
HAL Id: hal-02092238
https://laas.hal.science/hal-02092238v1

Submitted on 7 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

InFuse Data Fusion Methodology for Space Robotics,
Awareness and Machine Learning

Mark Post, Romain Michalec, Alessandro Bianco, Xiu Yan, Andrea de Maio,
Simon Lacroix, Jérémi Gancet, Shashank Govindaraj, Xavier

Martinez-Gonzalez, Iyas Dalati, et al.

To cite this version:
Mark Post, Romain Michalec, Alessandro Bianco, Xiu Yan, Andrea de Maio, et al.. InFuse Data Fusion
Methodology for Space Robotics, Awareness and Machine Learning. 69th International Astronautical
Congress, Oct 2018, Bremen, Germany. �hal-02092238�

https://laas.hal.science/hal-02092238v1
https://hal.archives-ouvertes.fr


 

 
 

 
 

 
 

InFuse Data Fusion Methodology for Space Robotics, Awareness and Machine Learning 
 

Mark Posta*   Romain Michaleca    Alessandro Biancoa    Xiu Yana    Andrea De Maiob    Quentin Laboureyb    
Simon Lacroixb    Jeremi Gancetc    Shashank Govindarajc    Xavier Martinez-Gonzalezc    Iyas Dalatic    Raúl 

Domínguezd    Bilal Wehbed    Alexander Fabischd    Enno Röhrigd    Fabrice Souvannavonge    Vincent 
Bissonnettee    Michal Smíšekf    Nassir W. Oumerf    Lukas Meyerf    Rudolph Triebelf    Zoltán-Csaba 

Mártonf 
 

a University of Strathclyde, Department of Design, Manufacture, and Engineering Management, 75 Montrose St., 
Glasgow G1 1XJ, United Kingdom, mark.post@strath.ac.uk 
b LAAS-CNRS, 7 avenue du Colonel Roche, 31031 Toulouse, France, simon.lacroix@laas.fr 
c Space Applications Services NV, Leuvensesteenweg 325, 1932 Zaventem, Belgium, 
jeremi.gancet@spaceapplications.com 
d DFKI, Robert-Hooke-Straße 1, 28359 Bremen, Germany, raul.dominguez@dfki.de 
e Magellium SAS, 24 rue Hermès, 31521 Ramonville-Saint-Agne, France, fabrice.souvannavong@magellium.fr 
f DLR, Münchener Straße 20, 82234 Weßling, Germany, michal.smisek@dlr.de 
* Corresponding Author 

 
Abstract 

 
Autonomous space vehicles such as orbital servicing satellites and planetary exploration rovers must be 
comprehensively aware of their environment in order to make appropriate decisions.  Multi-sensor data fusion plays 
a vital role in providing these autonomous systems with sensory information of different types, from different 
locations, and at different times.  The InFuse project, funded by the European Commission's Horizon 2020 Strategic 
Research Cluster in Space Robotics, provides the space community with an open-source Common Data Fusion 
Framework (CDFF) by which data may be fused in a modular fashion from multiple sensors.  In this paper, we 
summarize the modular structure of this CDFF and show how it is used for the processing of sensor data to obtain 
data products for both planetary and orbital space robotic applications.  Multiple sensor data from field testing that 
includes inertial measurements, stereo vision, and scanning laser range information is first used to produce robust 
multi-layered environmental maps for path planning.  This information is registered and fused within the CDFF to 
produce comprehensive three-dimensional maps of the environment.  To further explore the potential of the CDFF, 
we illustrate several applications of the CDFF that have been evaluated for orbital and planetary use cases of 
environmental reconstruction, mapping, navigation, and visual tracking. Algorithms for learning of maps, outlier 
detection, localization, and identification of objects are available within the CDFF and some early results from their 
use in space analogue scenarios are presented.  These applications show how the CDFF can be used to provide a 
wide variety of data products for use by  awareness and machine learning processes in space robots. 
Keywords: (Sensor Fusion, Rover, Space Robotics, Classification) 
 
Introduction 
 
Robotics, intended as the integration of mechanical, 
electrical and software components is a very young 
discipline. Starting from the assembly of mechanical 
components that superficially mimic human actions, its 
goal evolved ever more ambitiously to the endowment 
of total human capability to mechanical components. 
Among these capabilities is the capacity to process the 
information from the senses, and acquire a more 
complete and general understanding of situation and 
places, in order to carry actions and pursue objectives. 
This more limited goal is the target of many industrial 
and scientific applications, such as space exploration, 
autonomous driving, manufacturing, rescue mission in 

dangerous situations, precision surgery, just to name a 
few. 
 
