
HAL Id: hal-02092232
https://laas.hal.science/hal-02092232v1

Submitted on 7 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A common data fusion framework for space robotics:
architecture and data fusion methods

Raúl Dominguez, Romain Michalec, Nassir Oumer, Fabrice Souvannavong,
Mark Post, Shashank Govindaraj, Alexander Fabisch, Bilal Wehbe, Jérémi

Gancet, Alessandro Bianco, et al.

To cite this version:
Raúl Dominguez, Romain Michalec, Nassir Oumer, Fabrice Souvannavong, Mark Post, et al.. A
common data fusion framework for space robotics: architecture and data fusion methods. 14th Inter-
national Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2018),
Jun 2018, Madrid, Spain. �hal-02092232�

https://laas.hal.science/hal-02092232v1
https://hal.archives-ouvertes.fr

A COMMON DATA FUSION FRAMEWORK FOR SPACE ROBOTICS:
ARCHITECTURE AND DATA FUSION METHODS

Raùl Domínguez (1), Romain Michalec (2), Nassir W. Oumer (3), Fabrice Souvannavong (4), Mark Post (2), Shashank
Govindaraj (5), Alexander Fabisch (1), Bilal Wehbe (1), Jérémi Gancet (5), Alessandro Bianco (2), Simon Lacroix (6),

Andrea De Maio (6), Quentin Labourey (6), Vincent Bissonnette (4), Michal Smíšek (3), Xiu Yan (2)

(1) DFKI GmbH Robotics Innovation Centre, Robert Hooke Straße 1, Bremen, Germany
raul.dominguez|bilal.wehbe|alexander.fabisch@dfki.de

(2) University of Strathclyde, 16 Richmond Street, Glasgow G1 1XQ, United Kingdom
mark.post|romain.michalec|alessandro.bianco|xiu.yan@strath.ac.uk

(3) DLR, Münchener Straße 20, 82234 Weßling, Germany
nassir.oumer|michal.smisek@dlr.de

(4) Magellium SAS, 24 rue Hermès, 31521 Ramonville-Saint-Agne, France
fabrice.souvannavong|vincent.bissonnette@magellium.fr

(5) Space Applications Services NV, 325 Leuvensesteenweg, 1932 Zaventem, Belgium
jeremi.gancet|shashank.govindaraj@spaceapplications.com

(6) LAAS-CNRS, 7 avenue du Colonel Roche, 31031 Toulouse, France
simon.lacroix|quentin.labourey|andrea.demaio@laas.fr

ABSTRACT

Data fusion algorithms make it possible to combine data
from different sensors into symbolic representations
such as environment maps, object models, and position
estimates. The software community in space robotics
lacks a comprehensive software framework to fuse and
contextually store data from multiple sensors while also
making it easier to develop, evaluate, and compare
algorithms. The InFuse consortium, six partners in the
industrial and academic space sector working under the
supervision of a Program Support Activity (PSA)
consisting of representatives from ESA, ASI, CDTI,
CNES, DLR, UKSA, is developing such a framework,
complete with a set of data fusion implementations
based on state-of-the-art perception, localization and
mapping algorithms, and performance metrics to
evaluate them. This paper describes the architecture of
this Common Data Fusion Framework and overviews
the data fusion methods that it will provide for tasks
such as localisation, mapping, environment
reconstruction, object detection and tracking.

1. INTRODUCTION

In the context of perception, localization and mapping
in space robotics, common evaluation and deployment
frameworks are crucial for efficiently developing
reliable robotic solutions. Qualification of software for
space is indeed highly demanding. Methods and tools
that make it easier to develop software for space and
evaluate it as early as the prototype stages are highly
valuable. This is the motivation of the European

