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Abstract

Mimicking the medical practice, this paper deals with the control of hypnosis during a surgical inter-
vention thanks to a switched control strategy. The key idea consists in starting with an initial minimum
time control for the induction phase followed by a dynamic output feedback for the maintenance phase. The
objective during the first phase is to bring the patient from its awake state to a final state corresponding to
some given depth of hypnosis, measured by the BIS, within a minimum time. Then, once the patient state is
close to the desired target, the control is switched to a dynamic output feedback ensuring that the BIS stays
in a given interval taking into account the saturation of the actuator and the multi-time scale dynamics in
the anesthesia model. Positivity of the system is also preserved thanks to the use of input saturation and
state constraints. The stability of the switched control strategy is addressed and the theoretical conditions
are evaluated on different case studies.

1 Introduction

General anesthesia consists in the control of the anesthetic and analgesic states of the patient by adjusting the
perfusion of hypnotic and/or analgesic drugs based on clinical indicators such as heart rate, blood pressure
and BIS (Bispectral index, derived from the spectral analysis of the electroencephalogram signal (EEG)). It
therefore allows surgical intervention which, otherwise, would be very painful. The use of automatic control
techniques may be considered to increase patient comfort during surgery and recovery [35], reduce dosing
differences between doctors and decrease the workload of the anesthesiologists in order to minimize human
error risk [24].

A general anesthesia procedure may be divided into three temporal phases: induction, maintenance and
reanimation. Indeed, in a traditional anesthesia approach, the anaesthesiologist starts by an initial injection
of a big amount of drugs (bolus) for a short time (induction phase), followed by a phase of manual control
corresponding to the maintenance phase. The stop of the administration of anesthetic drugs marks the transition
from the maintenance phase to the reanimation phase, which ends with the full resumption of consciousness
and physiological functions.

Most of the works tackling the automatic control of anesthesia suggests a single control law for the two
phases (induction and maintenance) using different techniques such as PID-based feedback control [1], [34],
adaptive control [17] or other techniques as in [27]. The disadvantage of such approaches can be seen in the
overshoot of the BIS and in the abrupt variation of the flow rate that should be avoided for the actuator. On
the other hand, there exist only few works that treat each phase apart as in [14] or propose a control for either
the maintenance phase [20] or the induction phase [9]. Moreover, studies generally focus on the control of one
drug (hypnotic or analgesic) and we follow the same route considering only the hypnosis control of the patient.
Let us point out also that the way to model the evolution of the drug in the patient body relies on the class of
positive systems in the sense that state, input and output are intrinsically nonnegative at all times but only few
works have been dedicated to the control problem of anesthesia in such a positive systems framework [16], [36],
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[28], [7]. It is also important to emphasize that the developments and achievements of closed-loop approaches
based on the BIS indicator can be completed with other measures and/or real data as done in the literature.
Actually, the clear maturity in PID or adaptive controllers methods have showed their interest during clinical
tests. One can in particular promote the following works: [38], [11], [23], [19], [12], [6], [29], to cite a few among
the rich literature.

The contribution of the actual paper can then be seen as a new brick in the theoretical context with the goal
to complete it by considering the two phases of induction and maintenance, the clinical test being the next step.
Let us emphasize that even if the framework of positive systems, and in particular the recent results [36], [13]
can be attractive, we chose an alternative route in order not only to be able to formalize the complete problem
combining induction and maintenance phases but also to improve the speed of convergence of the fast part of
the system.

Indeed, in a previous work [40], we presented a strategy to design a robust state feedback controller for the
hypnosis maintenance phase taking into account the saturation of the actuator, the multi-time scale dynamics in
the anesthesia model and the variability of the patient. On the other hand, the control problem of the induction
phase has been addressed in [39], using an optimal control strategy. In the current paper, the objective is
to propose a full strategy mimicking the medical practice by designing a switched controller involving a first
(optimal) open-loop control for the induction phase followed by a closed-loop control for the maintenance
phase. It may be considered as an alternative strategy to the classical combination of a feedforward control and
a feedback control that one could use to solve a tracking and regulation problem. Such a switching strategy
involving successive controllers is expected to provide better performance [21].

