps (C: Type) := {178

funcar:> Ops0; (* abstract type for functions, and pointwise basic operations *)179

id: funcar;180

cst: C → funcar;181

eval: funcar → C → C;182

integrate: funcar → C → C → C;183

div’: nat → funcar → funcar → funcar;184

sqrt’: nat → funcar → funcar }.185186

It is parameterised by a type C of ground values (typically, reals or intervals); it packages a187

set of basic operations on some abstract type for functions (pointwise addition, multiplica-188

tion. . . ), together with operations specific to functions: identity, constant function, evaluation,189

integration. It also asks for division and square root operations; those have an additional190

argument which is used to pass parameters to the oracles used in the implementation of191

those operations (for now, the degree of the interpolants).192
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When C = R this structure is instantiated with the standard operations on R→R (ignoring193

the extra parameters for division and square root); our main goal is to provide instances with194

intervals for C, with which it is possible to perform computations. Like for ground values,195

the structure FunOps makes it possible to write polymorphic functions like:196

197
Definition g (C: Ops1) (F: FunOps C): F :=198

let f: F := div’ 33 1 (1 + sqrt’ 33 id ) in199

let a: C := integrate f 0 1 in200

pi + id * cst a201202

Such a declaration defines at the same time a function on reals (x 7→ π + x
∫ 1

0
dt

1+
√
t
) and203

approximations of it, which will be obvious to prove correct whenever the chosen instance F204

satisfies appropriate properties. Those instances are obtained using rigorous approximations.205

2.3 Rigorous Approximations206

Approximating a function usually consists in projecting this function onto a finite dimension207

vector space, by expansion on a basis with appropriate properties. For instance, so-called208

Taylor models [4], are an instance of rigorous polynomial approximation. They attach an209

interval bounding the remainder to a certain polynomial, in this case represented in monomial210

basis, so as to describe a set of functions containing the one to be approximated. More211

generally in this section, a rigorous approximations refers to a linear combination of elements212

in a suitable basis, packaged with an interval remainder. In the code, we will also use the213

shorter term models, by analogy with Taylor models.214

A basis is described by a family of functions, non necessarily polynomials, indexed by215

natural numbers, that is a term T: nat→R→R. The structure BasisOps_on below describes the216

signature required on a basis T. It is parameterised by the type C of coefficients; sequences of217

such coefficients (seq C) represent linear combinations of elements of T. Linear operations218

(+,−, 0) need not be provided since they can be implemented independently from the basis.219

The range operation is important: its role is to bound the range on the given domain; it220

should be as accurate as possible since it is used at many places to compute error bounds221

in rigorous approximations (e.g., for multiplication and a posteriori validation). We define222

BasisOps to be a polymorphic function so that we capture with a single object the idealised223

operations on reals and their concrete implementation with intervals.224

225
Record BasisOps_on (C: Type) := {226

lo, hi: C; (* bounds for the domain *)227

beval: seq C → C → C; (* (efficient) evaluation *)228

bmul: seq C → seq C → seq C; (* multiplication *)229

bone, bid: seq C; (* constant to 1, identity *)230

bprim: seq C → seq C; }. (* primitive *)231

brange: seq C → C*C; }. (* range *)232

Definition BasisOps := ∀ C: Ops1, BasisOps_on C.233234

Given such operations, we equip seq C with the basic operations in Ops0. Then we can235

define rigorous approximations:236

237
Record Model C := { pol: seq C; rem: C }.238239

Like with seq C, we equip Model C with the basic operations in Ops0, and then with those240

from FunOps. For instance, addition, evaluation and integration are defined as follows:241

242
Definition madd (C: Ops1) (M N: Model T C): Model T C :=243

{| pol := pol M + pol N; rem := rem M + rem N |}.244

Definition meval (C: Ops1) (M: Model T C) (X: C): C := beval (pol M) X + rem M.245

Definition mintegrate (C: Ops1) (M: Model T C) (a b: C): C :=246

let N := bprim (pol M) in beval N b - beval N a + (b-a)*rem M.247248
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For those relatively simple operations, it suffices to have the basic operations (Ops1) on C.249

For other operations like the range of a model, we actually need the additional operations on250

intervals provided by the structure NBH:251

252
Definition mrange (N: NBH) (M: Model) :=253

let (a,b) := brange (pol M) in bnd a b + rem M.254255

This is also the case for division and square root, which we will discuss in Section 5. All in256

all, we obtain instances FunOps through a construction of the following type:257

258
Canonical Structure MFunOps (N: NBH) (B: BasisOps): FunOps II.259

(* with carrier [Model II] *)260261

It finally remains to show that those operations defined on rigorous approximations262

properly match the idealised operations on functions over reals. We fix in the sequel an263

instance N: NBH of neighbourhood and basis operations B: BasisOps, and we write Model for264

Model II). The central definition to establish this correspondence is the following one, where265

the function eval is the obvious evaluation function for linear combinations of elements of T.266

267
Definition mcontains (F: Model) (f: R → R) :=268

∃ p: seq R, scontains (pol F) p /\ ∀ x, lo≤x≤hi → contains (rem F) (f x - eval T p x)269270

Intuitively, a model contains a real-valued function f if it contains a generalised polynomial271

which is close enough to f on the domain of the basis. (The binary predicate scontains272

denotes the pointwise extension of the relation contains to sequences: in the definition, the273

real coefficients of p should be pointwise contained in the interval coefficients of pol F.)274