Commission's Horizon 2020 Strategic Research Cluster
in Space Robotics Technologies, which comprises
several projects to develop open, modular and reusable
solutions in the domains of Robotic Control Operating
Systems (RCOS) (Operational Grant 1, OG1) [1][2],
autonomy (OG2) [3], perception and localisation (OG3)
[4], and sensors (OG4) [5].
We are currently developing a software framework to
implement, evaluate, and deploy data fusion algorithms
for applications such as localisation, mapping,
environment reconstruction, and object detection and
tracking: a Common Data Fusion Framework (CDFF).
We designed it to handle the challenges of developing
and integrating sensor data fusion algorithms in a space
context: (1) it will be compliant with the requirements
that space grade software impose at interface level, and
partially conform to lifecycle and coding guidelines
based on ECSS-E-ST-40C standards (European
Cooperation for Space Standardisation), (2) it will be
easily deployable in ESROCOS [1][2] that uses TASTE
modeling [6], (3) it will be experimentally validated by
our porting of certain Data Fusion Nodes (DFNs) and
Processing Compounds (DFPCs) to RTEMS, and (4) it
will be validated in a partially hardware-accelerated
setup, with some data fusion processing taking place on
a FPGA coprocessor (e.g. Xilinx Zynq SoC).
Although our framework targets space robotics, one of
our design guidelines is also to facilitate its integration
with RCOSes other than ESROCOS, in particular with
ROCK (Robot Construction Kit) and the widely-used
ROS (Robot Operating System). Furthermore, it comes
with tools that make it possible to evaluate perception
and localisation modules with framework-independent

logged data and without using any RCOS. These two
points make it RCOS-independent and therefore
suitable for many terrestrial applications with minimal
modification. Furthermore, the CDFF after its initial
development will be available for the general public as
open source project.
Section 2 describes the architecture of the framework,
and presents its main conceptual components and the
corresponding software modules. Section 3 lists the data
fusion methods that will be released with the CDFF.
Section 4 describes the experimental validations that
will demonstrate the usefulness of the framework, and
Section 5 concludes the paper.

2. ARCHITECTURE OF THE CDFF

Data Fusion Nodes (DFN), defined as atomic
processing units that perform a single data fusion
function, constitute the core of the CDFF. Their
atomicity makes them reusable and specialised.
Consequently, they need to be connected and
coordinated to each other in order to produce a
particular data fusion product. We call a particular
arrangement of DFNs, together with the controller that
coordinates them, and the local data store (if any) for
the data they use or generate, a Data Fusion Processing
Compound (DFPC). Activation and deactivation of
these DFPCs, as well as all other control and data flows
within the framework, are the responsibility of an
Orchestrator component. Finally, the last component of
the framework is a Data Product Manager that stores
and retrieves data from persistent memory on request
from the Orchestrator. Fig. 1 shows a diagram that
summarises this architecture.
We have divided the CDFF into three component
groups: (1) CDFF-Core comprises the DFNs, (2)
CDFF-Support provides the tools to connect these into
DFPCs, coordinate their operation, and manage their
data products, and (3) CDFF-Dev is an environment for
developing and evaluating data fusion algorithms,
independently of the target robotic system and of its
RCOS.

2.1. Data fusion libraries

A DFN is an atomic processing entity that fulfills a
given data fusion function. It is the smallest unit of
more a complex task, defined by its function, input and
output. However, a DFN can actually be made up of a
combination of elementary functions which may not
expose their input/output. It presents two control
interfaces: (1) configure() sets all the configuration
parameters of the DFN, then (2) process() calls
library functions to compute the outputs of the DFN.

Figure 1. The Orchestrator manages the queries to the

Central Data Product Manager, the activation of
different Data Fusion Processing Compounds (DFPCs)
and the operating modes of OG4 to fulfill requests from

the planning algorithms in OG2.

The DFN interface has been designed to be compatible
with the ESROCOS RCOS. Nonetheless, DFNs do not
need to be deployed as single ESROCOS modules.
Modules instead can include entire DFPCs or even a
complete set of DFPCs, Orchestrator and DPM.
A DFN Template offers an abstraction of the essential
characteristics of all DFNs, and allows their efficient
management. The DFN Template incorporates the
following information: (1) Generic Description, (2)
Input(s) and Ouput(s) data, (3) Input(s) Parameters, (4)
Estimated performance and cost, (5) External library
dependencies, (6) Diagnostic capacities and (7) Unit
test. Further details are presented in the deliverables
corresponding to the Orbital and Planetary Track Test
Plans [7, 8].