The paper is then organized as follows: The modeling aspects and the problem formulation are presented in
Section 2. Section 3 then proposes the switched control strategy and associated conditions of stability, based
on the notion of set invariance. The open-loop controller is set in Section 4 and the closed-loop control design
is addressed in Section 5. The approach is first illustrated in Section 6 for an ideal nominal patient model
before to discuss some robustness issues closer to real life in Section 7. The paper is ended by Section 8 with
concluding remarks and some perspectives for future works.

Notation. The notation throughout the paper is standard. For a vector x or a matrix A, x′ and A′ denote
the transpose of x and A, respectively. For two symmetric matrices of the same dimensions, A and B, A > B
means that A−B is symmetric positive definite. For a matrix A, He(A) = A′ +A. I and 0 stand respectively
for the identity and the null matrix of appropriate dimensions. For a partitioned matrix, the symbol ? stands
for symmetric blocks. |.| stands for the absolute value.

2 Modeling aspects, characteristics and problem statement

2.1 Patient model

Drug absorption, circulation, metabolism and elimination from the patient body are complex phenomena.
However, from a control engineering point of view, compartmental mammillary models are generally considered
as sufficient to represent the key ingredients of the drug dynamics in view of controller design [20]. Then, a
compartment model, known as the Pharmacokinetic/Pharmacodynamic (PK/PD) model, is classically used to
describe the circulation of drugs in a patient’s body, as shown in Figure 1.

Muscle
Intra-vascular

Blood Fat

Effect site
Compartment

-
�

-
�

?
?

?
k21x2 k13x1
k12x1 k31x3

u(t) : Continuous infusion

ke0x1
k10x1 : Elimination

1

Figure 1: The compartment model

It is based on a classical three-compartment model [10] associated to a first-order dynamics to rely the
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concentration of drug in the central compartment to its action at the brain level, denoted the effect site [4].
The four-state system may then be described as follows:

ẋan(t) = Axan(t) +Buan(t) (1)

with

A =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0

ke0/v1 0 0 −ke0


B =

[
1 0 0 0

]′
(2)

where xan = [xan1 xan2 xan3 xan4]′, xan1(t), xan2(t), xan3(t) are the masses in milligrams of the propofol in
the different compartments, xan4 is the effect site concentration in mg/l and uan is the infusion rate in mg/min
of the anesthetic. The parameters kij ≥ 0, ∀i 6= j, i, j = 1, 2, 3, are the transfer rates of the drug between
compartments. The parameter k10 represents the rate of elimination from the central compartment and v1
corresponds to the volume of the central compartment (blood). It is customary to consider that these parameters
are uncertain depending both on the inter-patient variability (i.e., the variability observed between different
individuals) and intra-patient variability (i.e., the variability observed within one particular individual) [8].
Several models have been suggested in the literature to express inter-patient variability, generally distinguishing
patients according to their sex, age, weight and/or size. In this paper, the Schnider model [32] is used to define
simulated patients used in the numerical evaluations.

2.2 Output indicator

The depth of anesthesia indicator widely used by clinicians is the BIS (the bispectral index). It is a signal derived
from the EEG analysis, which quantifies the level of consciousness of a patient from 0 (no cerebral activity) to
typically 100 (fully awake patient). It is commonly accepted that the BIS evolution is directly related to the
effect site concentration of xan4, and can be described empirically by a decreasing sigmoid function [3]1:

yBIS(xan4(t)) = yBIS0
(1− xγan4(t)

xγan4(t) + ECγ50
) (3)

yBIS0
is the BIS value of an awake patient typically set to 100. EC50 corresponds to drug concentration

associated with 50% of the maximum effect and γ is a parameter modeling the degree of non-linearity.

Remark 1 The same PK/PD model involving both the compartment dynamics and the output indicator may
be viewed as a Wiener model formed with a linear block in series with a static nonlinearity as used in [25].
Delays could also be considered, as pointed out in [3], in the expression of the link between the BIS and effect
site compartment, but yet considering the three-compartment mammillary model plus effect site compartment.
Other approaches have considered a neural network to describe the dynamics of drugs in the body, but it does
not allow to explicitly rely the model to a particular patient [42].