Practices and standards in robotic development are 
continuously in evolution as new technology opens the 
possibility to new actuation and sensing methods, and 
increased computational power allows the robot to 
"think" more thoroughly about the operation carried out. 
In the context of software development of robotic 
applications, this evolution starts with general 
programming: modules were developed ad hoc, possibly 
integrating software components according to the 
application needs. During these efforts, real time 
communication of robotic processes was a common 
recurring problem in many applications. These 



 

 
 

 
 

problems were addressed by modern robotic 
frameworks such as ROS. Their widespread acceptance 
had led to the growth of framework communities. They 
started to contribute to the frameworks by writing 
modules for the solution of some common robotic 
problems such as sensor data representation, 
environmental mapping and path planning. However, no 
industrial standard has ever been set, and these 
frameworks have been mostly used for rapid 
prototyping. 
 
The InFuse project is our effort to move robotic 
software development practices to the next step: a 
standardised and comprehensive development 
environment for industrial applications, with particular 
focus on space applications. InFuse represents "Sensor 
Fusion", and it aims to develop a Common Data Fusion 
Framework (CDFF) containing the following features: 
(i) a library of reusable Data Fusion Node (DFN) 
modules implementing sensor fusion algorithms and 
validated for industrial applications, (ii) an easy method 
to quickly and reliably combine the DFNs into software 
modules (Data Fusion Processing Compounds, or 
DFPCs) meant for sensor data processing, (iii) tools for 
data collection and testing of the DFPCs, (iv) suitable 
conversion mechanisms between different 
representations of the sensor data, and (v) convenient 
integration with process communication frameworks 
such as ROS. 
 
Previous papers have focused on the design of the 
framework [1] and the methods implemented to 
accomplish data fusion [2].  In this paper, we 
demonstrate the use of InFuse for space robotics tasks 
through its application as a means of environmental 
mapping and structural classification of the 
environment. 
 
Description of the Common Data Fusion Framework 
(CDFF) 
 
The framework consists of three major components, 
named CDFF-Core, CDFF-Support, and CDFF-Dev. 
CDFF-Core is a set of basic data fusion modules called 
Data Fusion Nodes (DFNs), each of which performs a 
specific data processing task commonly part of robotic 
perception tasks, for instance, feature extraction in an 
image or Kalman filtering. 
 
CDFF-Support is a set of more fully-fledged Data 
Fusion Processing Compounds (DFPCs), assembled by 
connecting DFNs together into larger software modules 
that generate specific data fusion products (e.g. pose 
estimation) from specific sensor data inputs. CDFF-
Support also includes two software modules required 

for the actual execution of these DFPCs on a robotic 
system: an Orchestrator which coordinates the data 
fusion processes running on the system, and a Data 
Product Manager which maintains the data fusion 
products pertaining to environment representation 
during the lifetime of the system. 
 
CDFF-Dev provides software development, 
performance analysis and data management tools for 
implementing and evaluating data fusion algorithms. 
Contrary to CDFF-Core and CDFF-Support, which are 
deployed on the robotic system, CDFF-Dev tools are 
meant to be used in a development environment during 
implementation and exploitation activities. 
 
Environmental Reconstruction 
 
The most fundamental use of the CDFF is to reconstruct 
a model of the environment around a robot by fusing 
data from multiple sensors or multiple samples.  We 
have applied two main approaches to the reconstruction 
of 3D objects from pairs of stereo images. During both 
approaches we use a rectified image pair to construct a 
3D point cloud by computation of a disparity map [3][4] 
as implemented in the OpenCV and Point Cloud Library 
(PCL) libraries. Then, 3D point clouds are fused 
together by locating them in the coordinate system 
aligned with the first camera pose. The two approaches 
differ in the way the pose of each point cloud is 
computed in the main reference system. 
 
(1) The first approach is based on 3D registration: (i) we 
extract 3D features from a point cloud [5], (ii) we 
compute their descriptors [6], and (iii) we find the 
transform that allows to overlap one set of keypoints 
over the other [7]. 
 
