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Free-matrices min-projection control for high frequency DC-DC converters

This paper deals with the stabilization of high frequency DC-DC converters. This kind of systems can be modeled as switched affine systems subject to a periodic sampled-data control implementation. The dynamics of these systems is expressed using the δ-operator in order to cope with high frequency switching control constraints. The novelties of this paper, first, relies on the formulation of a freematrices based min-projection control law, that allows the selection of the mode to be activated, based on the knowledge of the state variables. Second, the stability theorem, expressed in terms of a tractable optimization problem, that guarantees a practical stability result to a set and delivers the optimal control law that minimizes the volume of this one. The method is then illustrated through the control of a high frequency boost converter.

I. Introduction

Power converters are present in many systems such as electronic devices, power supplies, aircraft and automobile industries, photovoltaic installations, among others. This kind of systems needs to be managed by suitable control laws in order to increase their efficiency and reliability in their process of electric power transformation.

Often, power converters can be modeled as Switched Affine Systems (SAS's), which are a subclass of hybrid dynamical systems, i.e. they are composed of some functioning modes and a logical rule that selects the mode to be activated among the possible modes [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF], [START_REF] Liberzon | Switching in systems and control[END_REF], [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]. More precisely, the voltages and currents are continuoustime variables while the transistors, which allow the selection of mode, evolve at some discrete instants of time. A particularity of SAS's is that each mode may have its own equilibrium, which is, in general, not the same of the other. These equilibriums are solutions to the system in the generalized sense of Krasovskii. This characteristic renders this class of systems particularly interesting from the control point of view.

The literature on this power converters systems is quite rich and several control laws have been designed. One of the most popular approach relies on an average model, allowing to remove the hybrid nature of the systems and to focus on the study of a continuous-time model [START_REF] Albea | Adaptive control design for a boost inverter[END_REF], [START_REF] Middlebrook | A general unified approach to modelling switching-converter power stages[END_REF], [START_REF] Sira-Ramírez | Control design techniques in power electronics devices[END_REF]. The price to pay is that the discrete behavior of the switches is lost, limiting the system performance. Another approach refers to the so-called Pulse Weight Modulator (PWM) approach [START_REF] Khan | A generalized framework for sampled-data model analysis of closed-loop and PWM DC-DC converter system[END_REF], [START_REF] Olalla | LMI robust control design for boost PWM converters[END_REF], which consists in controlling the ratio on the time spend in some modes over a hyper sampling period. Finally, several sliding mode control laws have been developed as for instance in [START_REF] Martínez-Salamero | Analysis and design of a sliding-mode strategy for start-up control and voltage regulation in a buck converter[END_REF].

Last years, there have been remarkable efforts to analyze and control power converters by keeping their hybrid nature [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF], [START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF], [START_REF] Theunisse | Robust global stabilization of the DC-DC boost converter via hybrid control[END_REF], often referring to the hybrid dynamical systems theory [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. In this direction, one of the most popular approach consists in the introduction of minprojection control strategies [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF], [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF], [START_REF] Pettersson | Stabilization of hybrid systems using a min-projection strategy[END_REF]. These strategies consider aperiodic sampled-data control implementation. However, in some applications, it is required that the converters are periodically updated due to physical constraints [START_REF] Erickson | Fundamentals of power electronics[END_REF], [START_REF] Khan | A generalized framework for sampled-data model analysis of closed-loop and PWM DC-DC converter system[END_REF]. In this situation, it is not possible to guarantee the convergence of the trajectories to a given operating point, but to a neighborhood of it. Therefore, only practical stability results can be guaranteed, i.e. one can only ensure that the solutions to the system converge asymptotically to an invariant set, also denoted as an attractor. Therefore an objective is to design control laws that minimize the size the attractor in order to reduce the effects of the chattering around the equilibrium. Some periodic sampled-data control laws that consider a min-projection strategy can be found in the literature. The reader may refer to [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF], [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF], [START_REF] Hetel | Local stabilization of switched affine systems[END_REF], to get the general motivations. Interestingly, the authors of [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF] present a Lyapunov matrix-based min-projection control law for discrete-time systems. They define an attractor through a level set of a quadratic Lyapunov function, that represents an ellipsoid whose center is allowed to be translated from the origin. The authors demonstrated therein that this shift has a notable impact when minimizing the size of attractor. However, this result is not suitable for high-frequency systems, as in the situation of power converters, due to numerical issues generated by a small sampling time. Alternatively, a relaxed controller is presented in [START_REF] Ventosa-Cutillas | Relaxed periodic switching controllers of high-frequency DC-DC converters using the δ-operator formulation[END_REF], which does not depend on the Lyapunov matrix but is still structured by the system matrices. A model of high frequency DC-DC converters was considered in [START_REF] Ventosa-Cutillas | Relaxed periodic switching controllers of high-frequency DC-DC converters using the δ-operator formulation[END_REF], using the δ-operator, which was in introduced in [START_REF] Middleton | Improved Finite Word Length Characteristics in Digital Control Using Delta Operators[END_REF]. The motivation for using such a modeling is to avoid computational issues, when using discrete-time model with a small sampling period [START_REF] Middleton | Digital Control and Estimation: A Unified Approach[END_REF]. Nevertheless, this work only provides the attractivity of a neighborhood of the equilibrium, which is not built with a level set of the Lyapunov function, which is centered at the equilibrium.