Equipped with this definition, we prove lemmas like275

276
Lemma rmmul: ∀ F f G g, mcontains F f → mcontains G g → mcontains (F*G) (f*g).277

Lemma rmdiv: ∀ n F f G g, mcontains F f → mcontains G g → mcontains (div’ n F G) (div’278

n f g).279

Lemma rmintegrate: ∀ F f A a B b, (∀ x, lo≤x≤hi → continuous_at f x) →280

mcontains F f → contains A a → contains B b → contains (integrate F A B) (integrate281

f a b).282283

Of course, we need assumptions on the basis operations in order to do so. Those284

assumptions are summarised in the following structure. Recall that a B: BasisOps provides285

us with operations B ROps1 on reals and operations B II on intervals. The structure assumes:286

1/ the expected properties on the operations on reals (i.e, efficient evaluation corresponds287

to evaluation with T, multiplication indeed corresponds to pointwise multiplication under288

evaluation, etc.); and 2/ a relationship between the operations on reals and on intervals. This289

separation of concerns is very convenient: the latter containment lemmas are always proved290

in a trivial way (i.e., automatically), and the former properties do not involve intervals at all,291

but only real numbers and functions, for which usual mathematical intuitions apply.292

293
Record ValidBasisOps (N: NBH) (B: BasisOps) := {294

(* properties of operations on reals (B ROps1) *)295

lohi: lo < hi;296

bevalE: ∀ p x, beval p x = eval T p x;297

eval_cont: ∀ p x, continuity_pt (eval T p) x;298

eval_mul: ∀ p q x, eval T (bmul p q) x = eval T p x * eval T q x;299

eval_prim: ∀ p a b, eval T (bprim p) b - eval T (bprim p) a = RInt (eval T p) a b;300

...301

(* relationship between operations on intervals (B II) and on reals (B ROps1) *)302

rbeval: ∀ P p X x, scontains P p → contains X x → contains (beval P X) (beval p x);303

rbmul: ∀ P p Q q, scontains P p → scontains Q q → scontains (bmul P Q) (bmul p q);304

rbprim: ∀ P p, scontains P p → scontains (bprim P) (bprim p);305

... }.306307
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3 Arithmetic on Chebyshev polynomials308

In order to use the previously described rigorous approximations, it remains to provide309

implementation of operations (BasisOps) for certain families T of functions. We provide two310

instances of them: one for the standard monomial basis, where T n x = x^n, and one described311

in this section for Chebyshev basis, where T n is the n-th Chebyshev polynomial.312

Chebyshev polynomials are defined by the following recurrence, which immediately313

translates to a fixpoint definition in Coq.314

T0 = 1 T1 = X Tn+2 = 2XTn+1 − Tn315
316

We can then prove simple properties of those polynomials, for instance:317

TnTm = (Tn+m + Tm−n)/2 (n ≤ m) (1)318

T0 = T ′1 T1 = T ′2
4 Tn+3 =

T ′n+3
2(n+ 3) −

T ′n+1
2(n+ 1) (2)319

Tn(cos t) = cos(nt) (3)320
321

Those are proved in a few lines using existing lemmas about derivation and cosine.322

3.1 Clenshaw’s evaluation algorithm323

The first operation we must implement for BasisOps is the evaluation function (beval). This324

operation should be polymorphic and as efficient as possible: it will be executed repeatedly325

when constructing and using rigorous approximations. We use Horner evaluation scheme326

for the monomial basis, and Clenshaw’s algorithm [14] for Chebyshev, which are both linear327

in the number of elementary operations. The latter is usually presented as a dynamic328

programming routine. We translate it into a recursive function with two accumulators:329

330
Fixpoint Clenshaw (C: Ops1) b c (p: seq C) x :=331

match p with332

| [] => c - x*b333

| a::q => Clenshaw c (a + 2*x*c - b) q x334

end.335

Definition beval (C: Ops1) (p: seq C) x := Clenshaw 0 0 (rev p) x.336337

This code might look mysterious; it is justified by the following invariant on real numbers:338

339
Lemma ClenshawR b c p x: Clenshaw b c p x = eval T (catrev p [c - 2*x*b; b]) x.340341

In the right-hand side, catrev is the function that reverses its first argument and catenate it342

with the second one. The proof is done by induction in just three lines, using the Coq tactic343

for ring equations. Correctness (i.e., field bevalE from structure ValidBasisOps) follows.344

Note that while the definition of beval can be used with any Ops1 structure, its correctness345

is proved only on reals: the lemma ClenshawR does not hold in every Ops1 structure. The346

behaviour of beval on those structures is specified only through the fact that it respects347

containments (field rbeval from structure ValidBasisOps, which is proved automatically.)348

