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ABSTRACT

The state of the art of perception processes for the au-
tonomy of robots is constantly improving, yet these pro-
cesses remain mostly pre-configured at the robot design
phase. This prevents their adaption to the context at hand,
which is all the more needed for long life systems that en-
counter a large variety of situations. This paper presents
work on the modelling of perception processes, exhibit-
ing the need to assess their quality, so as to be able to
actively control them. We instantiate the visual odom-
etry case, a crucial functionality for planetary rovers,
and define dedicated data quality assessment functions
for the elementary processes composing it. These func-
tions are used to monitor the processes, defining control
points onto which explore different parameter configu-
rations that better adapt to the context the robot is fac-
ing. Preliminary tests are performed using a planetary
analogue data set to show the potential of this approach.

Key words: active perception; perception quality assess-
ment; perception optimisation; visual odometry.

1. INTRODUCTION

The sensing technologies for robotics are ever improv-
ing, along with the state of the art in data processing and
data fusion, that now offers a broad choice of solutions
for robotics perception. This will allow to endow future
generation of space robotics systems with a much richer
perception layer, which will maximise the throughput of
exploration missions, e.g. by yielding the possibility of
autonomous long traverses or autonomous science.
However, such broad perception capabilities come with a
large amount of configuration parameters. So far, roboti-
cists configured perception processes to find the best ex-
pected trade-off between genericity, applicability to the
context in which the robots operate, and constraints on
the sensing, communication and computing resources.
In other words, data fusion and perception processes of
space robots are fixed by design, tailored to the task they
are needed for, and cannot be optimised online with re-

spect the conditions under which the robots are operat-
ing and the objectives they are trying to achieve. This
prevents the adaptation of the perception activities to the
context and the task at hand, which may yield poor per-
formances in case of unexpected scenarios, and in the
worst cases the inability to provide useful information.
The augmentation of the complexity of perception pro-
cesses raises a need to actively control them, by deciding
which data to acquire and how to process them. This fol-
lows the active vision paradigm [2], which aims at opti-
mising the throughput of perception, that is the relevance
and quality of the information provided to the clients of
the perception processes. The clients that exploit the two
main perception products, environment models and robot
localisation, are numerous and of varied nature, from mo-
tion control to decisional and planning processes. To a
large extent, the quality of the perception products define
the efficiency and adaptivity of the robots, and there is a
strong interest in optimising this quality.
In robotics, development of active perception schemes
have always targeted to specific given tasks: there is a
lack of a system abstracting from the type of sensor or
from the nature of the task, meant to define a generic,
principled approach to active perception. Our research
objective is to propose a formal and operational frame-
work to allow the control of robotics perception activi-
ties. This entails a formal modelling of the perception
tasks, and the definition of optimisation tools that allow to
configure perception activities, as well as to control them
in real time. The framework aims at having autonomous
systems being able to adapt to a larger variety of contexts
and situations, without the need of a human in the loop to
manually reconfigure perception processes.

Outline. This paper sketches our work in this direction,
and focuses on the case of Visual Odometry (VO), a per-
ception process that has shown its importance for plane-
tary rovers. Section 2 first drafts the way we foresee the
modelling of the perception processes. The remaining of
the paper is dedicated to the specific case of VO: section
3 depicts the models of the underlying processes, section
4 defines the associated metrics that allow to qualify, and
section 5 depicts and discusses preliminary results.



2. MODELLING PERCEPTION PROCESSES

The quality of information produced by the perception
processes depends on numerous factors. Some are con-
trollable, like the selection of the algorithms, their config-
uration and composition, or the resources devoted to their
execution. Others are not controllable: the nature of the
perceived scenes and the environmental conditions have
a strong impact on the output quality of the perception
processes.
To maximise the output quality of the perception pro-
cesses, one must intervene on the controllable factors,
while tracking and possibly adapting to the uncontrol-
lable ones. For this purpose, one must assess the in-
fluence of the controllable factors on the process output
quality: this is done by defining functions that disclose
this influence, as well as the influence of the non control-
lable factors, i.e. by defining models of the perception
processes.