Inspired by [START_REF] Sanchez | Robust switching control design for uncertain discrete-time switched affine systems[END_REF], which concerns discrete-time switched affine systems, the objectives of this paper are summarized in the following items:

• To design a free-matrices min-projection control, where the parameters of the control law are not structured by the Lyapunov matrix nor the systems matrices. The unstructured gain allows naturally to relax the resulting conditions and potentially to reduce the conservatism. • To provide an accurate estimation of the attractor, whose center may be lightly shifted in order to minimize its volume. • To derive conditions that guarantee the global asymptotic stability of the attractor for high frequency sampled-data control of SAS's using a dynamic model expressed using the δ-operator. • To apply this methodology to a class of DC-DC converters, as the boost converter. The paper is organized as follows. Section II described the problem under consideration. Then, the proposed control law is presented in Section III. Section IV is devoted to the validation of our main result in simulations. The paper ends with a conclusion section.

Notations: Throughout the paper, N denotes the set of natural numbers, R, the real numbers, R + , the positive real numbers, R n , the n-dimensional Euclidean space and R n×m , the set of all real n × m matrices. The set composed by the first N positive integers, namely {1, 2, ..., N }, is denoted by K. For any matrix M of R n×n , the notation M 0, (M ≺ 0) means that M is symmetric positive (negative) definite and det(M ) represents its determinant. He(A) denotes the Hermitian matrix of A. Denote by Λ K ⊂ R N , the set defined by

λ ∈ [0, 1] N | i∈K λ i = 1 .

II. Problem formulation A. Continuous-time model

A DC-DC converter is a high-frequency switched affine system, modeled as follows [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF], [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF] 

ż = A σ z + b σ , (1) 
where z ∈ R n is the state and gathers the voltages and currents of the converter. A σ and b σ are matrices of suited dimensions. Finally, the control input is σ ∈ K := {1, 2..., N }, which represents the switching signal. This control signal may only be modified at time instants t k , with k ∈ N. In this paper, the length of the sampling interval t k+1 -t k = T between two successive switching instants is assumed to be constant, known and potentially small. The equilibrium set of ( 1) is defined as follows:

Definition 1: Consider the set Ω e given by

Ω e = z e ∈ R n , A λ z e + b λ = 0, λ ∈ Λ K ,
where

A λ := i∈K λ i A i and b λ := i∈K λ i b i .
This definition encompasses some possible equilibriums. Indeed, it can exist other equilibriums outside of Ω e . On the other hand, we highlight that these periodic sampled-data systems are characterized by the fact that their trajectories do not necessarily converge into a given equilibrium z e , but in a neighborhood of it.