3.2 Multiplication349

Another important operation is multiplication. Again, this operation should be polymorphic,350

and efficient. A difficulty here is that due to Equation (1), the n-th coefficient of a multiplic-351

ation potentially depends on all coefficients of its arguments, not only on the coefficient of352

smaller rank. We use the following definition, with two auxiliary recursive functions353
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354
Fixpoint mul_pls (C: Ops1) (p q: seq C): seq C :=355

match p,q with356

| [],_ | _,[] => []357

| a::p’, b::q’ => sadd (a*b::(sadd (sscal a q’) (sscal b p’))) (0::0::mul_pls p’ q’)358

end.359

Fixpoint mul_mns (C: Ops1) (p q: seq C): seq C :=360

match p,q with361

| [],_ | _,[] => []362

| a::p’, b::q’ => sadd (a*b::(sadd (sscal a q’) (sscal b p’))) (mul_mns p’ q’)363

end.364

Definition smul C (p q: seq C): seq C := sscal (1/2) (sadd (mul_mns p q) (mul_pls p q))365366

(sscal is multiplication of a polynomial by a scalar, and sadd is addition of polynomials—we367

cannot yet use the standard notation for this operation since we are in the process of defining368

an Ops0 structure on seq C.) The function mul_pls actually corresponds to multiplication in369

the monomial basis, it covers the first summand in the right-hand side of (1). The function370

mul_mns differs only in the fact that the recursive call is not pushed away using two ‘cons’371

operations; it covers the second summand in the right-hand side of (1). Like previously, that372

smul preserves containments (field rbmul of structure ValidBasisOps) is obvious: this operation373

only performs a finite sequence of operations preserving containments. Proving that it374

behaves correctly on reals numbers is more interesting; the key invariant is the following one:375

376
Lemma eval_mul_: ∀ (p q: seq R) n x,377

eval_ n p x * eval_ n q x = (eval (mul_mns p q) x + eval_ (n+n) (mul_pls p q) x)/2.378379

Here, eval_ n p evaluates P padded with n zeros in front of it. Again, the difficulty is to find380

the lemma: it is proved in six lines using (1), and correctness of smul on reals immediately381

follows. Taking primitives in Chebyshev basis follows the same pattern (see Appendix A).382

3.3 Range383

As mentioned above, we need accurate estimations of the range of a given polynomial in384

order to be able to compute precise rigorous approximations. This range can always be385

estimated by evaluating the polynomial on the interval representing the domain (i.e., given386

p: seq C, compute beval p (bnd lo hi)). This technique is however not sufficient in practice:387

this tends to produce largely over-estimated bounds. With Chebyshev basis we can proceed388

differently: indeed, thanks to Equation (3), Tn ranges over [−1; 1] on [−1; 1]. Therefore, the389

range of a polynomial on [−1; 1] can be estimated by using the sum of the absolute values of390

the coefficients in Chebyshev basis (and actually, we do not need to take the absolute value391

of the first coefficient since T0 = 1).392

393
Definition range_ (C: Ops1): seq C → C := foldr (fun A X => abs A + X) 0.394

Definition range (C: Ops1) (P: seq C): C*C :=395

match p with396

| [] => (0,0)397

| A::Q => let R := range_ Q in (A-R,A+R)398

end.399400

3.4 Rescaling401

Putting everything together, we obtain the polymorphic operations chebyshev.basis: BasisOps,402

which can readily be used to construct rigorous approximations, with the instance MFunOps403

from Section 2.3. This basis however requires to work on the domain [−1; 1] (for estimating the404

range as explained in the previous section, but also to perform interpolation, see Section 5.1).405

In order to to use it on other domains, we provide a rescaling function that takes a B: BasisOps406
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and rescales it to a given interval [a; b] using the obvious affine function. We show that this407

operation preserves validity of basis operations, so that we can use it whenever needed.408

4 Formalisation of Banach fixed-point theorem409

Banach fixed-point theorem is the cornerstone of the method discussed here.410

I Theorem 1 (Banach fixed-point). Let (X, ‖ ·‖) be a Banach space, an operator F : X → X,411

h◦ ∈ X, and µ, b, r ∈ R+, satisfying the following conditions:412

(1 i) ‖h◦ − F · h◦‖ ≤ b;413

(1 ii) F is µ-Lipschitz over the closed ball B(h◦, r) := {h ∈ X | ‖h− h◦‖ ≤ r}:414

∀h1, h2 ∈ X, h1 ∈ B(h◦, r)∧ h2 ∈ B(h◦, r) ⇒ ‖F · h1 −F · h2‖ ≤ µ‖h1 − h2‖;415

(1 iii) µ < 1 : F is contracting over B(h◦, r);416

(1 iv) b+ µr ≤ r.417

Then F admits a unique fixed-point h∗ in B(h◦, r).418

This classic result has been formalised in various flavours of logic and proof assistants. In419

particular, Boldo et al. have provided a formal proof of a version of this fixed-point theorem,420

based on the Coquelicot library, for the purpose of the formalisation of the Lax-Milgram421

theorem [5]. Using the same backbone library, we provide a different statement that is more422

suitable for our effective validation purposes. We describe below its formalisation.423