2.1. Structuring Perception Processes: Nodes and
Compounds

Perception encompasses a variety of processes, rang-
ing from simple data filtering to complex optimisation
schemes for state estimation, that must be assembled
(composed) in order to fulfill a given functionality, i.e.
deliver a product such as an environment model or a po-
sition estimate. This structure is applicable to all the per-
ception functionalities a given robot must be endowed
with. In the context of autonomous navigation, Visual
Odometry, SLAM and the generation of a Digital Eleva-
tion Map (DEM) are perception functionalities which are
composed of several signal processing functions, organ-
ised together to return their associated products. As in
[7], we adopt the notion of nodes and compounds, where
a node represents an atomic perception function perform-
ing elementary operations, and a compound is a composi-
tion of nodes assembled to deliver a specific data product.
A broader view of this concept is presented in [4], along
with a sketch of a taxonomy of nodes and compounds de-
fined by their input and output data types.
The benefits of structuring perception activities into
nodes and compounds are the ones of any component
based software architecture: e.g. reconfigurability, ease
of development and maintenance, separation of concerns,
reusability, openness, and of course composability. In the
context of active perception, controllability is one of the
most important concern. In the remainder of this section,
we present a generic formal model of perception nodes
that specifies the influence of their control.

2.2. A Model for Controlling Perception Nodes

Each perception node is characterised by a set of inputs
i and a set of outputs o both represented by specific
data types (for simple processes, theses sets are single-
tons). The combination of these input and output types

identify the type of the process, which can be achieved
using different implementations (for instance numerous
approaches extract point features from an image – note
this may yield slight variations of the definition of the
associated descriptor, and hence of the output type: such
considerations pertain to the definition of taxonomies of
processes and data types, with inheritance mechanisms,
which will not be developed here).

A set of input parameters u = {u1, . . . , un}, generally
linked to the considered implementation, is specified and
represents the controllable means to intervene on the pro-
cess, either at configuration stage or during its execu-
tion. Finally a set of data quality assessment functions
j = {j1, . . . , jm} are defined: they assess the quality
of the output as a function of the inputs and parameters.
These quality variables are of various nature: they can
come along the production of the process output (such as
variance for a state estimation process), or are more or
less explicitly encoded within the process output (such as
the proportion of outliers produced by a data association
process). The problem of optimising a perception node is
simply stated as finding the optimal set of parameters u∗:

u∗ = argmin
u

j(u, i) : j(u∗, i) ≤ j(u, i) ∀u (1)

Other exogenous concerns condition the behavior of the
perception nodes, and hence the quality of their output.
These are grouped under the term “context”, and include
for instance light conditions, terrain and texturing lev-
els. The context gathers a series of non controllable, and
sometimes even non observable parameters. Some con-
text information can indeed be directly observable, e.g.
by specific sensors or given information, some are im-
plicitly encoded in the input parameters i, and hence not
necessarily observable, and finally some are not known
at all. Denoting the z = (z1, . . . , zp) the set of uncon-
trollable yet observable information, which include the
inputs i, Eq. 1 is rewritten as:

u∗ = argmin
u

j(u, z) : j(u∗, z) ≤ j(u, z) ∀u (2)

Lastly, a set of costs c can be associated to the perception
node: it encompasses the various resources consumption
(time, memory...), and the optimisation problem then
comes to maximising quality to cost ratios.

Finally, we can formalise a model for a perception node
N as:

N = (i,o,u, z, j) (3)

2.3. From Nodes to Compounds

The integration and interaction of perception nodes de-
fines a perception compound C, which produces the final
data products to be delivered to the client processes. Most
of the times, compounds are defined as a pipeline as-
sembly of nodes, but some nodes can be asynchronously



invoked, and some feedback sequences can be defined.
Here the component based model is very helpful.

Optimising a compound C =
⋃k

i=0Ni of k nodes comes
to find the set of controls U0,k = {u0, . . . ,uk} for each
of the k implied nodes so as to optimise the final product,
that is the output of the last involved node Nk:

U∗
0,k = argmin

U0,k

j(uk, z) (4)

Finally, more parameters come into play at compound
level. For instance, the frequency at which the whole
compound runs can be tuned: this affects not only the
resource usages but also the accuracy of the data pro-
duced by some nodes. Moreover, a compound can be
assembled with different compositions of nodes. Some
nodes can be optional and some others can be arranged
in different orders. For many nodes it is also common to
have different implementations performing the same task
in different ways. All these cases deal with the topology
of the compound, offering another layer of control.