Denoting x := z -z e , we get the error equation of (1),

ẋ = A σ x + B σ , (2) 
where B σ := A σ z e + b σ and the convex combination

i∈K λ i B i = 0 is verified for λ ∈ Λ K .
B. Discrete-time model using the δ-operator

Following by [START_REF] Ventosa-Cutillas | Relaxed periodic switching controllers of high-frequency DC-DC converters using the δ-operator formulation[END_REF], we propose in this paper a discretetime model based on the δ-operator introduced by [START_REF] Middleton | Improved Finite Word Length Characteristics in Digital Control Using Delta Operators[END_REF], which is appropriated for high-switching frequencies. Indeed, we can find in the literature a lot of interest in the use of the δ-operator to avoid numerical issues in the computation of the discrete-time dynamics [START_REF] Middleton | Improved Finite Word Length Characteristics in Digital Control Using Delta Operators[END_REF]. Let define the δ-operator.

Definition 2 ( [START_REF] Middleton | Improved Finite Word Length Characteristics in Digital Control Using Delta Operators[END_REF]): For any function ξ from R + to R n , let us define δξ k , at any time instant t k ∈ R + , as follows

δξ k := 1 T (ξ k+1 -ξ k ), ∀k ≥ 0,
where we used the notations δξ k = δξ(t k ) and ξ k = ξ(t k ), for all k ∈ N, to ease the readability. Hence, we obtain the discrete-time dynamics of system (2) in the framework of the δ-operator, which can be identified as a class of discrete switched affine systems

δx k = A σ x k + B σ , (3) 
where x k = x(t k ) and where matrices A σ and B σ are given by

A σ = 1 T (e AσT -I), B σ = 1 T T 0 e Aσ(T -s) dsB σ , σ ∈ K. (4) 
This formulation presents an important characteristic compared to a common discrete-time formulation. Considering small values of T in the usual discretization of the continuous-time equation ( 2) may lead to several numerical problems. However, when T goes to zero, matrices A σ and B σ of the δ-modulator model converge to A σ and B σ , respectively, retrieving the continuoustime model [START_REF] Albea | Adaptive control design for a boost inverter[END_REF]. Another important issue is that matrices A σ and B σ depend explicitly on the switching period T .

Remark 1: The consideration of an equilibrium z e in Ω e , ensures that i∈K λ i B i = 0. It is important to note that, in the sequel, we will not required the same constraint on the discretized model, i.e. there does not necessarily exist a linear combination of Λ K such that i∈K λ i B i = 0. This represents an important relaxation of this paper with respect to the discrete-time formulation considered for instance in [START_REF] Sanchez | Robust switching control design for uncertain discrete-time switched affine systems[END_REF], [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF].

Let us note that the continuous evolution of (1) during two sampling times is not encompassed in (3). Nevertheless, the continuous solution can be defined by integrating the solution over a sampling interval, leading, for all t ∈ [t k , t k + T ] and for all k ∈ N, to

x(t) = e Aσ(t-t k ) x(t k ) + t t k e Aσ(τ -t k ) dτ B σ .
Therefore, we can notice that the solutions to the system are bounded during the inter-sampling time.

As mentioned above, system (3) cannot be stabilized to the origin in general, but only to a neighborhood of it. Hence, the control problem have to be relaxed, considering attractor sets, which are not necessarily reduced to a point. In this paper, we aim at considering attractors that are expressed as a level set of a Lyapunov function given by

V (x, x c ) = (x -x c ) T P (x -x c ), ( 5 
)
where P is a positive definite matrix and x c is a vector to be defined, that allows to shift the center of the level set. Then, we define the attractor by

A := {x ∈ R n , s.t. V (x, x c ) < 1}. ( 6 
)
We are now in position to formulate the objectives of the paper.

Problem 1: The design of a switching control law σ such that A is Uniformly Globally Asymptotically Stable (UGAS) for system (3). This can be summarized in the next three items:

(i) If x k is not in A at a given instant k, then δV (x k ), defined by (V (x k+1 ) -V (x k )) /T , is definite nega- tive. (ii)
The origin belongs to A. (iii) If x k is in A at a given time instant k, then x k+1 also belongs to A.