The Coquelicot library formalises topological concepts using filters [7, 17], which we424

briefly recall here. A filter on a type T is a collection of collections of inhabitants of T which425

is non-empty, upward closed and stable under finite intersections:426

427
Record Filter (T : Type) (F : (T → Prop) → Prop) := {428

filter_true : F (fun _ => True) ;429

filter_and : ∀ P Q : T → Prop, F P → F Q → F (fun x => P x /\ Q x) ;430

filter_imp : ∀ P Q : T → Prop, (∀ x, P x → Q x) → F P → F Q }.431432

While filters are used to formalise neighbourhoods, balls allow for expressing the relative433

closeness of points in the space. Balls are formalised using a ternary relation between two434

points in the carrier type, and a real number, with the following axioms:435

436
ball : M → R → M → Prop ;437

ax1 : ∀ x (e > 0), ball x e x ;438

ax2 : ∀ x y e, ball x e y → ball y e x ;439

ax3 : ∀ x y z e1 e2, ball x e1 y → ball y e2 z → ball x (e1 + e2) z440441

Two points are called close when they cannot be separated by balls:442

443
Definition close (x y : M) : Prop := ∀ eps > 0, ball x eps y.444445

A filter is called a Cauchy filter when it contains balls of arbitrary (small) radius:446

447
Definition cauchy (T : UniformSpace) (F : (T → Prop) → Prop) :=448

∀ eps > 0, ∃ x, F (ball x eps).449450

Finally, a uniform space is a type equipped with a ball relation and a complete space moreover451

has a limit operation on filters, which ensures the convergence of Cauchy sequences via the452

following axioms (where ProperFilter F is equivalent to Filter F /\ ∀ P, F P → ∃ x, P x):453

454
lim : ((T → Prop) → Prop) → T ;455

ax1 : ∀ F, ProperFilter F → cauchy F → ∀ eps > 0, F (ball (lim F) eps) ;456

ax2 : ∀ F1 F2, F1 ⊆ F2 → F2 ⊆ F1 → close (lim F1) (lim F2)457458



10 A certificate-based approach to formally verified approximations

The above formal definition of balls does not enforce closedness nor openness. We thus intro-459

duced the relation associated with the closure of balls, so as to model closed neighbourhoods:460

461
Definition cball x r y := ∀ e > 0, ball x (r+e) y.462463

Equipped with this definition, hypothesis (1 ii) of Theorem 1 is formalised as follows:464

465
Definition lipschitz_on (F : U → U) (mu : R) (P : U → Prop) :=466

∀ x y : U, ∀ r ≥ 0, P x → P y → cball x r y → cball (F x) (mu*r) (F y).467468

We now sketch our formalised proof, using mathematical notations. We consider a com-469

plete space X and we write y ∈ B(x, r) for the formal (ball x r y), and y ∈ B(x, r) for470

(cball x r y). The key notion is that of strongly stable ball:471

I Definition 2 (Strongly stable ball). A ball B(u, r) is µ-strongly stable for F if F is472

µ-Lipschitz on B(u, r) and if there is a non-negative real number s, called the offset, s.t.:473

F · u ∈ B(u, s) and s+ µr ≤ r.474

I Remark 3 (Stability). For any x in B(u, r), a strongly stable ball for F , F · x ∈ B(u, r).475

I Remark 4 (Contracting case). When 0 ≤ µ < 1, for any µ-strongly stable ball B(v, ρ), with476

offset σ, B(F · v, µρ) is also a strongly stable ball, with offset µσ. Moreover, B(F · v, µρ) is477

included in B(v, ρ).478

u

F ·u

F
2 · u

r

s

μ rμ s

B(u,
r)

Figure 1 Balls B0 and B1

.

Assume that F has a µ-strongly stable ball B(u, r) of offset s,
with µ < 1. In particular, F is contracting on B(u, r). Consider
the sequence of balls defined as follows:

Bn = B(un, rn) with un = F n · u and rn = rµn

where F n · u denotes the iterated images of u under F . By
Remark 4, (Bn)n∈N is a nested sequence of µ-strongly stable
ball for F , with offset sµn. Let F be the family of collections
of points in U defined as:
F = {P ⊆ U | ∃ n,Bn ⊆ P}.

479

It is a proper filter: F contains U , it is obviously upward closed, and for P,Q ∈ F , P ∩Q480

is also in F because (Bn)n∈N is decreasing for inclusion. Thus F has a limit w, such that481

for any ε > 0, balls Bn are eventually included in B(w, ε). We provide a formal proof of482

Theorem 5, a reformulation of Theorem 1 using the vocabulary of the Coquelicot library:483

I Theorem 5. The limit w of the filter F is in B0, and w is a fixed point of F . Moreover,484

w is close to every other fixed point of F in B0.485

Proof. In this statement “w is a fixed point of F ” means “w is close to F ·w”. First, w ∈ Bn486

for all n. Indeed, for any ε > 0, there is an m ≥ n s.t. Bm ⊆ B(w, ε), and since Bm ⊆ Bn,487

um ∈ Bn ∩B(w, ε). In particular, w ∈ B0. It is also clear by stability that F · w ∈ Bn for488

all n. Moreover, w is close to any point v s.t. v ∈ Bn for all n (for any ε > 0, choose n s.t.489

2µrn < ε). Taking v := F · w proves that w is a fixed point of F .490

Finally, if w′ ∈ B0 is another fixed point of F , then it follows from an easy induction491

that w′ ∈ Bn for all n. Hence, the foregoing shows that w is close to w′. J492
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Strongly stable balls model the requirements set on the untrusted data to be formally493

verified. They can also be seen as balls centered at the initial point, and large enough494

to include all its successive iterates, i.e. as instances of the locus at stake in classical495

presentations of the proof. The version proved by Boldo et al. has a slightly more technical496

wording, which seems to be made necessary by its further usage in the verification of the497