In the generic case, given the large parameter space (even
if it is reduced by the fact that all parameters are not inde-
pendent) and the various interleaved semantics between
quality measures j and process inputs and outputs, such
an optimisation problem is intractable. The next section
will illustrate the difficulty of the problem for the case of
Visual Odometry, a rather simple pipeline compound.

3. MODELLING VISUAL ODOMETRY

Visual odometry is one of the first localization means de-
veloped for mobile robotics that exploited vision. Since
pioneering work that dates back to the 90’s, VO has fea-
tured a large number of approaches and methodologies:
sparse vs. dense, using monocular vision or stereovision,
and many more [12, 1]. We focus here on the most clas-
sic instance of VO, which derives the motion between two
positions at each of which a pair of stereovision images
is acquired, by matching point features extracted in the
images (Fig. 1). This instance of VO is well adapted to
the limited resources typically available on board plane-
tary exploration rovers, and has been extensively used on
the Mars Exploration Rovers [9].

3.1. Involved Processes

This VO scheme is a compound which integrates four
nodes: (1) a keypoint extractor, that takes as input an
image acquired by a camera and outputs a set of key-
points; (2) a data association algorithm that matches two
sets of keypoints extracted from two different images; (3)
triangulation, that associates 3D coordinates of keypoints
matched between two stereoscopic images, and (4) a mo-
tion estimator that computes the relative motion between

Interest points
matches

Motion
estimation

Interest points
extraction

Stereo matches

Stereo matches
Time

Figure 1: Principle of feature-based stereo VO

two stereoscopic image pairs, using the associated key-
points matches and 3D coordinates. Fig. 2 summarises
how these nodes are pipelined.

Interest point
extraction (Left, t) 

Interest point
extraction (Right, t) 

Stereo interest point
matching (t)  Point triangulation (t) 

Interest point
extraction (Left, t+1) 
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point matching (t, t+1) 
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Figure 2: Feature-based visual odometry with 3D to 2D
motion estimation workflow

The final output of the overall process is a 3D transfor-
mation between the two times (or positions) t − 1 and t
at which the stereoscopic images were collected:

t−1T t =

[
t−1Rt

t−1pt−1,t

0 1

]
(5)

where t−1Rt and t−1pt−1,t respectively represents the
orientation and translation of the stereo reference frame
at time t w.r.t to the same frame at t− 1. The rover local-
isation is then estimated by the composition of the mo-
tion estimation matrices in between each acquired image
pairs:

OT t = OT 1
1T 2 . . .

t−1T t (6)

where O is the origin reference frame, generally defined
at the beginning of a mission/traverse in a specified site.

3.2. Details of the Involved Process

We briefly depict here the models of the four perception
nodes. The most important part of the models for their



controllability being the expression of the quality assess-
ment functions j(u, z), a specific section is devoted to
their derivation.

Interest point extraction. We have selected the ORB
detector for its speed in terms of computation time while
maintaining acceptable scale and rotation invariance [11].
A given number of features is extracted from the input
image, if more features than requested can be extracted
the best n are returned based on a quality score (the “re-
sponse” of the detector). Following the node model nota-
tions (Eq. 3), we have:

i is an image,

o is the set of detected keypoints and associated descrip-
tors,

u encompasses the target number of extracted features
n, the pyramid levels, the scaling factor and a detec-
tion threshold.

Interest point matching. By comparing keypoints de-
scriptors, the matcher associates keypoints between two
images:

i is two sets of keypoints (with their associated descrip-
tors) extracted in two images,

o is a set of matched (paired) keypoints,

u includes the number of k-best matches to return for
each keypoint, a cross-check flag request and a cri-
terion to validate matches (e.g. descriptors distance
based, best x%).

Note that when applied to rectified stereo images, the
matcher search for each feature is narrowed to the same
vertical coordinate (i.e. the corresponding epipolar line)
on the other image ± 1-2 pixels as an error offset.