III. Free matrix-based switching control design A. Main result

Compared to [START_REF] Ventosa-Cutillas | Relaxed periodic switching controllers of high-frequency DC-DC converters using the δ-operator formulation[END_REF] where the authors use a minprojection control law structured in the system matrices A σ and B σ , we propose here a free-matrices minprojection control law. This is formalized in the following theorem Theorem 1: For a given z e ∈ Ω e , assume that matrices P ∈ R n×n 0, h ∈ R n , and

N i = N T i ∈ R (n+1)×(n+1)
as well as a parameter µ ∈ (0, 1) are the solutions to the optimization problem min µ,P,h,Ni -log(det(P )) ( 7)

s.t. P 0, (8)     Ψ i + N λ -N i - µ T 0 0 * 1 µ T P h * - µ T P     ≺ 0, ∀i ∈ K, (9) 
He h B λ + T i∈K λ i B i P B i 0, (10) 
where

Ψ i := He A i B i P h + T A i B i P A i B i , (11) 
N λ := λ i N i . (12) 
Then, the switching control law given by

σ(x k ) ∈ argmin i∈K x k 1 T N i x k 1 ( 13 
)
ensures that A is UGAS for system (3) and of a minimum size.

For the sake of simplicity, the control law σ(x k ) will be denoted simply as σ when there is no confusion.

Remark 2: By selecting parameter µ in (0, 1), the nonconvex optimization problem ( 7)-( 10) can be reformulated as a Linear Matrix Inequality (LMI), and consequently into a convex problem. Then, a line-search routine on µ ∈ (0, 1) allows deriving the optimum of the problem, as performed in [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF].

Remark 3: The optimization problem aims at maximizing log(det(P )) as in [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF]. This problem can be interpreted as the minimization of the volume of the ellipsoid defined by A.

Proof: To prove this theorem, we have to ensure that the conditions therein satisfy the three items. Assume that there exist a positive definite matrix P , a vector h and symmetric matrices N i , for i ∈ K, that are solution to the convex problem ( 8)-( 10) for a given positive parameter µ ∈ (0, 1).

Proof of (i) : Let us assume that the state x k does not belong to A. Then, by selecting x c = -P -1 h in the Lyapunov function given in [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF] we have :

V (x k , -P -1 h) = (x k + P -1 h) P (x k + P -1 h) > 1. (14)
The positive definiteness of V is guaranteed by the assumption on the positive definiteness of matrix P . The computation of δV (x k ) is given by

T δV (x k , -P -1 h) = V (x k+1 , -P -1 h) -V (x k , -P -1 h). Replacing x k+1 by x k + T δx k in the expression of V (x k+1 , -P -1 h) leads to δV (x k , -P -1 h) = T δx k P δx k + 2δx k P (x k + P -1 h).
Then, δx k is replaced by its expression in (3) and the following expression of δV is derived

δV (x k , -P -1 h) = x k 1 T A σ B σ P A σ B σ + He A σ B σ P h x k 1 ,
or, equivalently,

δV (x k , -P -1 h) = x k 1 Ψ σ x k 1 , (15) 
where σ ∈ K corresponds to the switching signal at time t k and where Ψ σ is defined in [START_REF] Hetel | Local stabilization of switched affine systems[END_REF].

The next two steps aim at including the information that mode σ is the actual control mode and also that the state x k is assumed to be outside of A. To do so, note that, if σ results from the application of the switching control law [START_REF] Khan | A generalized framework for sampled-data model analysis of closed-loop and PWM DC-DC converter system[END_REF], when the state is at x k , we have

x k 1 (N j -N σ ) x k 1 ≥ 0, ∀j ∈ K.
Therefore, for any convex combination λ ∈ Λ K , and more especially for the particular case λ corresponding to Definition 1, we have

j∈K λ j (N j -N σ ) , = N λ -N σ
that, together with the previous inequality, yields

j∈K λ j x k 1 (N j -N σ ) x k 1 = x k 1 (N λ -N σ ) x k 1 ≥ 0, (16) 
which, again, reflects that, for this state value x k , mode σ is one of the possible active mode. In a second step, we notice that the negative definiteness of δV is only required outside A, i.e. for any x ∈ R n , such that V (x, -P -1 h) > 1 and can be easily rewritten as follows

∀x / ∈ A, x 1 
P h h h P -1 h -1 x 1 > 0 
Hence, if for λ ∈ Λ K , there exist matrices P , h and N i , for i ∈ K, such that condition

x k 1 Ψ σ x k 1 < 0 holds for all (x k , σ(x k )) ∈ R n × K that verify x k 1 P h h h P -1 h -1 x k 1 > 0 and x k 1 (N λ -N σ ) x k 1 ≥ 0,
then, (i) holds. This problem can be recast, using Sprocedures, into the existence of a positive scalar µ > 0, which yields to the following inequality:

Ψ σ +N λ -N σ + µ T P h h h P -1 h -1 ≺ 0, σ ∈ K. ( 17 
)
Note that, in the previous expression, the tuning parameter µ is divided by the sampling period T , in order to simplify the conditions latter on. Lastly, by noting that

P h h h P -1 h = P h P -1 P h ,
the application of the Schur complement to this matrix in equation ( 17) allows us to retrieve condition [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF] and to conclude the proof of item (i).