(2) The second approach is based on 2D matching: (i) 
we extract 2D features from each image [8], (ii) we 
compute their descriptors  [9], (iii) we find the best 
matches between left and right images and we compute 
the 3D points they represent by triangulation [10], (iv) 
we find the best matches between consecutive left 
images so that we can associate the current features with 
the past triangulated 3D points at a previous instant in 
time, (v) matches are filtered out on the base of the 
fundamental matrix relation, then (vi) we compute the 
position of the left camera with respect to the same left 
camera at a previous time instant by mean of the 
perspective-n-point [11] solver as implemented in 
OpenCV. 
 
Table 1: Steps involved in 3D object reconstruction. The 
column on the left lists the DFNs that make up a 3D 
object reconstruction DFPC. The column on the right 



 

 
 

 
 

lists examples of algorithms that can make up a DFN: 
indeed, a variety of algorithms may be used for the 
purpose of a specific DFN, or in other words, a DFN 
may have multiple algorithmic implementations. 
3D registration approach 

DFNs used successively For instance 

ImageFiltering 
StereoReconstruction 
FeatureExtraction3D 
FeatureDescription3D 
FeatureMatching3D 

UndistortionRectification 
DisparityMapping 
HarrisDetector3D 
SHOTDescriptor3D 
RANSAC3D 

2D feature matching approach 

DFNs used successively For instance 

ImageFiltering 
StereoReconstruction 
FeatureExtraction2D 
FeatureDescription2D 
FeatureMatching2D 
Reconstruction2DTo3D 
PerspectiveNPoint 
FundamentalMatrixComputation 

UndistortionRectification 
DisparityMapping 
HarrisDetector2D 
ORBDescriptor2D 
FLANNMatcher 
Triangulation 
IterativePNPSolver 
RANSAC 

 
As part of CDFF-Support, we provide three variants of 
each approach to 3D reconstruction, in other words six 
different algorithmic implementations of a 3D object 
reconstruction DFPC. 
 
(1) The first variant of the 3D registration approach 
works as described in Table 1. It is implemented using 
algorithms available in the PCL library [12]. The second 
variant uses ICP on the extracted features instead of 
feature description and feature matching. It uses the ICP 
implementations available in the PCL and in 
CloudCompare [13], encapsulated in a DFN named 
Registration3D. The third variant uses ICP on the whole 
reconstructed point cloud, rather than just on features. 
 
Table 2: Final steps of 3D object reconstruction, in the 
3D registration approach 
3D registration approach: three DFPC variants 

Registration 
FromStereo 

Sparse 
Registration 
FromStereo 

Dense 
Registration 
FromStereo 

FeatureExtraction3D 
FeatureDescription3D 
FeatureMatching3D 

FeatureExtraction3D 
- 
Registration3D (ICP) 

- 
- 
Registration3D 

 
(2) The first variant of the 2D matching approach works 
as described in Table 1. It reconstructs 3D scenes and 
objects from stereo images using algorithms available in 
OpenCV. The other variants are extensions which 
optimize the time series of camera pose estimates under 

geometrical 3D transformation constraints, for the 
second variant, and projection matrix constraints 
defined by the matches between triangulated 3D points 
and their 2D image pixels, for the third variant. Both 
optimization problems are solved numerically using the 
Ceres library [14]. 
 
Table 3: Optimization steps involved in 3D object 
reconstruction, in the 2D feature matching approach 
2D feature matching approach: three DFPC variants 

Reconstruction 
FromStereo 

Estimation 
From Stereo 

Adjustment 
From Stereo 

- Transform3DEstimation 
(least squares optimization) 

BundleAdjustment 
(using Ceres) 

 
Those six DFPC implementations have been tested 
using data from ROS [15] bag files recorded by a 
mobile computing platform developed for easy 
handheld operation and easy mounting on mobile 
robots: the Handheld Central Rover Unit (HCRU).  
Those files contain a stream of rectified stereo images 
showing a stationary object from multiple viewpoints on 
a circular trajectory around it. Those images, extracted 
in PNG format and subsampled at one image per 
second, are given as input to the 3D reconstruction 
DFPC. Figure 1 shows the object in a sample input 
image, and Figure 2 shows the reconstructed 3D point 
cloud after ten image pairs have been processed by the 
SparseRegistrationFromStereo DFPC. 
 
