
HAL Id: hal-02091706
https://laas.hal.science/hal-02091706

Submitted on 6 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heterogeneous Computing and Multi-Clustering
Support Via Peer-To-Peer HPC

Bilal Fakih, Didier El Baz

To cite this version:
Bilal Fakih, Didier El Baz. Heterogeneous Computing and Multi-Clustering Support Via Peer-To-Peer
HPC. 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Pro-
cessing (PDP), Mar 2018, Cambridge, United Kingdom. pp.292-296, �10.1109/PDP2018.2018.00050�.
�hal-02091706�

https://laas.hal.science/hal-02091706
https://hal.archives-ouvertes.fr


Heterogeneous Computing and Multi-Clustering Support via Peer-To-Peer HPC

Bilal FAKIH
LAAS-CNRS, Université de Toulouse, CNRS

Email: bfakih@laas.fr

Didier EL BAZ
LAAS-CNRS, Université de Toulouse, CNRS

Email: elbaz@laas.fr

Abstract—This paper aims at presenting Peer-To-Peer HPC
a decentralized environment that facilitates the use of hetero-
geneous multi-cluster platform for loosely synchronous appli-
cations. The goal is to exploit all the computing resources
(all the available cores of computing nodes) as well as all
networks, e.g., Ethernet, Infiniband and Myrinet. Peer-To-Peer
HPC functionality relies on a reconfigurable multi network
protocol RMNP for controlling multiple network adapters and
on OpenMP for the exploitation of all the available cores
of computing nodes. We report on efficiency obtained with
Grid5000 testbed by combining synchronous and asynchronous
iterative schemes of computation with Peer-To-Peer HPC. The
experimental results show that our environment scales well.

Keywords-computing environment, multi-cluster computing,
multi-threading, peer-to-peer computing, distributed comput-
ing, High Performance Computing, loosely synchronous appli-
cations.

I. INTRODUCTION

In this paper, we are mainly interested in the solution
on large scale distributed computing systems of High Per-
formance Computing (HPC) applications that belong to the
class of loosely synchronous applications and which exhibit
iterative compute communication stages [1]. We concentrate
on numerical simulation problem that are solved via paral-
lel synchronous or asynchronous iterative algorithms. We
propose the decentralized environment Peer-To-Peer HPC
designed to provide an efficient, scalable and portable sup-
port for high performance computing applications in a multi-
cluster, multi-core context. Peer-To-Peer HPC facilitates the
use of large scale distributed systems and the work of
programmers. In particular, it uses a limited number of
communication operations.

A first environment, called P2PDC, was proposed in 2008
(see [6], [7]). This environment presented several limitations
like the use of one type of network, i.e., Ethernet and the use
of only one CPU core per computing node. As an attempt
to overcome P2PDC limitations and in order to reduce the
solution time to solve HPC applications, the development
of Peer-To-Peer HPC is presented in this paper to take into
account two goals. The first objective is to use simultane-
ously several networks like Ethernet, Infiniband and Myrinet.
This feature is particularly important since we consider
loosely synchronous applications that present frequent data
exchanges between computing nodes. Hence we privilegiate
to use several high speed networks simultaneously, i.e.,

Infiniband and Myrinet in the same application session.
Note that the reconfigurable multi network protocol RMNP
supports data exchanges via multi-network configuration.
The second objective is to use all the computing resources
of modern muli-core CPUs, i.e., all CPU cores. The data
exchange between cores inside a computing node is made
via OpenMP [2].

In the sequel, we study the combination of Peer-To-Peer
HPC and distributed synchronous or asynchronous iterative
schemes of computation for the obstacle problem. Our
computational experiments are carried out on the Grid5000
platform [3]. They show that Peer-To-Peer HPC scales
well and that the combination of Peer-To-Peer HPC and
asynchronous iterative schemes of computation is efficient.

The remainder of the paper is organized as follows : related
work is presented in Section II. Section III presents the
RMNP protocol; it depicts the context and contribution of
our work and the different issues to be addressed in support-
ing communication in a multi-cluster, multi-core context.
Section IV presents the architecture of Peer-To-Peer HPC
and task allocation. Computational results for large scale
numerical simulation problems using Peer-To-Peer HPC are
displayed and analyzed in Section V. Finally, Section VI
concludes this paper and briefly presents future work.

II. RELATED WORK

This section presents a brief survey of works that are
related to the use of large scale distributed computing
systems for several HPC applications.

A. MPICH/Madeleine

MPICH Madeleine [4] aims at enabling an efficient and
exhaustive use of underlying communication software and
hardware functionalities for distributed applications. MPICH
Madeleine is based on a generic multi-protocol communica-
tion library called Madeleine to deal with several networks
simultaneously.