3D points triangulation. The data association per-
formed by the matcher on two stereo images allows to
estimate their 3D coordinates through a simple triangula-
tion process that does not exhibit any control parameter:

i is a set of keypoint matches established from a pair of
stereo images, and the stereoscopic bench calibra-
tion matrices,

o is a set of 3D points,

u is an empty set.

Motion estimation. Two approaches for this process
are possible: 3D to 3D and 3D to 2D [12]. The first
approach finds the roto-translation aligning two sets of
corresponding points in IR3, resorting to a least-squares
method using singular value decomposition [13]. The
second approach minimises the image reprojection error
and is now more commonly applied ([10] showed that
the 3D to 2D motion estimation performs better than
the 3D to 3D due to the large depth error carried by the
triangulation process).

We use the latter approach, along with a RANSAC
scheme that allows to discard wrong matches possibly
produced by the matcher:

i is a set of 3D points observed at time t−1, their corre-
sponding image points in one camera frame at time
t and the camera intrinsic calibration matrix,

o is a transformation matrix as in Eq. 5,

u is a set of parameters for the RANSAC scheme, and
an optional motion guess (e.g. based on a motion
model or on wheel odometry).

3.3. Context

Note that the context z has not been made explicit for
any of the four nodes that define our instance of VO. In-
deed, the context here mostly pertains to the environment
(terrain visual appearance, illumination), which directly
(and strongly) influences the first node of the pipeline,
that is keypoints extraction. All the following processes
are then consequently affected via the output of this first
node (number of extracted keypoints and histogram of the
associated responses).

3.4. Other Parameters

As introduced in Sec. 2.3, other parameters pertain to
the overall compound. For visual odometry, deciding
the process frequency not only accounts for different re-
source consumption, but also influences the precision of
the estimation. Assuming the robot velocity is defined,
the problem is dual with controlling the spatial frequency
and linked to the keyframe selection problem. A high fre-
quency reduces the likelihood of errors in tracking fea-
tures but is not always achievable due to operational con-
straints in terms of resources, especially on space hard-
ware. Furthermore, due to the presence of noise in the im-
ages and the keypoint extraction process, a too frequent
estimation yields a higher drift compared to a slower es-
timation that is still able to correctly match features.



4. DATA QUALITY ASSESSMENT

For control purposes, it is essential that each node is
associated with one or more data quality assessment
functions j(z,u) that express the influence of the control
parameters u on the quality of the outputs o as a function
of the inputs and context information. Depending on
the considered perception node, this step is not always
straightforward. For instance, there is no generic quality
metrics applicable to any type of data. While it is typical
to resort to uncertainty measures (as covariance of the
motion estimates), this is not always possible for many
reasons, from the lack of uncertainty in the problem
modelling to the impossibility to measure covariance for
the input data. Furthermore, the explicit composition
of the node data quality assessment functions is hardly
feasible, given the variety of data and quality metric
types.

Broadly speaking, there are two options to define such
data quality assessment functions:

• Model-based approaches, from close-form deriva-
tions to rules-of-thumb.

• Data-based approaches, which calls for machine
learning approaches where a model representing the
characteristics of the data is produced for different
contexts and both successful and unsuccessful cases.

Below we present some tentative data quality assessment
functions for the nodes that define our VO scheme. They
are preliminary, and show the difficulties of finding good
measures to assess the quality of a perception process.

Interest point extraction. In order to assess the qual-
ity of extracted visual features, we define a figure of merit
based on the keypoint response. The response is gener-
ally higher in strong features, which are in turn easier to
match in successive frames. The average response over
N keypoints can be computed

j =

N∑
n=0

response(n)

N
(7)

where N is the number of extracted keypoints and
response(n) is the response value for a given keypoint.
Keeping in mind that any node which is not the last pro-
duces data for the next one, it is possible to reason in
terms of utility for the subsequent process. In this case
it is possible to learn or build predictive models for data
fitness. For instance, the objective of keypoint extrac-
tion is to maximise their matchability. A learning based
approach trying to predict this factor and to select match-
able keypoints is presented in [8] and has been applied to
the Structure-from-Motion (SfM) problem. Alternatively,
it is possible to discretise the set of input parameters for

the feature extraction process and estimate over a repre-
sentative dataset what configuration leads to the highest
ratio of matched keypoints.

j =
|matches|
|keypoints|

(8)

This may not be sufficient since we want to maximise
correct matches rather than just the number of matches.
We can then estimate the percentage of correct matches
w.r.t. the response of keypoints. Trivially, this turns out
to be significantly higher in points with a high response
value.