Figure 3 shows a view of the reconstructed point cloud 
in CDFF-Dev's 3D visualizer. Using CDFF-Dev's tools, 
the logged data can be replayed, the relevant data given 
as input to the DFPC, and the resulting data fusion 
product displayed in an interactive 3D visualization 
software as the data is replayed. In addition to point 
clouds, the visualizer tool can also display coordinate 
frames (two frames, connected by a red line, are visible 
in Figure 3), trajectories, maps, and meshes loaded from 
URDF. This data fusion product visualizer, whose 
development is ongoing, will be very helpful for 
developing and examining the results of data fusion 
solutions (DFPCs). 
 



 

 
 

 
 

 
Figure 1: Sample input image from a stereo pair 
 

 

 
Figure 2: Two views of the point cloud reconstructed 
from ten image pairs 

 
Figure 3: View of the reconstructed point cloud in 
CDFF-Dev's log replay tool 
 
Choosing the algorithm parameters that lead to the best 
reconstruction result is difficult, because so many 
DFNs, so many parameters. A challenge we are 
currently facing is that the complete point cloud is 
correctly reconstructed only while the error is relatively 
small.  After a certain number of frames, large position 
errors may break the reconstruction. To prevent this 
accumulation of error, we are developing a DFN that 
can combine successive point clouds at a desired 
resolution while limiting error accumulation through 
statistical filtering. To date, the best performing DFPCs 
are SparseRegistrationFromStereo with PCL's ICP, and 
ReconstructionFromStereo. Dense- and Sparse- 
RegistrationFromStereo produce similar results, with 
Dense taking longer. RegistrationFromStereo results in 
a much larger error, and when using CloudCompare in 
place of ICP as a registration DFN, a larger error is 
observed as well. Estimation- and Adjustment- 
FromStereo have frequently shown poor results too, as 
bundle adjustment fails to converge in the presence of 
many outliers. One cause of this may be the small 
number of poses over which the optimization is run, but 
this is necessary for robotic navigation in many 
situations.  Failed reconstructions cause the algorithm to 
skip steps, and to complete faster. Hence, some time 
measurements on full reconstructions are not 
representative of a complete functional application.  
Nevertheless, Table 4 gives an estimate of processing 
times for the environmental reconstruction DFPCs. 
 
Table 4: Observed processing time of 5 image pairs by 
the six DFPC implementations. Times are measured on 
an Ubuntu 16.04 LTS platform running on an Intel i7-
3770 CPU, with 8GB of memory. 
Implementation Time to 

process 5 
Quality of the 
reconstruction 



 

 
 

 
 

image pairs 

RegistrationFromStereo 117 s Bad 

SparseRegistrationFromStereo 
(with PCL ICP) 

8.96 s Good 

DenseRegistrationFromStereo 
(with PCL ICP) 

7.27 s Good 

SparseRegistrationFromStereo 
(with CloudCompare ICP) 

10.7 s Poor 

DenseRegistrationFromStereo 
(with CloudCompare ICP) 

42.9 s Bad 

ReconstructionFromStereo 5.30 s Poor 

EstimationFromStereo 6.48 s Bad 

AdjustmentFromStereo 6.63 s Bad 

 
Environmental Mapping 
 
For environment mapping, the main approach that is 
used in the CDFF is Digital Elevation Map (DEM) built 
from sensed or reconstructed point clouds. A DEM is a 
cartesian grid where each cell represents a spatial area 
perceived by the rover, and contains the mean elevation 
given out by its sensors. The process for building such a 
DEM is the following: (i) the input point cloud is first 
transformed into the world’s frame of reference, (ii) 
then projected on a cartesian grid of predefined 
dimensions and scale (this is called the local map),  (iii) 
and finally this cartesian grid is fused into the internal 
model containing previous observations of the world by 
the rover.  As the DFNs used in this case are very 
simple, only one algorithm implementation has been 
proposed for each of the DFNs.  Table 5 lists the basic 
DFNs for building DEMs. 
 