2.3 Equilibrium point

During a surgery, the BIS is generally brought then maintained close to yBISe = 50, or at least in an interval
between 40 and 60. Given the sigmoid describing the relation between the BIS and the effect site concentration,
it corresponds to the effect site concentration equal to EC50. The values of the other variables can then be
deduced from the unique equilibrium point of system (1) (see [40]):

xe1 = x4ev1, xe2 =
k12
k21

xe1, xe3 =
k13
k31

xe1, xe4 = EC50

and the value of the associated input is given by

ue = k10xe1
1In the sequel, the time dependence is omitted to simplify the notation.
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Moreover, the linearized function of the BIS around this target BIS value is given by [17]:

yBIS = Cxan + kbis0 (4)

with C = [0 0 0 − kbis].

2.4 Error model

Considering the change of variables x = xan−xe and u = uan−ue with xe = [xe1 xe2 xe3 xe4]′, the error model
can be described as: {

ẋ = Ax+Bu
y = Cx

(5)

The amplitude of the control is constrained as follows:

Umin ≤ u ≤ Umax (6)

where Umin is equal to −ue and Umax + ue is the maximum flow rate of the drug that can be administered in
practice.

2.5 Multi-time scale dynamics

Regardless the patient under consideration, the dynamics of metabolism and circulation of propofol in the
central compartment and at the site effect is ten times faster than in muscles, and even a hundred times faster
than in fat. It can then make sense to exhibit this difference between slow and fast dynamics in the description
of the system. By denoting xf = [x1 x4]′ ∈ Rnf the fast dynamics and xs = [x2 x3]′ ∈ Rns the slow ones,
system (5) can be written as follows:

ẋf = Afxf +Afsxs +Bfu (7a)

ẋs = Asfxf +Asxs (7b)

with matrices Af , As, Afs, Asf and Bf directly extracted from the original matrices A and B defined in (2).
Similarly, the output y may be written:

y = Cfxf (8)

with Cf = [0 − kbis]. Moreover, it has to be noted that the control problem is mainly related to the control
of the fast dynamics as the BIS is a direct function of the concentration at the effect site and thus of the fast
dynamics on which the administered drug directly acts. In that sense, the control problem may be interpreted
as the control of the fast subsystem disturbed by the slow one.

2.6 Positivity constraints

It is important to point out that the state, the input and the output of system (1), (2), (3) are nonnegative
variables and then have to respect at all times the following positivity constraints:

xan ≥ 0
uan ≥ 0
yBIS ≥ 0

(9)

Furthermore, matrix A is a Metzler matrix [5]. Note that these positive constraints can be restated in the
context of the error model (5) or system (7) as defined in (6) and

x ≥ −xe
y ≥ −Cxe

(10)

At this stage, one could feel inclined to formulate a control problem in the positive systems framework by
exploiting the results developed in [33], [13]. This could be done by using a dynamic output feedback (similarly
to that one defined later in (12)), in association with a Lyapunov-based stability analysis involving a diagonal
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positive matrix to build the associated quadratic Lyapunov function. In that case, according to the structure
of the matrices A, B and C (or similarly to matrices Af , Bf and Cf ), one can easily check that sign conditions
are imposed on the matrix of the controller to preserve the positivity property for the closed-loop system. The
side problem is that, with this strategy, the closed-loop dynamics cannot be improved more than the more rapid
mode. It means that one can improve the slow dynamics but, as commented in Section 2.5, this is not the key
problem.

Then we choose to exploit the framework associated to systems with saturated inputs [37], [41], which
implicitly ensures the satisfaction of (6) and therefore implicitly the positivity constraints (9).

2.7 Control problem formulation

The control objective of the paper is directly inspired by the clinical practice where, in order to quickly sedate
the patient and bring its state close to the equilibrium xe, the anesthesiologist begins with a bolus injection then
adjusts manually the infusion rate of the propofol to maintain the patient state close enough to the equilibrium.
The control problem can then be summarized as follows:

Problem 1 Devise a control strategy embedding the induction and maintenance phases stated as two successive
steps, namely an optimal open-loop control to induce quickly the hypnosis followed by a closed-loop control for
the maintenance phase, and guarantee the stability of the overall switching control scheme.