Interest point matching. Having enough matches is
crucial for the execution of a visual odometry algorithm.
The lack of good matches, or matches at all, easily leads
to incorrect pose estimation. It is not only necessary
to produce matches but also to ensure their correctness.
Evaluating the matching distance can help to assess the
quality of the matches, taking into account that a good
number of matches can be more robust to outliers. In this
case the function j can be the average of the matching
distance and u mostly revolves around the percentage of
matches to accept.

j =

∑M
m=0 d(m)∑N
n=0

d(n)
N

(9)

Eq. 9 computes a utility value based on the ratio between
the sum of distances d(m) of the M accepted matches
and the average distance of the entire set of N matches.
By not dividing the numerator by M (i.e. not using
the average), the function favours larger sets of validated
matches.

Triangulation. A correct stereo matching process en-
ables to produce 3D points through triangulation. The
precision of the keypoint extraction and of the matches,
along with their position w.r.t. the camera positions im-
pacts the 3D estimated covariance. As in [3], it is possible
to compute the covariance matrix Ce of a euclidean 3D
point starting from its corresponding coordinates in the
stereo images and their respective covariance matrices in
2D. In stereovision, for small angle differences between
two points, it is common to have a high covariance over
the depth axis. It is desirable to minimise the presence
of uncertain points in order to reduce the error at pose
estimation stage.

Motion estimation. Finally, as the 3D to 2D estima-
tion is incorporated in a RANSAC scheme it is possible
to consider the number of inliers given a desired repro-
jection error, which can be tuned. It is worth to note that
[5] and [14] introduced methods for including observa-
tion uncertainty into the PnP problem. It is part of our
planned future works to incorporate the stochastic aspect
into the 3D to 2D pose estimation node. It also worth to



remark that in case of a 3D to 3D estimation, an uncer-
tainty measure in form of a covariance matrix is naturally
obtained during the computation of the rotation matrix
[13].

(a) Fine gravel results in a noisy image producing wrong matches be-
tween two time instants (left t, left t + 1). Far points are filtered by
default due to high depth error.

(b) The same image produces many more acceptable matches if compared
with another after a smaller motion has been performed.

Figure 3: Matching quality difference changing the spa-
tial frequency

5. PARAMETERS CONTROL AND MANIPULA-
TION

We identify two control threads: passive-active percep-
tion, on which we focus in this paper, bounded in the
control of the perception process itself, and active percep-
tion, aiming to tighten the link between control, percep-
tion and planning by acting at different abstraction level
to serve the perception layer. In this section we show
the execution of our visual odometry algorithm with data
evaluation of several nodes in different contexts.

Fixing the data quality assessment functions, we aim to
control the set of input parameters u to apply Eq. 2
along with other compounds parameters. Despite an au-
tonomous reconfiguration of perception nodes is outside
the scope of this paper, it is worth to show control means
and control points to our use case. The advantage of our
approach lies in the easiness of changing the input pa-
rameters of a node at runtime, especially if done in the
scheme of a predictive model, i.e. before faults and with
no need to backtrack.

5.1. Data Sets

The chosen data set is the Devon Island Rover Navigation
Dataset collected by the Autonomous Space Robotics

(a) Pose estimation using different strategies. Coordinates are expressed
w.r.t. the origin

(b) Errors in percentage of the travelled distance

Figure 4: In green, estimation performed at ~20cm/frame
spatial frequency, the red line, a ~40 cm/frame, is largely
overlapped with the blue line, a controlled execution us-
ing both frequencies at different stages. The ground truth
is represented with a black line. The controlled approach
proves to be more accurate. The 40 cm error suddenly
jumps after not finding inliers in the fine gravel area.