Lax-Milgram theorem. Our proof script is significantly shorter, partly because we automate498

proofs of positivity conditions (for radii of balls) using canonical structures for manifestly499

positive expressions. But the key ingredient for concision is to make most of the filter device500

in the proof, and to refrain from resorting to low-level properties of geometric sequences. To501

the best of our knowledge, the other libraries of formalised analysis featuring a proof of this502

result, notably Isabelle/HOL and HOL-Light, are based on variant of proof strategy closer503

to the approach of Boldo et al. than to ours.504

5 Newton-like validation operators505

The purpose of this section is twofold. We first present the general principle of fixed-point506

based a posteriori validation methods, and more particularly, the use of Newton-like validation507

operators. Then we apply it to the division and square root of models.508

Throughout this section, let (X, ‖·‖) denote a Banach space, and h∗ the exact solution of an509

equation in X. In this article, X stands for the space C(I) of real-valued continuous functions510

defined over a compact segment I = [a, b], with the uniform norm ‖h‖ := supx∈I |h(x)|. The511

division and square root of functions are simple examples of solutions of equations in C(I),512

but there are also differential equations, integral equations, delay equation, etc. The general513

scheme for Banach fixed-point based a posteriori validation methods follows two steps:514

1. Approximation step. A numerical approximation h◦ ∈ X of h∗ is obtained by an515

oracle, which may resort to any approximation method. In particular, this step requires516

no mathematical assumption and can be executed purely numerically outside the proof517

assistant, good approximation properties being only desirable for efficiency. In our setting518

with X = C(I), interpolation at Chebyshev nodes (Section 5.1) is an efficient and accurate519

oracle for a wide range of function space problems.520

2. Validation step. The initial problem is rephrased in such a way that h∗ is a fixed point521

of a (locally) contracting operator F : X → X. An a posteriori error bound on ‖h◦−h∗‖522

is deduced from the Banach fixed-point theorem (Theorem 1).523

We thus need to find a contracting operator F of which h∗ is a fixed point. To this end,524

we use Newton-like validation methods, which transform an equation M · h = 0 into an525

equivalent fixed-point equation F · h = h with F contracting. More specifically, suppose that526

M : X → Y is differentiable; we use a Newton-like operator F : X → X defined as:527

F · h = h−A ·M · h, h ∈ X,528

with A : Y → X an injective bounded linear operator, intended to be close to (DMh◦)−1.529

The operator A may be given by an oracle and does not need to be this exact inverse (which530

anyway might be non representable on computers exactly). The mean value theorem yields531

a Lipschitz ratio µ for F over any convex subset S of X:532

∀h1, h2 ∈ S, ‖F ·h1−F ·h2‖ ≤ µ‖h1−h2‖, with µ = sup
h∈S
‖DF h‖ = sup

h∈S
‖1X−A ·DMh‖,533

which is expected to be small over some neighbourhood of h◦.534

Concretely, in order to apply Theorem 1, one needs to compute the following quantities:535
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a bound b ≥ ‖A ·M · h◦‖ = ‖h◦ − F · h◦‖;536

a bound µ0 ≥ ‖1X −A · DMh◦‖ = ‖DF h◦‖;537

a bound µ′(r) ≥ ‖A · (DMh −DMh◦) ‖ = ‖DF h − DF h◦‖ valid for any h ∈ B(h◦, r),538

and parameterised by a radius r ∈ R+.539

If we are able to find a radius r ∈ R+ satisfying:540

µ(r) := µ0 + µ′(r) < 1, and b+ rµ(r) ≤ r, (4)541

then Theorem 1 guarantees the existence and uniqueness of a root h∗ of M in B(h◦, r).542

I Remark 6. Finding an r as small as possible while satisfying (4) may be an nontrivial task543

for automated validation procedures. For many problems, µ′(r) is polynomial, hence condi-544

tions (4) are polynomial inequalities over r (this is called the radii polynomial approach [18]545

in rigorous numerics). In our case, division (resp. square root) induces an affine (resp.546

quadratic) equation, which admits closed form solutions.547

5.1 Approximation step: interpolation548

Since they are certified a posteriori, (non-rigorous) approximations for division and square549

root of given models can be obtained using arbitrary numerical techniques. We use interpol-550

ation at Chebyshev nodes of the second kind for its efficiency and excellent approximation551

properties [32].552

Ideally, we would implement this operation outside of the proof assistant, in order not553

to pay the price of an interpreted language. This would however require a lot of work in554

order to design a proper interface between Coq values and external values (e.g., converting555

Coq representation of floating points numbers into machine level floating points, and back).556

Instead, and for now, we implement the oracles inside Coq, as unspecified functions. To this557

end, we add a field to the structure BasisOps_on, to compute interpolants of a given degree:558

559
interpolate: nat → (C → C) → seq C;560561

We implement this operation for Chebyshev basis using the discrete orthogonality relations562

on Chebyshev polynomials.563

To reduce the price of staying inside Coq for those computations, we exploit the poly-564

morphism built in our framework to perform those computations on floating-point numbers565

rather than intervals. To this end, we add the following fields to the structure NBH:566

567
FF: Ops1; (* abstract type for floating points and their operations *)568

I2F: II → FF; (* conversion from floating points to intervals (midpoint) *)569

F2I: FF → II; (* conversion from intervals to floating points (singleton) *)570571