2.2. Data fusion solutions

CDFF-Support is a set of components designed to run
on the target system along with the DFNs. These
components provide supporting tools to use multiple
DFNs together and in a coordinated fashion to produce
a complete solution to a given data fusion requirement.
Furthermore CDFF-Support provides the Data Products
Manager (DPM) which stores a consistent

representation of the environment, a history of acquired
pre-processed sensor data, estimated poses, and a
selection of the generated fused data products, to deliver
them under request to OG2. Data is also stored locally
within DFPCs so that it can be further exchanged
between DFPCs as well as made available for the
central DPM. The three main components of CDFF
Support are the DFPCs, the Orchestrator, and the DPM.
These components are depicted in Fig. 2.

Figure 2. This diagram presents how the three

components of CDFF-Support interact, and also how
the CDFF interfaces with OG2 and OG4.

DFPC : Lidar Map-Based Localisation

Description of
Data Flow

- Input: lidar point cloud, pose
estimate

- Output: pose estimate
- DFNs: PointcloudMatcher,

PoseEstimator

Data Product
Management

- Graph-Map: Pose Graph, Scan
Map, Key Frames

Description of
Control

1. getLocalMap
2. PointcloudMatcher.doICP
3. PoseEstimator.estimatePose

Table 1. Description of the Lidar Map-Based
Localisation DFPC. Similar descriptions will be

available for each DFPC released with the CDFF

Each DFPC is characterised by its function, the data
streams that it receives and produces, including the
corresponding metadata (for instance timestamps and
geometric models), the operations that it can execute on
demand, the DFNs it uses and how these are configured

and set up. We use description templates such as the one
in Tab. 1 to document DFPCs. The fields in this
template are: (1) Description of Data Flow, (2) Data
Product Management, and (3) Description of Control.

The orchestrator has the main task of receiving queries
from the Autonomy Framework (OG2) , activating and
providing the fused data products to OG2. It acts as the
central coordinator in the target system to control the
activation states of DFPCs. The orchestrator has the
following functions: (1) Interface between OG2 and
OG3, (2) Translate the perception and localisation data
into the format required by OG2, (3) Interface with the
OG4 Instrument Control Unit (ICU) to configure a
limited set of operational modes, (4) Interface with the
Data Product Management (DPM) tool to provide
mechanisms for querying fused data products and (5)
Activation and deactivation of DFPCs according to data
product requests and operational modes of the sensors.
This last function does not interfere with internal DFPC
decision making processes.
The role of the DPM is to handle the selection,
structuring and storage of all the data processed or
produced by the CDFF that may be re-used, either
internally by OG3 processes or to satisfy OG2 requests.
Additionally, it is the interface through which robots
expose and retrieve the CDFF data products in
multi-robot scenarios, and also the interface through
which ground operators can access the CDFF data
products. The DPM can be seen a robotics-dedicated
Geographic Information System (GIS). With respect to
the activated DFNs and DFPCs in the CDFF, the DPM
processes the data insertion requests. Internally, it
manages all the spatial related data by implementing
insertion, deletion or update functions, aiming at
satisfying future needs for data products and storage
constraints.

2.3. Development toolkit

CDFF-Dev provides tools for testing and prototyping
data fusion solutions independent of the target RCOS.
That includes a tool to replay, visualise and analyze logs
in Python, and a framework to develop and test new
DFNs that use signal processing or machine learning
algorithms, in particular, for data filtering and outlier
detection. None of these tools are deployed on the target
system. In addition, code generators for DFN and DFPC
scaffolds and corresponding Python bindings are
provided. They are tools for developers of data fusion
algorithms.
The first step to evaluate or implement a DFN or DFPC
using CDFF-Dev, is to generate a DFN or DFPC
description file from the DFN or DFPC template,
described in Sections 2.1 and 2.2. From the description

file, the code of the interface is generated. As an
example, Fig. 3 a) shows the DFN description file in
YAML format and Fig. 3 b) displays the artifacts that
are created by the DFN code generator. The Python
bindings for DFNs and DFPCs are generated and
bindings for InFuse data types are already provided to
make the prototyping of DFNs and DFPCs more
convenient in Python.