Table 5: Summary of the different DFNs used in the 
DEM building DFPC. 
DEM Buiding DFNs 

PointcloudTransform  

Rasterization (i.e. projection of the point cloud) 

Fusion 

 
As for 3D and 2D reconstruction, each DFN has been 
tested on recorded data (in the form of ROS bag files) 
recorded on the Mana LAAS rover at the Centre 
National d’Études Spatiales (CNES) in Toulouse, 
France, in the test area shown in Figure 4.  The bags 
contain a stream of robot poses (needed for the point 
cloud transform) as well as acquired point cloud data 
from a velodyne sensor.  
 

  
Figure 4: Aerial view of the field used for DEM building 
with the CDFF 
 

Figure 5: An example of a local map of the field shown 
in Figure 4 during the rover’s run  

Using the DFPC for producing a DEM, Figure 5 shows 
a DEM produced using this function of the CDFF.  
Finally, Figure 6 shows an example of the fused map 
over several observations of the environment by the 
rover: the gradient in grey correspond to the gradient in 
elevation. 

The results to date, while convincing of function, are 
not ideal, as what is supposed to be a straight wall can 
appear several time in different orientations. This comes 
from the fact that  DEM building can only be as good as 
the quality of localization of the rover. If a mismatch 
happens between the point cloud and the pose at which 
it was acquired, the resulting DEM will be corrupted. A 



 

 
 

 
 

small error in orientation can produce remarkable errors 
in the DEM if the obstacles are at good distance to the 
rover.  Future DFPCs will make use of improved multi-
sensor localization to prevent DEM corruption. 

Figure 6:  The fused map shown in Figure 5 using 
multiple observations in the form of a gradient map 

 
Evaluation of CDFF Outputs 
 
A large amount of data is produced in the many 
processes contained in the CDFF, especially taking into 
account the number of DFNs that could be producing 
data. It is desirable to be able to assess the quality of 
this data to enable a continuous evaluation of DFNs and 
DFPCs. We define a set of data quality assessment 
functions to be applied to the vision-based process 
pipeline composed by extraction and detection, 
matching, triangulation and pose estimation, which is 
used in several DFPCs. Four DFNs used in this process 
are considered, applied in order for vision processing 
with their functions  clearly indicated by their names: 

1. FeatureExtraction2D 
2. FeatureMatching2D 
3. Reconstruction2DTo3D 
4. PerspectiveNPoint 

A set of indicators intrinsically present in the data 
produced by DFNs is used for this scope.  The 
definition of data quality assessment methods, such as 
visual feature matchability, enables a continuous 
evaluation of these algorithms [16]. 
 
In feature extraction the features are ranked by their 
response value. It is desirable to extract as many 
matchable features as possible, in fact any unmatched 
image feature is discarded in successive steps. We 

compared the response of features with respect to the 
features that were matched in the next DFN. This way 
one could obtain a preliminary idea of the goodness of a 
feature set and eventually select a subset to feed to the 
matcher (or even re-extract). While, some patterns were 
found, it would be statistically incorrect claim a general 
link between response and matchability. A high 
response does not imply repeatability [16]. Further in 
the processing pipeline, we assessed how matching 
distance could be used for similar goals. Using PnP 
estimation incorporated in a RANSAC [17] scheme 
benefits of large sets of matches (which directly 
generate 3D points). However, the set of matches 
surviving the filtering process has to be accurate or will 
produce too many outliers to handle by RANSAC. We 
define a data quality assessment function based on the 
ratio between the sum of distances of accepted matches 
(i.e. good matches) and the average distance of all the 
matches. This function (to be ideally minimized) favors 
large set of accepted matches, still penalizing large 
average distances. It proved useful as a predictor of poor 
matching performances. Concerning triangulation, it is 
possible to propagate the 2D point extraction 
uncertainty through the triangulation process. This 
yields the 3D point covariance which directly represents 
the accuracy of the point cloud. The work from Beder 
and Steffen [18] shows how to estimate the covariance 
matrix of a 3D point in Euclidean space and proposes a 
scalar measure based on the matrix singular values to 
evaluate it. To predict poor estimation by PnP we used 
RANSAC inlier percentage levels, which are a direct 
measure of when the pose estimation cannot be trusted. 
Low level inliers, even dropping to zero in some cases, 
always resulted in a completely off estimation. Having a 
predictor of reasonable motion estimation is crucial in 
pose estimation for dead reckoning processes such as 
visual odometry, where a single large error can 
compromise the localization accuracy.  
 