Equipped with these operations, we can define conversion operations between models (on572

intervals) and polynomials with floating point coefficients:573

574
Definition mcf (M: Model): seq FF := map I2F (pol M).575

Definition mfc (p: seq FF): Model := {| pol := map F2I p; rem := 0 |}.576577

The field FF, of type Ops1, will moreover make it possible to call the functions interpolate and578

beval from the basis with C=FF, i.e., to let them operate on floating point numbers. By doing579

so we do not have to reimplement Clenshaw’s evaluation scheme on floating point numbers.580
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5.2 Validation step for division581

For f, g ∈ C(I) with g nonvanishing over I, the quotient f/g is the unique root of M : h 7→582

gh− f . Let h◦ be a candidate approximation given by the approximation step. Constructing583

the Newton-like operator F requires an approximation A of (DMh◦)−1 : k 7→ k/g. For that584

purpose, suppose w ≈ 1/g ∈ C(I) is also given by an oracle, and define:585

F · h = h− w(gh− f). (5)586

The next proposition computes an upper bound for ‖h◦−f/g‖; it is implemented in div.newton.587

I Proposition 7. Let f, g, h◦, w ∈ C(I), and µ, b ∈ R+ such that:588

(7 i) ‖w(gh◦ − f)‖ ≤ b, (7 ii) ‖1− wg‖ ≤ µ, (7 iii) µ < 1.
589

590

Then g does not vanish over I and ‖h◦ − f/g‖ ≤ b/(1− µ).591

Proof. Conditions (7 ii) and (7 iii) imply that F (Equation (5)) is contracting over C(I) with592

ratio µ. The radius r := b
1−µ makes the ball B(h◦, r) strongly stable with offset b (7 i), since593

b+ µr = r. Therefore, h∗ is the (global) unique root of M , and ‖h◦ − h∗‖ ≤ r.594

Finally, w and g do not vanish because ‖1− wg‖ ≤ µ < 1. Hence, h∗ = f/g over I. J595

The concrete division of models is implemented as follows:596

597
Definition mdiv_aux (F G H W: Model): Model :=598

let K1 := 1-W*G in599

let K2 := W*(G*H - F) in600

match mag (mrange K1), mag (mrange K2) with601

| Some mu, Some b when is_lt mu 1 => {| pol := pol H; rem := rem H + sym (b/(1-mu)) |}602

| _ => mbot603

end.604

Definition mdiv n (F G: Model): Model :=605

let p, q := mcf F, mcf G in606

mdiv_aux F G (mfc (interpolate n (fun x => beval p x / beval q x)))607

(mfc (interpolate n (fun x => 1 / beval q x))).608609

Note that we use the trivial model mbot={|pol:=[];rem:=bot|} as a default value, when the610

concrete computations fail to validate the guess of the oracle (either because this guess is611

just wrong, or because of over-approximations in the computations). The correctness lemmas612

use the properties of operations on models to prove the assumptions of div.newton.613

614
Lemma rmdiv_aux F f G g H h W w:615

mcontains F f → mcontains G g → mcontains H h → mcontains W w →616

mcontains (mdiv_aux F G H W) (f/g).617

Lemma rmdiv n F f G g: mcontains F f → mcontains G g → mcontains (mdiv’ n F G) (f/g).618619

5.3 Validation step for square root620

Let f ∈ C(I) be strictly positive over I. The square root
√
f is one of the two roots of the621

quadratic equation M · h := h2 − f = 0 (the other being −
√
f). Let h◦ be a candidate622

approximation. Since DMh : k 7→ 2hk, one also needs an approximation w ≈ 1/(2h◦) ≈623

1/(2
√
f) ∈ C(I) in order to define A : k 7→ wk, approximating (DMh◦)−1. Then:624

F : h 7→ h− w(h2 − f). (6)625

The next proposition (implemented by sqrt.newton), computes an upper bound for ‖h◦−
√
f‖.626
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I Proposition 8. Let f, h◦, w ∈ C(I), µ0, µ1, b ∈ R+ and t0 ∈ I such that:627

(8 i)
∥∥∥w (h◦2 − f

)∥∥∥ ≤ b, (8 ii) ‖1− 2wh◦‖ ≤ µ0, (8 iii) ‖w‖ ≤ µ1,
628

(8 iv) µ0 < 1, (8 v) (1− µ0)2 − 8bµ1 ≥ 0, (8 vi) w(t0) > 0.
629

630

Then f > 0 over I and
∥∥h◦ −√f∥∥ ≤ r∗ where r∗ :=

(
1− µ0 −

√
(1− µ0)2 − 8bµ1

)
/4µ1.631

Proof. First, since ‖1 − 2wh◦‖ ≤ µ0 < 1 (by (8 ii) and (8 iv)) and w(t0) > 0 (8 vi), w and632

h◦ are strictly positive over I, by continuity. Using (8 iii), µ1 > 0.633

If b = 0, then r∗ = 0 and h◦ =
√
f over I, because w(h◦2 − f) = 0 (8 i) and w, h◦ > 0.634