name: LaserFilter
implementations:

 - NoiseFilter

 - BoxFilter

input_ports:

 - name: scanSamples

 type: LaserScan

 doc: samples of a laser scan

 - name: laser2BodyTf

 type: RigidBodyState

 doc: laser frame to body frame

output_ports:

 - name: filteredScans

 type: LaserScan

 doc: filtered laser scans

(a)

(b)

Figure 3. (a) Example of a DFN description file based

on YAML. (b) The DFN code generator creates an
abstract C++ base class that defines the interface of the

DFN, templates for concrete implementations and
Python bindings for these implementations.

The interfaces of DFNs and DFPCs are kept as minimal
as possible to ease integration to any target RCOS. The
only dependencies are common base classes used by

DFNs or DFPCs and the types that are used as inputs
and outputs. This also simplifies the integration in the
log replay tool of CDFF-Dev.
Testing DFNs or DFPCs offline with log data is
possible with the provided Python bindings. Logs are
replayed with a data flow control module that emulates
the communication layer of an RCOS and a log player
that replays logged data chronologically. Two essential
elements are needed for a user to be able to replay data
logs from a desired RCOS: (1) a conversion from the
data log format used by the RCOS to an intermediate
format that is used by InFuse, and (2) a data-type
conversion from the RCOS to InFuse data types.
MessagePack is the intermediate log file format that 1

can be handled by CDFF-Dev. An example of the
intermediate log format is shown in Fig. 4. A converter
from ROCK’s log format pocolog is already available,
and a ROCK base-types to InFuse data types is under
development. The converters will be stored in open
repositories to ease its reuse between developers. The
intermediate log format can be loaded as InFuse types
(C++) wrapped in Python. These will be given as input
to the Python interface of DFNs or DFPCs.
To replay log files, the user would provide the path to
the logged data. While replaying log data, an
orchestrator can suggest which DFPCs should be
activated or deactivated. It will analyze incoming log
data and the output of each active DFPC. The
orchestrator in the final deployed setting receives
requests from the Autonomy Framework (see Fig. 1, 2).
When testing on CDFF-Dev the user, or a script,
generates this requests. The Orchestrator then activates
the DFPCs that produce the requested data products or
triggers the operations that generate them. Additionally,
the orchestrator can store the data in the Central Data
Product Manager for later access.
The current state of the system is stored in an EnviRe
graph [9] while replaying log data. EnviRe provides
various tools to store and handle environment
representations. This data structure can be displayed 2

with the EnviRe visualiser. Objects for which a
visualisation has been implemented can be displayed
with the EnviRe visualiser, for example, point clouds,
laser scans, or poses.
For the development, analysis and comparison of new
DFNs that use signal processing or machine learning
algorithms, the framework pySPACE [10] is integrated
in CDFF-dev. Log files can be annotated while 3

replaying log files and converted to a format that can be
used by pySPACE. pySPACE provides numerous
algorithms for signal processing and machine learning.

1 https://msgpack.org
2 http://envire.github.io
3 https://pyspace.github.io/pyspace

https://msgpack.org/index.html
http://envire.github.io/
https://pyspace.github.io/pyspace/

They can easily compared with respect to various
performance metric. The comparison can be run in
parallel on a cluster.

{‘/component.port’:

 [{# sample 1

 ‘sourceFrame’: ‘A’,

 ‘targetFrame’: ‘B’,

 ‘timestamp’:

 {‘microseconds’:0},

 ‘pos’: [0, 0, 0],

 ‘cov_position’: [...],

 ...

 },

 {# sample 2 ... }, ...],

 ‘/component.port.meta’:

 [

 ‘timestamps’: [1, 2, ...],

 ‘type’: ‘RigidBodyState’

],

 ...