3 Stability analysis of the switched control strategy

The key idea expressed in Problem 1 is to implement a two-step controller u defined as follows:

u =

{
uI if x ∈ Rn/D
uM if x ∈ D (11)

uI is the induction control, which corresponds to an open-loop control to bring the patient state from its
awake state to the set D in a minimum time. uM is the maintenance control, which is a closed-loop control
to maintain the patient state in the set D. That means that D has to be an invariant set for the closed-loop
system ẋ = Ax+BuM . The scheme in Figure 2 summarizes the approach involving the induction control phase
followed by the maintenance control phase.

x1

x4

b

b −xe1

−xe4

Awake
patient

Patient
BIS ≃ 50

Induction Maintenance

Optimal time control

Closed-loop
control

Figure 2: Scheme describing the approach with an ”induction phase” followed by the ”maintenance phase”

Let us consider uM as the saturated output of a dynamic output feedback controller of the form:{
ẋc = Acxc +Bcy + Ecφ(yc)

yc = Ccxc +Dcy
(12)
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where xc ∈ Rnc is the controller state, y ∈ Rp is the controller input and yc ∈ Rm its output. Ac, Bc, Cc, Dc, Ec
are given matrices of appropriate dimensions. The term Ecφ(yc) has been added to introduce an anti-windup
action to reduce the negative effects of the saturation [41], [37]. In this term, φ(yc) = sat(yc)−yc is a dead-zone
function, where sat is the standard saturation function defined as:

sat(yc) = sign(yc)min{|yc|, u0} (13)

with u0 the symmetric level of the saturation.

Remark 2 From a practical point of view, u0 is a symmetric bound defined as u0 = min{ue, Umax}. Consid-
ering that Umax � 2ue, one can set that u0 = ue.

The interconnection of system (5) with controller (12), when u = uM = sat(yc), gives the following closed-
loop system

Ẋ = AX + Bφφ(yc) (14)

with X =
[
x′ x′c

]′ ∈ Rn, with n = nf + ns + nc, yc = KX ∈ Rm and

A =

[
A+BDcC BCc

BcC Ac

]
; Bφ =

[
B
Ec

]
;

K =
[
DcC Cc

]
The following proposition issued from [37] gives a solution to build an ellipsoidal invariant setD = E(N−1, ε) =

{X ∈ Rn;X ′N−1X ≤ ε−1}, with a symmetric positive definite matrix N and a positive scalar ε, associated to
the closed-loop system (14).

Proposition 1 If there exist a symmetric positive definite matrix N ∈ Rn×n, a diagonal positive definite matrix
S ∈ Rm×m, a matrix Z ∈ Rm×n and a positive scalar ε such that[

AN +NA′ BφS − Z ′
? −2S

]
< 0 (15)

[
N NK′(j) − Z ′(j)
? εu20(j)

]
≥ 0 j = 1, ...,m. (16)

then the ellipsoid E(N−1, ε) is a region of asymptotic stability for the saturated closed loop system (14).

An implicit objective behind Problem 1 is to keep the BIS, during the maintenance phase, in an admissible
interval [40, 60], which can be defined as a polyhedral set P:

P = {X ∈ Rn; a′kX ≤ 1, k = 1, ..., 2}

Then, an optimization problem to determine the invariant set D may be to maximize the set included in the
polyhedral set P. It is formulated as follows:

min
N,S,ε

ε

under (15), (16), a′kNak ≤ ε
(17)

Hence, as soon as there exists an induction control uI bringing x in D from x(0) in finite time, the switched
control strategy (11) is solution to Problem 1, where D is a solution to (17) for a given uM = sat(yc) of the
form (12).
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4 Induction control

Let us first focus on the induction control problem. As above explained, the objective during the first phase is
to bring the patient state from its awake state xan(0) = 0 to some local set around the equilibrium target state
xan = xe (or equivalently to bring the error model state from an initial state x(0) = −xe to a set D around
the origin x = 0) in a minimum time. The computation of the control that brings the system to some given
set D in a minimum time appears to be a complicated problem. Indeed, the final state is not fixed but has to
belong to a certain set, or at least to the boundary of this set. The computation of the optimal control strongly
depends on this set.