Hence the conclusion holds.635

From now on, we assume b > 0. F is Lipschitz of ratio µ(r) := µ0 + 2µ1r over B(h◦, r)636

for any r ∈ R+, because:637

F ·h1−F ·h2 = (h1−h2)−w(h2
1−h2

2) = [(1− 2wh◦) + w(h◦ − h1) + w(h◦ − h2)] (h1−h2).638

Therefore, satisfying b+ µ(r)r ≤ r is equivalent to the quadratic inequality:639

2µ1r
2 + (µ0 − 1)r + b ≤ 0. (7)640

Condition (8 v) implies that (7) admits solutions, and r∗ is the smallest one. Moreover, since641

b, µ1 > 0, we get r∗ > 0, so that b+ µ(r∗)r∗ = r∗ also implies µ(r∗) < 1.642

Now, all the assumptions of Theorem 1 are fulfilled. Hence, F has a unique fixed point643

h∗ in B(h◦, r∗). To obtain h∗ =
√
f over I, it remains to show that h∗ > 0. This follows644

from w > 0 and:645

‖1− 2wh∗‖ ≤ ‖1− 2wh◦‖+ ‖2w(h∗ − h◦)‖ ≤ µ0 + 2µ1r
∗ = µ(r∗) < 1. J646

I Remark 9. Contrary to the case of division where continuity was not needed at all, it is647

here used for w. Therefore, sqrt.newton requires w to be continuous over I.648

The Coq code for the corresponding operations on models msqrt_aux and msqrt, together649

with the statements of their correctness lemmas, are given in Appendix B.650

6 Examples651

6.1 Playing with approximations of the absolute value function652

Consider the function fε : x 7→
√
ε+ x2 over [−1, 1], with ε > 0. When ε→ 0, fε converges653

uniformly to the absolute value function x 7→ |x| (which is not analytic at 0), with:654

|f(x)− |x|| =
∣∣∣√ε+ x2 −

√
x2
∣∣∣ =

∣∣∣∣ ε
√
ε+ x2 +

√
x2

∣∣∣∣ ≤ √ε. (8)655

Rigorous uniform approximations. Approximating fε with polynomials becomes harder656

for small ε, due to the complex singularities ±i
√
ε getting closer to the interval [−1, 1].657

Nevertheless, Chebyshev interpolation still works and our implementation computes rigorous658

approximations as accurate as desired (see Figure 2b), of exponential convergence with ratio659

determined by ε. Note that for too small degree, the computed approximation of the square660

root is too far from the solution, and the a posteriori validation returns an infinite remainder.661

In order to provide a comparison with CoqApprox’s Taylor models, we used the662

tactic interval with (i_depth 1, i_bisect_taylor x N, i_prec p) to build a Taylor model of663
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degree N with precision p. Timings given in Table 2c reveal a significant advantage of664

our implementation (there we use ε = 2 to avoid convergence issues of Taylor models).665

Concerning accuracy, our experiments tend to show that when ε ≤ 1, CoqApprox fails to666

compute converging Taylor models. Indeed, even with large L, a goal like:667

668
Goal Fail : ∀ x : R, -1 ≤ x ≤ 1 → sqrt (1/100+x*x) ≤ L669670

is not solved when the degree N becomes too large, probably indicating that the Taylor671

models diverge due to complex singularities inside the unit disk. (Note that the interval672

tactic can solve this goal, but only by resorting to subdivision techniques.)673

Error bounding. We want to bound |fε(x) − |x|| for x ∈ [−1, 1] without making use of674

any symbolic manipulation like (8). At first glance, one can choose to use the rigorous675

approximations over [−1, 1] obtained previously, and evaluate fε(x) − x (resp. fε(x) + x)676

over [0, 1] (resp. [−1, 0]) using Clenshaw’s algorithm. However, even if the approximations677

are quite good, this evaluation strategy gives huge overestimations because [0, 1] and [−1, 0]678

are not small intervals. Instead, we compute separately two approximations for fε: one679

over [0, 1] and one over [−1, 0], and we evaluate fε(x)− x (resp. fε(x) + x) over [1, 0] (resp.680

[−1, 0]) using the Chebyshev range function. This approach yields bounds that are rather681

close to the optimal
√
ε (see Figure 2d). However, this does not allow for arbitrary accuracy:682

a subdivision procedure would be necessary here.683

6.2 Evaluating an Abelian integral684

Abelian integrals naturally appear when computing the number of limit cycles bifurcating685

from a Hamiltonian polynomial vector field in the plane. Indeed, the number of sign686

alternations of those contour integrals (parameterised by the energy level of the potential687

function) gives a lower bound on the number of limit cycles of the perturbed system, which688

is a hard question related to Hilbert’s 16th problem.689

In [21], the author claims to prove the existence of 26 limit cycles for a well-constructed690

quartic system, whereas the previous record for degree 4 was 22 [12]. However, the im-691

plementation with which the Abelian integrals were “rigorously” computed was erroneous,692

which led to apparently more sign alternations than in reality. By tuning the coefficients and693

computing the integrals with another rigorous numerics library, the authors of the ongoing694

work [9] obtain 24 limit cycles, which, if not 26, is still greater than the current record 22.695