Proof of (ii): The objective is here to prove that the equilibrium x = 0 belongs to A, i.e.

V (0, -P -1 h) = h P h < 1.

To do this, let us compute the linear combination of (17), weighted by λ. This yields

i∈K λ i Ψ i + N λ -N i + µ T P h h h P -1 h -1 ,
which is guaranteed to be negative definite from LMI conditions. By using i∈K λ i = 1 and the fact that i∈K λ i N i = N λ , the previous inequality reduces to

i∈K λ i Ψ i + µ T P h h h P -1 h -1 ≺ 0. ( 18 
)
The idea is to extract from this inequality a necessary condition leading to the condition h P -1 h ≤ 1. Indeed, the coefficient of the matrix located at position (n+1, n+ 1) is necessarily negative definite. An expression of the coefficient is obtained by expanding the Ψ i 's matrices, which leads to

He h B λ + i∈K λ i T B i P B i + µ T (h P -1 h -1) < 0.
According to inequality (10), we have that

h P -1 h -1 < h P -1 h -1 + T µ He h B λ + i∈K λ i T B i P B i < 0.
Hence, a necessary condition for (9) to hold is that h P -1 h -1 < 0, which corresponds exactly to the condition V (0, -P -1 h) < 1, concluding the proof of (ii).

Proof of (iii) Let us now assume that the state x k at a given time instant k is inside A, i.e. V (x k , -P -1 h) < 1. We have seen from the definition of the δ operator and from the proof of item (i), that the following expression of V (x k+1 , -P -1 h) holds,

V (x k+1 , -P -1 h) = V (x k , -P -1 h) + T δV (x k , -P -1 h) = V (x k , -P -1 h) + T x k 1 Ψ σ x k 1 
From ( 9), an upper bound of V (x k+1 , -P -1 h) is obtained as follows

V (x k+1 , -P -1 h) < V (x k , -P -1 h) -µ x k 1 P h h h P -1 h -1 x k 1 -T x k 1 (N λ -N σ ) x k 1 , = (1 -µ)V (x k , -P -1 h) + µ -T x k 1 (N λ -N σ ) x k 1 ,
where σ refers to the active mode at this time instant imposed by control law [START_REF] Khan | A generalized framework for sampled-data model analysis of closed-loop and PWM DC-DC converter system[END_REF]. This last expression has been 

V (x k+1 , -P -1 h) ≤ (1 -µ)V (x k , -P -1 h) + µ.
Since x k is assumed in A, we have V (x k , -P -1 h) ≤ 1. Moreover the assumption that µ is in (0, 1), then 1 -µ is positive, so that we have

V (x k+1 , -P -1 h) ≤ (1 -µ) + µ = 1.
This proves that x k+1 also belongs to A, which concludes the proof.

B. Comments on the main result

As mentioned in Remark 1, the previous theorem does not require that there exists a linear combination λ in Λ K such that B λ is zero. From the practical point of view, DC-DC converter models are originally provided in continuous-time and, in most case, the equilibrium in Definition 1 are defined in continuous time, and there is no guarantee that the same formulation also holds in discrete-time (unless matrices A i are the same). The price to pay is the introduction of a new condition in the optimization problem, referring to as inequality [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF]. It is however easy to see that, if there exists a linear combination λ in Λ K such that B λ = 0, then inequality (10) follows straightforwardly.

Apart from the computational benefits for high frequency, the δ-operator approach has the particularity to have continuity of the LMI conditions when the sampling period T tends to 0. Indeed, it is easy to extract from condition (9) the stability condition that would be obtained for the continuous-time version of the problem.