}

Figure 4. Example of the intermediate log format in
Python syntax

2.4. Integration of data fusion solution in RCOSes

As part of our will to address a large community of
users and ease the technological transfer from R&D
studies to space products, the CDFF offers a convenient
way to integrate DFNs/DFPCs into major open source
robotics middlewares, namely ROS, ROCK, GenoM3
[11] and YARP [12]. The core of the proposed approach
is to use ASN.1 to specify data structures and binary
serialisation mechanisms (implemented by ASN1SCC,
an open source ASN.1 compiler for embedded systems
[13]), in order to exchange data between components
and also across the RCOS.
To insure compatibility between the RCOS and
programming languages like C++, python, javascript,
and others, a common and basic ROS message
(asn1_bitstream.msg) has been defined to
transport the serialised ASN.1 data structures (see Fig.
5). Almost all RCOSes provide some compatibility with
ROS messages and communication protocol, and should
be able to use the proposed message. The message is
structured as follow:

std_msgs/Header header

Message type

string type

Serialisation method : 0 (UPER)

uint8 sermethod

Serialised data

uint8[] buf

where the field buf contains serialised data.
The Unaligned Packed Encoding Rules (UPER) are

used by default for optimal compactness and encoding
efficiency with low memory and low CPU footprints.
However, Basic Encoding Rules (BER) or XML
Encoding Rules (XER) could be used to facilitate
communications with different programming languages.
For instance, we are using BER to communicate with
web applications through YARP.

Figure 5. CDFF integration principle in an
heterogeneous environment of RCOS. A simple ROS
message is defined to transport serialised ASN.1 data
structures.

This has been applied to GenoM3 with ROS and YARP,
and shown all the expected benefits. Moreover, the use
of YARP allows us to go even further towards an
optimal integration, as its allows local communication;
in that particular case ASN.1 data structures are
exchanged without any serialisation.
There are many important advantages to the proposed
method: clear data type / interface management with
ASN.1, smooth integration effort in RCOS with ASN.1,
enable inter RCOS communications, favor the
separation between the RCOS and algorithms (this is
even more true when GenoM3 is used).

3. DATA FUSION METHODS

The primary applications of InFuse are localisation and
mapping, environment reconstruction, and object
detection and tracking both in orbit and on the surface of
other planets. We are currently implementing a number
of DFPCs that address these applications, and will be
released together with the framework itself, for others to
use freely. The current list is given in Tab. 2.
Detailed descriptions of all those DFPCs is provided in
[D5.5] and [D5.6]. Short descriptions of some of them
are given below as examples:

● 3D Environment Reconstruction: images

collected by a stereo or a mono camera are
projected in 3D coordinates and merged together
by the estimation of an appropriate transform.

● Short and Medium Range Object Detection: 3D
features are extracted from the 3D environment

https://www.draw.io/?scale=2#G1bJk6ZXbGFLz8LyZJW1N1P_JfU6piJfuu

map and a 3D model of the object, their matching
identifies the object and its position.

● Short and Medium Range Object Tracking: a
Kalman filter improves the estimated pose
computed by the object detection DFPC.

DFPCs for use in orbital situations

Far-Range Object Tracking
Mid- and Close-Range Target Detection
Mid- and Close-Range Target Tracking
Lidar-Based Tracking of a Target
Mid- and Close-Range Visual Tracking of a Target
3D Reconstruction
3D Tracking

DFPCs for use in planetary situations

Visual Odometry (LAAS-CNRS)
Visual Odometry (Magellium)
Absolute Localisation
Digital Elevation Mapping
Lidar-Based SLAM
Lidar-Based Localisation
Visual SLAM
Visual Map-Based Localisation
Far-Range Tracking
Mid-Range 3D Model Detection
Mid-Range 3D Model Tracking
Point-Cloud Model-Based Localisation with ICP
Point-Cloud Matching
Image Feature Detection and Matching
Point-Cloud Triangulation and Construction
Point-Cloud Model-Based Localisation with
SHOT-Based Matching
Bundle Adjustment and Optimisation
Navigation Mapping
Position Manager

Table 2. Data Fusion Processing Compounds that are
being implemented by the InFuse consortium as part of

the Common Data Fusion Framework

4. DEMONSTRATION SCENARIOS

The perception, localisation, and mapping capabilities of
the CDFF will be evaluated in indoor test facilities and
in outdoor planetary analog sites. Evaluations are
planned in both orbital and planetary situations.