To conclude this article, we rigorously evaluate some of these integrals inside Coq to696

show how our implementation behaves on non-crafted examples. Below are the formulas697

defining a family of integral Iij(r) which need to be computed precisely for several values of698

r. Table 1 summarises the results of our computational experiments. In each line, we chose699

parameters that were enough to obtain the desired precision. These encouraging results give700

us hope that it will be possible to fully verify the critical computations involved in recent701

work of the first author [9].702

703

Iij(r) =
∫ x+

x−

xi(y+(x)j−1 − y−(x)j−1)dx+
∫ y+

y−

(x−(y)i−1 + x+(y)i−1)yj y
2 − y0

δx(y) dy.704

705

706

x0 = 9
10 , x± =

√
x0 ± r/

√
2 , δy(x) =

√
r2 − (x2 − x0)2

, x±(y) =
√
x0 ± δx(y) ,707

y0 = 11
10 , y± =

√
y0 ± r/

√
2 , δx(y) =

√
r2 − (y2 − y0)2

, y±(x) =
√
y0 ± δy(x) .708

709
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(a) Functions fε and x 7→ |x| over [−1, 1].
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(b) Magnitude of the remainders of degree-N
Chebyshev models approximating fε over [−1, 1].

N
time (in seconds)

Chebyshev CoqApprox
10 0.11 0.10
20 0.16 0.12
30 0.22 0.14
40 0.31 0.20
50 0.42 0.29
60 0.56 0.44
70 0.71 0.64
80 0.89 0.93
90 1.08 1.33
100 1.31 1.84
120 1.80 3.34
140 2.43 5.60
160 2.98 8.89
180 3.86 13.47
200 4.75 19.71

(c) Timings of degree-N models for f2.
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(d) Overapproximation ratio of the remainder
of the degree-N Chebyshev model for fε − 1
over [0, 1], compared to the optimal bound

√
ε.

Figure 2 Approximating functions fε and x 7→ |x| with Chebyshev models.

r N p time (s) I00 I20 I22 I40 I04

0.5 13 32 0.38 2,4e-05 2,9e-05 4,1e-05 3,0e-05 4,8e-05
0.78 15 32 0.47 4,6e-05 2,0e-05 2,7e-05 2,4e-05 1,1e-04
0.88 65 128 17.34 2,5e-08 5,0e-11 8,5e-11 5,3e-11 6,3e-08
0.89 95 128 35.13 2,0e-08 1,8e-11 2,9e-11 2,0e-11 5,1e-08
0.895 135 300 173.23 2,6e-08 1,7e-11 1,8e-11 1,3e-11 6,7e-08

Table 1 Reached precision for Iij(r) for different values of r, computed with degree-N Chebyshev
models and floating-point precision p (in each cell we display the width of the computed enclosure).

7 Conclusion and future work710

The Coq development is available online [11]. It consists of around 1300 lines of specifications711

and 1500 lines of proofs. We leave several directions for future work: integrate it with712

CoqInterval to benefit from its automatic subdivision techniques; interface the library with713

external tools for the approximation steps; implement other bases. Applying this approach714

to verify solutions of linear ODEs in a systematic way [2, 8] is also a longer-term perspective.715
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A Coq code for primitive in Chebyshev basis797

798
Fixpoint prim_ (C: Ops1) (n: nat) (p: seq C): seq C :=799

match P,n with800

| [],_ => []801

| a::q,0 => sadd [0; a] (prim_ 1 q)802

| a::q,1 => 0 :: (sadd [0; a/4] (prim_ 2 q))803

| a::q,_ => sadd [-a/(2(n-1)); 0; a/(2(n+1))] (0 :: prim_ (n+1) Q)804

end.805

Definition prim (C: Ops1) (P: seq C) := prim_ 0 P.806807

The key lemma is the following one:808

809
Lemma eval_prim_ n (p: seq R) x: Derive (eval_ T (n-1) (prim_ n P)) x = eval_ T n P x.810811

B Coq code for the square root of a model812

813
Let msqrt_aux (F H W: Model) (x: II): Model :=814

let Wx := meval W x in815

if ~~ (is_lt lo x && is_lt x hi && is_lt 0 Wx) then mbot else816

let K1 := 1 - 2*W*H in817

let K2 := W*(H*H-F) in818

match mag (mrange K1), mag (mrange W), mag (mrange K2) with819

| Some mu0, Some mu1, Some b =>820

let delta := (1 - mu0)^2 - 8*b*mu1 in821

let rmin := (1 - mu0 - sqrt delta)/(4*mu1) in822

let mu := mu0 + 2*mu1*rmin in823

if is_lt mu0 1 && is_lt 0 delta && is_lt mu’ 1 then824

{| pol := pol H; rem := rem H + sym rmin’ |}825

else mbot826

| _ => mbot827

end.828

829

Let msqrt n (F: Model): Model :=830

let p: seq FF := mcf F in831

let h: seq FF := interpolate n (fun x => sqrt (beval p x)) in832

msqrt_aux M (mfc h) (mfc (interpolate n (fun x => 1/(2*beval h x)))) ((lo+hi)/2).833

834

Lemma rmsqrt_aux (F H W: Model) (X: II) (f h w : R → R) (x: R):835

mcontains F f → mcontains H h → mcontains W w → contains X x → lo≤x≤hi →836

(∀ x, lo≤x≤hi → continuity_pt w x) →837

mcontains (msqrt_aux F H W X) (sqrt f).838

839

Lemma rmsqrt n F f: mcontains F f → mcontains (msqrt’ n F) (sqrt f).840841
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