B. Software And Middleware For Peer-To-Peer and Volun-
teer Computing

Middleware like BOINC [5] have been developed in
order to exploit the CPU cycles of computers connected
to the Internet in peer-to-peer applications. Those systems
are generally dedicated to peer-to-peer applications where



Figure 1: Example of content of Htable and test on the location of the hosts thanks to comparison of IP addresses

tasks are independent and direct communication between
machines is not needed.

C. Grid Computing

Globus [8] and Legion [9], are open source software
libraries for the grid computing community. They support
many operational grids and their applications on an in-
ternational basis. Globus and Legion are representative of
large scale meta-computing systems. They address issues
such as heterogeneity, programmability, scalability or inter-
operability and coupling of high performance architectures
or networks of computing nodes.

III. CONTEXT AND CONTRIBUTION

A. Heterogeneous Multi-Cluster Environment

Multi-cluster systems and grids generally consist of in-
terconnected stand-alone computers that can work coopera-
tively as a single integrated computing resource. Supporting
heterogeneous multi-cluster mainly consists in integrating
switching functionality to switch from one network to an-
other, according to the communication needs.

B. Reconfigurable Multi Network Protocol RMNP

The reconfigurable multi network protocol RMNP aims at
enabling an efficient use of the complete set of underlying
communication softwares and hardwares available in a given
multi-network system. It is able to deal with several net-
works via the management of several networks adapters. The
user application can dynamically switch from one network
to another, according to the communication needs.

1) Network Selection: The main function consists in man-
aging several networks adapters within the same application
session. Several network interface cards (NICs) are added to
the interface of the RMNP and information about these NICs
are stored in a data structure called Htables (see Fig.1). This
data structure permits each computing node to switch be-
tween the networks according to the communication needs.
The network management procedure has two steps. First step
corresponds to the test of the locality between the computing
nodes and the second step corresponds to the choice of
the appropriate network for data exchange depending on
their locality. The locality test is based on comparing the
IP addresses of two computing nodes and according to this

comparison, we deduce if the computing nodes are in the
same cluster or not (see Fig.1). The second step is based
on choosing the best interface network (high speed and low
latency network) from the Htables according to the result
of the locality test. In the Htables, the ip addresses that are
given on the first line correspond to Ethernet network and
the ip addresses given on the second line if any correspond
to fast network like Infiniband or Myrinet. Consequently,
if the locality test returns that the computing nodes are
in different clusters, then the Ethernet network interface is
chosen from the Htables to perform the communication since
the Grid5000 platform uses only Ethernet network between
clusters in different sites. If the locality test returns that
the computing nodes are in the same cluster, then the best
network interface in the Htables is selected.

2) Communication operations: The idea is to facilitate
programming of large scale Peer-To-Peer applications and
hide complexity of communication management as much
as possible. RMNP has a reduced set of communication
operations, there are only a send, receive and wait opera-
tions: P2P Send, P2P Receive and P2P Wait, respectively.
Contrarily to MPI communication library where communi-
cation mode is fixed by the semantics of communication
operations, the communication mode of a given communi-
cation operation which is called repetitively depends on the
context at application level like distributed iterative schemes
of computation, e.g., synchronous or asynchronous iterative
schemes and elements of context like topology at network
level, i.e., inter or intra cluster communication.

IV. ENVIRONMENT ARCHITECTURE

In this section, we detail components that support speci-
ficity of multi-core and heterogeneous-networks configura-
tion.

A. Environment architecture of Peer-To-Peer HPC

The decentralized environment Peer-To-Peer HPC na-
tively supports any combination of networks and multi-core
CPUs by using the reconfigurable multi network protocol
RMNP and OpenMP. Peer-To-Peer HPC works with tools
called helper programs that are responsible for the analysis
of the application and building the topology and routing
tables. It then spawns the session processes and connects



them together. The helper programs are composed of four
components : Job Initialization, Job Execution, Topology
Initialization and RMNP-OpenMP.

• Job Initialization is responsible for task splitting into
sub-tasks, sub-tasks distribution. In particular, the job
initialization manages task decomposition and assign-
ment to individual CPU cores. It decomposes the initial
task into sub-tasks and sub-sub-tasks so that they are
balanced fairly on the CPU cores. Note that this com-
ponent uses all the CPU cores in a given computing
node.

• Job Execution executes sub-tasks and takes care of
data exchanges, i.e., communication of iterates (up-
dates) of the parallel iterative method. It is responsible
for task execution on the different CPU cores and
results collection.

• Topology Initialization organizes connected comput-
ing nodes into clusters and maintains links between
clusters. In particular, it relies on a concept based on
storing in the Htable informations about the network in-
terface card (NIC) used in the application by each com-
puting node (see Figure 1). This information is needed
when making communications with a heterogeneous-
network multi-cluster configuration.