Lab of the University of Toronto [6]. The data has been
collected at a Mars/Moon analogue site in the Canadian
High Arctic region. It represents relevant characteristic
distinctive of planetary-like environments. The data set
features a set of of rectified stereo pair images collected
over a 10 km traverse. Two different resolutions are pro-
vided: 1280x960 and 512x384. To simulate a planetary
exploration set-up we use the smaller resolution, which
is less intensive in terms of computation. The results will
be shown for the first part of the traverse, approximately
200 m. The result of visual odometry will be evaluated
against the ground truth obtained with a differential GPS.



5.2. Experiments

It is impossible to manually explore the huge search space
of all the parameters involved in visual odometry. Driven
by our knowledge, as most roboticians do nowadays, we
configured our algorithm based on a priori knowledge of
the scene, experience and empirical results obtained by
trial and error. Nonetheless, a robot cannot always pre-
dict what situations it is going to face and has to prove
adaptive to the operational context.

At some point during the traversal, the terrain changed
from well textured rocks producing repeatable keypoints
to a fine gravel layer which made the matching process
much harder (Fig. 3a). By reducing the spatial frequency
between two consecutive frames a much better tracking
can be achieved (Fig. 3b). This could lead to think a
higher frequency would yield better results in any case,
but as mentioned in Sec. 3.4, a too low spatial frequency
negatively impacts the estimation, leading to a higher
drift. In this case, a relevant the criteria to select the fre-
quency is the percentage of inliers produced by the pose
estimation (Fig. 6b). The algorithm kept a 40 cm spa-
tial frequency for the first part of the traverse, reducing
it to 20 cm in case of fine gravel areas. Once the scene
returned better matches, the spatial frequency is reset to
the initial value to limit error accumulation (Fig. 4).

As indicated by the drop in the number of inliers, it can
be beneficial (or even necessary) to modify a subset of
the input parameters. For instance, increasing the num-
ber of keypoints in the first stage of the algorithm allows
to feed a higher number of 3D points to the pose estima-
tion stage, slightly improving its performances (Fig. 5).
Note that extracting a too high number of keypoints is de-
manding in terms of computational time and is done only
when necessary, as indicated by the the control point.
Without action, i.e. proceeding with the same spatial fre-
quency, the algorithm produced five gross errors in the
pose (jumps), with erroneous translations and rotations
(Fig. 6a).

6. CONCLUSIONS AND FUTURE WORKS

Perception processes can be formally modelled but it is
still a hard task to link their model to the instantiations.
We proposed an initial model to help controlling these
processes. Despite a scheme to autonomously reconfig-
ure the nodes is yet to be defined, this work shows how
it is possible to evaluate either atomic functions or com-
pounds through data quality assessment functions. Mon-
itoring these figures of merit can trigger control of the
perception node and compound parameters.

Future extensions of this work directly point towards the
definition of a reasoning framework to control perception
processes. Adapting to the slightest change in the opera-
tional scenario is necessary to produce the best possible
results regardless of the working conditions. Nonethe-
less, the search space for the optimal set of controllable

(a) Pose estimation increasing the number of features during a controlled
execution

(b) Errors in percentage of the travelled distance

Figure 5: Temporarily increasing the number of extracted
keypoints in noisy area can help achieving significantly
better motion estimation

parameters is very large, making a blind search approach
unfeasible. Resorting to predictive models helps dealing
with this problem by supplying a belief for an optimal
configuration. This kind of models can be trained and
used to find an initial configuration for the input parame-
ters. The search can then be performed in the neighbour-
hood of this configuration.

Furthermore, additional elements can be leveraged to op-
timise the perception outcome. Controlling the robot mo-
tion can indirectly achieve the same result as controlling
the process execution frequency. Additionally, the view-
point selection problem directly conditions the output of
all the nodes in the compound. Steering the pan-tilt unit
of a camera towards more textured areas can make the
difference between an efficient estimation and the lack of
convergence. These all represent actions that can be car-
ried out serving the perception layer, driven by the obser-
vations carried out by data quality assessment functions.
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(a) Close up view of erroneous estimation with low frequency
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Figure 6: Maintaining a low spatial frequency fixed, the
algorithm produces five completely wrong estimations
which are reflected in five drops of inliers to zero.
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