Table 6: figures of merit used within visual processing 
DFNs within the CDFF 
DFN Output type Figure of merit 

FeatureExtraction2D Visual 
Features 

mean response 

FeatureMatching2D 2D Point 
Matches 

 

Reconstruction2DTo3
D 

3D Point 
Cloud 

mean roundness, depth 
axis standard deviation 

PerspectiveNPoint Pose percentage of inliers 



 

 
 

 
 

(+RANSAC) Estimation 
(w/inliers) 

 
In summary, we have defined figures of merit for the 
output of four DFNs used in vision processing within 
the CDFF.  While evaluating a set of visual features 
remains a difficult task without resorting to machine 
learning methods, other figures of merit proved helpful 
in predicting poor data outputs, which often coincide 
with sub-optimal performances by DFNs.  Table 6 
summarizes the described figures of merit, where M is 
the number of accepted matches, N is the number of 
total matches and d(x) represents the computed 
matching distance for match x. 
 
Outlier Detection Capabilities 
 
Outlier or anomaly detection is a field of machine 
learning. During the training process usually only 
unlabeled data is given. Most of the data points are 
inliers, some of them could be outliers. The model 
should learn what is normal (inliers) and distinguish 
anomalies (outliers). In the context of space robotics, 
outlier detection can be used to detect dangerous or 
unexpected situations. This information can be used to 
go to a safe state in critical situations. 
We present a use case with the robot Asguard IV1, the 
fourth generation of the robot Asguard [19].  Based on 
acceleration measurements of an IMU it will detect 
unexpected situations during locomotion, for example, 
slipping, skid, or tilting. The dataset has been  recorded 
in an artificial space environment crater at a movement 
speed of about 0.15 meters per second. 
The data is preprocessed before given to the outlier 
detection algorithm. We compute the variance in each 
dimension over a sliding window of 200 samples and it 
as a feature vector. A preliminary comparison of several 
algorithms has been done with pySPACE [20], which is 
a Python framework that wraps a lot of classification 
and outlier detection algorithms. Methods like Rapid 
Outlier Detection [21], Isolation Forests [22], One-class 
SVM, or standard methods like the Mahalanobis 
distance, Gaussian Mixture Models, or k-Means [23] 
have been compared. The original dataset has been split 
into a training set (60%) and a validation set (40%) and 
the data has been annotated for this analysis. For 
comparison reasons, a threshold optimization has been 
applied so that every algorithm marks about 2-3% of the 
validation set as outliers. As performance metric we use 
the average of outlier recall and precision because of the 
high number of inliers. Results of this preliminary 

                                                        
1https://robotik.dfki-bremen.de/en/research/robot-
systems/asguard-iv.html 

evaluation can be found in Table 7.  Training 
supervised, that is, giving only inliers to the outlier 
detection algorithms in the training phase, generally 
yields better results. The overall performance, however, 
is low because the recall is usually low, that is, not all 
outliers are detected. Most algorithms have a threshold 
that can be used to increase the amount of detected 
outliers with the drawback that the precision decreases, 
that is, the number of false positives increases. To 
obtain better outlier detection results, more data would 
have  to be acquired. 
The Gaussian Mixture Model, Mahalanobis distance, 
and k-Means algorithms are implemented as data fusion 
nodes so that models trained in pySPACE can be easily 
exported to the CDFF. 
 
Table 7: Comparison of several outlier detection 
algorithms. 
Implementation Parameters Performance 

[%] 

Gaussian Mixture Model trained only on inliers, 
3 Gaussians 

55.3 

One-Class SVM trained only on inliers, 
kernel: RBF, nu: 0.15, 
gamma: 0.1 

52.4 

Rapid Outlier Detection trained only on inliers 54.7 

Rapid Outlier Detection  52.2 

k-Means trained only on inliers 50.1 

Isolation Forest trained only on inliers 54.2 

Isolation Forest  50.2 

Mahalanobis Distance  trained only on inliers 50.9 

 
Application of InFuse to Visual Tracking 
 
The CDFF also includes a visual tracking DFPC  which 
exploits a geometric model of an object to align the 
image edges, consequently enabling to estimate absolute 
pose. This DFPC is composed of several DFNs such as 
Canny edge detection, Image Filtering, Image gradient 
computation, Kalman prediction and Kalman correction. 
The parameters and a geometric model of the  visual 
tracking  DFPC can be configured and set in text file, 
which are in turn used for configuration its DFNs 
internally. 
 