• RMNP-OpenMP provides support for directed data
exchange between computing nodes on several high
speed networks like Infiniband and Myrinet using the
Reconfigurable Multi Network Protocol RMNP and
between the cores in a computing node via OpenMP.

B. Task allocation in Peer-To-Peer HPC

Task allocation in Peer-To-Peer HPC is based on the hier-
archical Master-Worker paradigm. The Hierarchical Master-
Worker paradigm consists of three entities: a master, several
sub-masters and several workers. The master or submitter is
the unique entry point, it gets the entire problem as a single
task, i.e., the root task. The root task decomposes the prob-
lem into sub-tasks and distributes these sub-tasks amongst a
farm of workers. The root task is responsible for gathering
the scattered results in order to produce the final result of the
computation. The sub-masters are intermediary entities that
enhance scalability. They forward sub-tasks from the master
to workers and return results to the master. The workers
run in a very simple way: they receive a message from the
sub-master that contains their assigned sub-tasks, distribute
the sub-tasks to the different cores, perform computations,
exchange data with neighboring computing nodes and in
the end of the application, when the iterative scheme has
converged, they regroup the results from all the cores and
send them back to the sub-master. Note that the number
of workers in a group cannot exceed 32 in order to ensure
efficient management of a sub-master.

V. EVALUATION AND COMPUTING RESULTS

This section presents an evaluation of the overall effi-
ciency and scalability of Peer-To-Peer HPC in a multi-core
and multi-network context for the obstacle problem.
The obstacle problem occurs in many domains like mechan-
ics and finance and can be formulated as follows:

Find u∗ such that
A.u∗ − f ≥ 0, u∗ ≥ ∅ everywhere in Ω,
(B.u∗ − f)(∅− u∗) = 0 everywhere in Ω,
B.C.,

(1)

where the domain Ω ∈ R2(or R3) is an open set, A is an
elliptic operator, ∅ a given function and B.C. denotes the
boundary conditions on σΩ.

We consider the discretization of the obstacle prob-
lem. The distributed solution of the associated fixed point
problem via the projected Richardson method combined
with several iterative schemes of computation is considered;
reference is made to [10] for the mathematical formula-
tion of synchronous and asynchronous projected Richardson
methods. The interest of asynchronous iterations for various
problems including boundary value problems and optimiza-
tion has been shown in [11].
Several experiments are carried out via Peer-To-Peer HPC
to solve the 3D obstacle problem with different schemes of
computation, i.e. synchronous and asynchronous schemes of
computation. We consider cubic domains with n = 256 points
where n denotes the number of points on each edge of the
cube. In the distributed context, i.e., for several machines, we
have considered the case where machines either belong to a
single cluster or to several clusters connected via Internet.

A. Experiments

We display on Figure 2 and 3 the computing time
and computing gain of the parallel synchronous and asyn-
chronous iterative algorithms. The computing gain is given
as follows:

Computing gain Cg = t1/ts (2)

where t1 is the parallel time on one multi-core computing
node and ts is the parallel time on several computing nodes.

The different iterative methods are denoted by :
Syn-ETH-IB-MYRI and Asyn-ETH-IB-MYRI in Figure
2 and Syn-ETH and Asyn-ETH in Figure 3 where Syn
and Asyn denote synchronous and asynchronous iterative
schemes, respectively; ETH, IB and MYRI denotes the
type of network that is used in the test, i.e., Ethernet,
Infiniband and Myrinet, respectively. Table I displays the
characteristics of the machines used in the computational
experiments.

The results displayed in Figure 2 are obtained with a
multi-cluster configuration located in Lille, i.e., Chinqchint



Site Cluster Processors Type Cores Interconnection Networks Speed Ghz RAM GB Time sec problem size
Lille Chinqchint Intel Xeon E5440 QC 8 Ethernet and Myrinet 2.83 8 3298 2563

Nancy Graphene Intel Xeon X3440 4 Ethernet and Infiniband 2.53 16 3119 2563

Rennes Paravance Intel Xeon E5-2630v3 32 Ethernet 2.4 128 1131 2563

Table I: Characteristics of machines and parallel time on one multi-core computing node on each site

Figure 2: Computation results over Ethernet + Infiniband + Myrinet on Chinqchint cluster in Lille
(eight cores per computing node) and Graphene cluster in Nancy (four cores per computing node) in the case

of the obstacle problem with size 2563

Figure 3: Computation results over Ethernet on Paravance cluster in Rennes (32 cores per computing node)
in the case of the obstacle problem with size 2563



cluster and Nancy, i.e., Graphene cluster of the grid5000
testbed. Lille and Nancy are two French towns three hundred
kilometers apart. The experiments are carried out with up to
128 cores. We note that there is the same number of cores
in the different clusters, i.e., 64 cores in Graphene cluster
and 64 cores in Chinqchint cluster. Data exchange is made
via Infiniband network in Graphene cluster and via Myrinet
network in Chinqchint cluster and the communications be-
tween clusters are done via 10 Gb/s Ethernet network.