IV. Application to a boost converter

This section aims at illustrating how Theorem 1 is applicable to the control of a classical boost converter, characterized by two functioning modes and a switching control working at high frequency. This system is governed by [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF] where z := i L v C , where i L is the inductor current, and v C , the capacitor voltage. The matrices that define the modes are as follows

A σ = -R L (1-σ) L (σ-1) Co -1 RoCo , b σ = Vin L 0 . (19) 
The parameters are given by V in = 100V , R = 2Ω, L = 500µH, C o = 470µF and R o = 50Ω. Finally, the chosen equilibrium point is z e = [ 3 120 ] ∈ Ω e with λ = 0.22 0.78 . The optimization problem in Theorem 1 is solved in Matlab by using sedumi and the CVX solver [START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF], [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF] together with a line-search routine that selects the parameter µ, as mentioned in Remark 2. Table I gathers the matrices and parameters obtained for the switching time, T = 3.10 -5 , 10 -5 , 10 -6 . As expected, decreasing T leads to a reduction for the volume of A, and as a consequence, the center of the ellipsoid is closer to z e .

Figure 1 depicts several simulations that are obtained for the different values of T . A zoom of switching signal, marked by a grey patch in the first column. This figure nicely illustrates the practical stability result presented in this paper. Indeed, one can see the chattering that occurs around the equilibrium and that their amplitude increases as T grows. The third column of Figure 1, shows the evolution of the Lyapunov function and its position with respect to 1, that specifies if the state enters A. This allows verifying that, once the trajectory enters A, it never leaves. Finally, we perform in the last column the state evolution in the state plane and A. We highlight as A is reduced as T diminishes.

V. Conclusions

In this paper, we have proposed a min-projection control for power converters working at high frequency, as required in practical aspects of these applications. The novelty of this paper relies on the introduction of a freematrices min-projection control law. The simple control structure allows to have a lower computational load with respect to the classical Lyapunov min-projection control. The use of the δ-operator to model high frequency converters appears particularly relevant for this application. Moreover, the features help characterizing the set A, that captures the chattering effects around the equilibrium.

According to us, there are many perspectives to this contribution. Among them, the question of the robustness with respect to parameter uncertainties or variations or jitter in the sampling period are of high interests for practical purposes. [START_REF] Middleton | Digital Control and Estimation: A Unified Approach[END_REF] . From top to bottom, the different rows correspond to simulations results with sampling period T = 3.10 -5 , 10 -5 and 10 -6 sec. From left to right, the different plots show the evolution of the state variables (z 1 , z 2 ), the switching signal σ and the Lyapunov function V (x k , -P -1 ), with respect to time. The last column shows the trajectories of the error variable x k in the phase portrait.

Fig. 1 :

 1 Fig.1: Simulation results of switched affine system (1) with matrices[START_REF] Middleton | Digital Control and Estimation: A Unified Approach[END_REF] . From top to bottom, the different rows correspond to simulations results with sampling period T = 3.10 -5 , 10 -5 and 10 -6 sec. From left to right, the different plots show the evolution of the state variables (z 1 , z 2 ), the switching signal σ and the Lyapunov function V (x k , -P -1 ), with respect to time. The last column shows the trajectories of the error variable x k in the phase portrait.

TABLE I :

 I Numerical solutions obtained by solving Theorem 1, for different values of the sampling period T .

	T	µ	10 2 .P	(det(P ))	1 2	xc		N 1 = -N 2
	10 -4	0.113	0.181 0.228 0.228 0.642	393.42		1.669 -4.099	10 3 .	 -0.0007515 -0.004816 0.1149  0.1149 0.2169 3.013  -0.004816 0.004939 0.2169 
	10 -5	0.013	1.49 1.865 1.865 4.629	54.08		0.1506 -0.3214	10 3 .	 -0.01184 -0.03578 1.641  1.641 2.055 2.974  -0.03578 0.03742 2.055 
	10 -6	0.001	14.72 18.37 18.37 44.81	5.57		0.0146 -0.03012	10 4 .	 -0.01546 -0.03425 1.701 1.701 2.059 0.2962   -0.03425 0.03682 2.059 
	obtained by recognizing the expression of the Lyapunov		
	function in the second term. Together with inequality		
	(16), we are able to ensure that				
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