 

 
 

 
 

 
Figure 7:  Visualization of the Visual tracking DFPC on  
DLR OOS-sim data: the alignment of model edges (in 
red)  onto  image edges indicate a  correct pose 
estimation and tracking. 
 
We demonstrate here a  sample pose (image shown in 
Figure 7, taken from DLR OOS-sim)  where a pose 
tracking is successful, indicated by the precise 
alignment of model contours onto the image at the 
estimated pose. The visual tracking DFPC is a typical 
InFuse application for an on-orbit satellite servicing. For 
an orbit-servicing, the target satellite needs to be tracked 
so that a servicer satellite or robot can autonomously 
replace parts or refuel  it. 
 
Application of InFuse to Rover Localisation in an 
Unstructured Environment 
 
The InFuse CDFF already includes support for external 
libraries to provide visual localisation functions. Three 
main implementations are provided. Two visual 
odometry, one designed for research and education fully 
implemented in InFuse by CNRS/LAAS, one optimised 
for space exploration rovers provided by CNES EDRES 
SDK and integrated by Magellium, with an interface 
shown in Figure 8. The open source Stereo SLAM 
ORB-SLAM is also included for long range localisation.  

Figure 8: Interface for SLAM using EDRES SDK 

Performances are evaluated using metrics described in 
[24] to provide a statistical analysis of algorithms 
performances. We are using two kinds of datasets for 
evaluation in the context planetary exploration, some of 
which are planned for release following the completion 
and public release of InFuse source code. 

1) Datasets coming from outdoor experiments done on 
the CNES Mars yard (SEROM). The ground truth is 
provided by an RTK-GPS and a one axis fiber Gyro for 
the heading. Data acquisition was performed by 
CNRS/LAAS rovers Mana and Minnie shown in Figure 
9. This setup allows to evaluate the algorithms 
performances on long straight trajectories of 70m in a 
Mars relevant environment. 

 
Figure 9: CNRS/LAAS rovers Mana (right) and Minnie 
(left) used for CDFF data acquisition. 

2) Datasets coming from indoor experiments done in the 
DLR Planetary Exploration Lab (PEL). Data acquisition 
was performed by the ExoMars BB2 prototype rover 
shown in Figure 10 with the HCRU running the CDFF 
on board.  The ground truth is provided by a tracking 
system for the full pose of sensors and a homemade 
scanner for the DEM, and the error of the most recent 
test is shown in Figure 11. This smaller setup provides 
high accuracy ground truth (<1mm in position and <1° 
in orientation for poses and less than 4mm accuracy in 
XYZ for the DEM) and has the ability to configure the 
slope intensity. It will enable the analysis of fusion 
algorithms when strong wheel slippage is encountered 
and that incoherent informations are then provided by 
localisation subsystems like wheel odometry and visual 
odometry. 



 

 
 

 
 

 
Figure 10: ExoMars BB2 Prototype Rover 

 
First results obtained on a reference outdoor dataset 
(SEROM) are promising and inline with expected 
performances. The next step is to analyse results on all 
collected datasets to confirm this first result and to get a 
deeper analysis of algorithms robustness in the context 
of planetary exploration. 

 
Figure 11: Localization error in unstructured 
environment obtained in SEROM testing 

 
 
 
Conclusions 
 
In this paper, we have presented the Common Data 
Fusion Framework (CDFF) created within the InFuse 
project.  The CDFF provides the first modular open-
source framework for fusion of robotic data using a 
wide variety of algorithms, and is specifically focused 
on providing data products for space robotics both in 
orbit and on other planets.  Among other functions, the 
CDFF provides data fusion for environmental 
reconstruction from multiple sensors and views, map 
generation for navigational learning and reasoning, 
visual identification and tracking of objects, and 

localization in both structured and unstructured 
environments.  Algorithms for machine learning and 
data analysis are also included for uses such as data 
quality assessment and outlier detection, and a product 
visualizer with log replay is included within the suite of 
development tools to facilitate analysis and debugging 
of implementations.  Work on the CDFF is ongoing and 
a public release of InFuse source code and data is 
planned for January 2019. 
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