4.1. Orbital situations

For the orbital scenarios, the integrated software will be
deployed on specialised test platforms for each
rendezvous/on-orbit servicing scenario. It consists in

three main DFPCs: detection, tracking, and
reconstruction at various ranges. These DFPCs rely on
the data obtained mainly from a camera, a LIDAR,
IMU, or combination of them. In order to validate the
performance, we simulate motion trajectories of various
type for the target (linear, spinning, tumbling) under
different space lighting conditions (nominal,
under-illuminated, over-illuminated). These conditions
depend on the direction of the sun with respect to the
sensor main axis using an on-ground simulation facility
[6], shown in Fig. 6.

Figure 6. Ground test facility of DLR for visual target

tracking when approaching a target in close-range
approach and visual servoing

The rendezvous and on-orbit servicing simulator
consists of a mock-up including a servicer and a target
satellite, mounted on a six degrees of freedom Kuka
robots, and a sun simulator. A robotic arm is also
mounted on the servicer satellite for on-orbit servicing
tasks such as capturing the target and refueling. The arm
incorporates stereo cameras that are used for the
close-range DFPC. Fig. 7 shows what a camera image
looks like during on-orbit servicing in space.

4.2. Planetary situations

The CDFF will provide state-of-the-art algorithms to
implement necessary perception, localisation and
navigation functions for planetary exploration rovers.
Four functional use cases will sustain the development
of algorithms in the project: long traverse localisation,
long traverse navigation, rendez-vous and return to
base. Each use case involves a limited set of key
functions that will be evaluated.
The planetary scenario focuses on localisation and
mapping within planetary environments. The sensors
used include stereo vision, LIDAR, and inertial
measurement. Navigation over long distances is enabled
with DFPCs for localisation and for production of a
Digital Elevation Map over long distances (~1km),

guidance to a defined objective point on the map and
rendezvous with a target there, and return-to-base
functionality once the above objectives are met. In
addition, DFPCs provide the capability to build 3D
point cloud environment models incrementally through
structure-from-motion and SLAM methods.
Demonstrations of planetary scenarios are planned at
CNES (see Fig. 8) and DLR facilities (see Fig. 9) with
accurate ground truth of the terrain and the robot, as
well as on the desert of Morocco. These will involve 5
different rovers from three different institutions,
CNRS/LAAS, DLR and DFKI (see Fig. 9, 10 and 11).

Figure 7. A camera image representative of an on-orbit

servicing scenario, with the Earth and deep space in
background to the target.

Figure 8. CNES/SEROM test field

Figure 9. BB2 rover at DLR facilities for evaluation

Figure 10. CNRS/LAAS Mana and Minnie rovers

Figure 11. Sherpa Rover from DFKI

5. CONCLUSION

The Common Data Fusion Framework (CDFF)
environment for development, testing and deployment
of perception, localization and mapping algorithms in
space robotic systems has been presented. The
framework architecture has been designed to produce
solutions with highly reusable components: Data
Fusion Nodes, Data Fusion Processing Compounds,
Orchestrator and Data Product Manager. Furthermore,
it allows to describe, implement and test offline the
software independently of the Robotic Control
Operating System that the final robotic system might
use.
A brief overview of the data fusion algorithms included
in the CDFF has been provided, as well as how these
are categorised and described in the framework through
their description templates. Finally, the demonstration
scenarios, which involves an orbital and a planetary
track, have been briefly described.

ACKNOWLEDGEMENTS

The InFuse project is funded under the European
Commission's Horizon 2020 Space Strategic Research Cluster,
Operational Grants, grant number 730014.