The results in Figure 3 are obtained using a cluster located
in Rennes site, i.e., Paravance cluster of the Grid5000
testbed. The experiments are carried out with up to 1024
cores. The interconnection networks is 10 Gb/s Ethernet.

B. Discussion of the experimental results

Figures 2 and 3 show that the computing gain Cg (see
equation (2)) of the synchronous iterative schemes increases
slowly with the number of cores, the computing gain of the
asynchronous iterative schemes increases more rapidly. This
is due to the fact that in the case of synchronous iterative
schemes of computation fast computing nodes have to wait
for slow computing nodes since they are synchronized via
message exchange; this leads to idle time due to synchro-
nization. In the case of asynchronous iterative schemes of
computation there is no synchronization and communica-
tions are covered by computation; which explains the better
computing gain. Computing gains in Figure 2 are computed
by using computing time with the faster computing node,
i.e., cluster Graphene in Nancy site. Experimental results in
Figure 3 show that Peer-To-Peer HPC achieves scalability
when combined with asynchronous iterations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the Peer-To-Peer HPC decen-
tralized environment. In particular, we detail the features
induced by multi-core and heterogeneous-networks support.
We present helper programs. These programs are in charge
of duties and application analysis. The helper programs
launches the session processes and connects them together.

Peer-To-Peer HPC relies on OpenMP to support the speci-
ficity of multi-core computing and on RMNP communica-
tion protocol to support data exchanges via multi-network
configuration.

Finally, We display and analyze computing results on the
Grid5000 platform with up to 1024 computing cores for
numerical simulation problems, i.e., the obstacle problem.
Computing results show that the combination of asyn-
chronous iterative schemes of computation with Peer-To-
Peer HPC allows one to solve efficiently large scale nu-
merical simulation problems. Also, the simulation results
show that Peer-To-Peer HPC achieves scalability. Future
work will focus on problems with large granularity that
should exhibit better computing gain. We shall carry out
experiments on networks with several thousands computing

cores. Distributed application deployment will also be con-
sidered. Other types of parallel applications will be studied
like planning problems.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest
group hosted by INRIA and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] K. Hwang, G. Fox and J. Dongarra. Distributed and Cloud
Computing: From Parallel Processing to the Internet of Things,
Morgan kaufmann 2012.

[2] “OpenMP”,http://www.openmp.org/wp-
content/uploads/openmp-examples-4.5.0.pdf

[3] “Grid5000 platform,” http://www.grid5000.fr. [Online]. Avail-
able: http://www.grid5000.fr.

[4] O. Aumage, G. Mercier, “MPICH/Madeleine: a True Multi-
Protocol MPI for High Performance Networks,” 15th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’01), 2001.

[5] David P. Anderson,“BOINC: A System for Public-Resource
Computing and Storage,” 5th IEEE/ACM International Work-
shop on Grid Computing.November 8, 2004, Pittsburgh, USA.

[6] B. Cornea, J. Bourgeois, T. T. Nguyen, and D. El Baz,
“Performance prediction in a decentralized environment for
peer-to-peer computing,” in Proceedings of the 25th IEEE
Symposium IPDPSW 2011 / HOTP2P 2011, Anchorage, USA,
2011, pp. 16131621.

[7] D.El Baz, T. T. Nguyen, “A self-adaptive communication
protocol with application to high performance peer to peer
distributed computing,” in Proceedings of the 18th Euromicro
conference on Parallel, Distributed and Network-Base Process-
ing, Pisa, Italy, 2010.

[8] I. Foster and C. Kesselman. The Globus project: a status report.
Futur Generation Computer System, 40:3548,1999.

[9] A. Grimhaw and W. Wulf. The legion vision of a worldwide
virtual computer. Communications of the ACM, 40, Juanary
1997.

[10] T. T. Nguyen, D. El Baz, P. Spiteri, G. Jourjon, and M. Chau,
“High performance peer-to-peer distributed computing with
application to obstacle problem,” in Proceedings of the 24th
IEEE Symposium IPDPSW 2010 / HOTP2P, Atlanta, USA,
2010.

[11] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and Distributed
Computation: Numerical Methods”. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc. (republished in 1997 by Athena
Scientific), 1989.