REFERENCES

[1] Ocón J. et al., (2017) The Space Automation and
Robotics General Controller (SARGON). In Proc.
ASTRA 2017.
[2] Muñoz M. et al., (2017) ESROCOS: A Robotic
Operating System for Space and Terrestrial
Applications. In Proc. ASTRA 2017.
[3] Ocón J. et. al., Autonomous Controllers and
Frameworks for Space Missions: GOTCHA and ERGO.
In Proc. ASTRA 2017 .
[4] Govindaraj S. et al., (2017) InFuse: A
Comprehensive Framework for Data Fusion in Space
Robotics, ASTRA 2017.
[5] I3DS design documents -
http://i3ds-h2020.eu/publications/deliverables
[6] Perrotin M. et al., (2010) The TASTE Toolset:
turning human designed heterogeneous systems into
computer built homogeneous software. In Proc.
Embedded Real Time Software and Systems 2010,
Toulouse.

[7] Oumer N.W. et al. (2018). Orbital Reference
Implementation and Associated EGSE: Detailed
Design. Deliverable 5.1 of the Horizon 2020 InFuse
Project. URL: https://www.h2020-infuse.eu/documents.
[8] Souvannavong F. et al. (2018). Planetary Reference
Implementation and Associated EGSE: Detailed
Design. Deliverable 5.2 of the Horizon 2020 InFuse
Project. URL: https://www.h2020-infuse.eu/documents.
[9] Hidalgo Carrió J., Arnold S., Böckmann A., Born
A., Domínguez R., Hennes D., Hertzberg C.,
Machowinski J., Schwendner J., Yoo Y.H., & Kirchner
F. (2016). EnviRe: Environment Representation for
Long-term Autonomy. In Proc. Workshop on Artificial
Intelligence for Long-Term Autonomy, International
Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 16-20 May 2016. URL:
https://sites.google.com/site/icra2016ailta.
[10] Krell M.M., Straube S., Seeland A., Wöhrle H.,
Teiwes J., Metzen J.H., Kirchner E.A., & Kirchner F.
(2013). pySPACE: A Signal Processing and
Classification Environment in Python. Frontiers in
Neuroinformatics 7(40). PMID: 24399965. DOI:
10.3389/fninf.2013.00040. Google Scholar:
2961988771639493149.
[11] Mallet A., Pasteur C., Herrb M., Lemaignan S., &
Ingrand F. (2010). GenoM3: Building
Middleware-Independent Robotic Components. In Proc.
International Conference on Robotics and Automation
(ICRA), Anchorage, Alaska, United States, 3-7 May
2010. DOI: 10.1109/ROBOT.2010.5509539. Google
Scholar: 9501243468305366893.
[12] Paikan A., Pattacini U., Domenichelli D.,
Randazzo M., Metta G., & Natale L. (2015). A
Best-Effort Approach for Run-Time Channel
Prioritization in Real-Time Robotic Application. In
Proc. Intelligent Robots and Systems (IROS), Hamburg,
Germany, 28 September - 2 October 2015. DOI:
10.1109/IROS.2015.7353611. Google Scholar:
12367842943333947581.
[13] Mamais G., Tsiodras T., Lesens D., Perrotin M.
(2011). An ASN.1 Compiler for Embedded/Space
Systems. In Proc. Embedded Real Time Software and
Systems (ERTS2), Toulouse, France, 1-3 February 2012
Google Scholar: 13449943365769046250.

http://i3ds-h2020.eu/publications/deliverables
https://www.h2020-infuse.eu/documents
https://www.h2020-infuse.eu/documents
https://sites.google.com/site/icra2016ailta
https://www.ncbi.nlm.nih.gov/pubmed/24399965
https://dx.doi.org/10.3389%2Ffninf.2013.00040
https://scholar.google.com/scholar?cluster=2961988771639493149
https://doi.org/10.1109/ROBOT.2010.5509539
https://scholar.google.com/scholar?cluster=9501243468305366893
https://doi.org/10.1109/IROS.2015.7353611
https://scholar.google.com/scholar?cluster=12367842943333947581
https://scholar.google.com/scholar?cluster=13449943365769046250