An alternative route consists in taking the origin of system (5), x = 0, as the final state, i.e, searching the
minimal time control which allows to bring back the state to the origin. Then, as soon as the system trajectories
enter the set D, one can switch to the maintenance control. Moreover, as above commented, the BIS is directly
related to the fast state xf . Trying to bring the slow state xs to the origin would take a considerable time with
no direct effect on the BIS. Thus, the strategy adopted in this paper consists in designing an optimal control
that brings the fast state to the origin in a minimum time regardless of the slow ones.

The induction problem can then be written as follows:

min
u

J(x, u) =

∫ Tf

0

dt = Tf

s. t ẋ = Ax+Bu, x(0) = −xe, xf (Tf ) = 0

Umin ≤ u ≤ Umax

(18)

Remark 3 As the optimal control problem (18) only ensures that xf goes to 0, it has to be checked that all
the state enters D before to switch to the maintenance control. This may be done by adding a constraint in the
optimization problem (17) to ensure that the slow part of the initial state (xs(0) = [−xe3 − xe4]′) belongs to D
when the fast state xf approaches its equilibrium. This is typically done with the condition:[

ε εcx
εcx N

]
> 0 with cx =

[
0 xs(0)′ 0

]′
(19)

The minimum time control problem has been extensively studied in the literature (see [22], [2] for recent
references on the subject). In the case of linear systems, the existence and uniqueness of the solution is known
to depend on the controllability property of the system. The optimal control consists of a countable number of
commutations between Umax and Umin. Moreover, as soon as the eigenvalues of the model are real, the number
of switches is at most equal to n − 1, where n is the order of the system. Hence, in our case, at most three
commutations have to be considered.

The characterisation of the optimal control u∗ is detailed in [39]. Denote λ ∈ Rn a co-state vector used to
define the Hamiltonian H associate to problem (18):

H(t, x, u, λ) = 1 + λ′(Ax+Bu) (20)

Using the maximum principle of Pontryagin [22], it may be shown that the optimal control u∗ has a bang-bang
form described by the following function:

u∗ =


Umin if λ∗

′
B > 0

Umax if λ∗
′
B < 0

undetermined if λ∗
′
B = 0

(21)

where u∗ and λ∗ verify the Pontryagin conditions [22]. The existence, uniqueness and normality (no in-
determinability) of this control is guaranteed thanks to the fact that system (5) is fully controllable [26].
Moreover, according to the particular structure of B defined in (2), function (21) can be written as

u∗ =

{
Umin if λ∗1 > 0

Umax if λ∗1 < 0
(22)

where λ∗1 is the first component of vector λ∗.
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From a practical point of view, the initial values of the co-state vector λ∗ being unknown, an iterative
approach has to be used [39]. On the other hand, considering that the Hamiltonian should be equal to zero at
any point of the optimal trajectory and that u(t = 0+) = Umax (such that the trajectory is increasing from
x(0) = −xe < 0 to xf (Tf ) = 0), it follows that:

λ∗1(0) =
−1

Umax − Umin
(23)

A Newton gradient method may then be employed to determine the other components of λ∗(0).

5 Maintenance control

5.1 Controller description and problem formulation

Let us turn now to the design of the maintenance control uM , considering a dynamic output controller of the
form (12). Paying attention to the multi-time scale of dynamics as described in Section 2.5 and to the particular
structure of B (defined in (2)), it is suggested to shift the control problem of system (5) to that one of the
fast dynamics system (7a). Several cases may be considered to take care of the slow state xs appearing in the
fast dynamics system as some additive disturbance. The simplest case may be to forget this disturbance in the
design step then to evaluate the controller obtained for the overall system thanks to Proposition 1. A more
elegant option is to explicitly consider the interconnection of the two subsystems. The slow state xs is then
considered as a bounded disturbance for the fast system belonging to some a priori given set. Similarly the fast
state plays the role of a bounded disturbance for the slow subsystem (7b).

The interconnection of system (7)-(8) with controller (12), when u = uM = sat(yc), may then be written as

˙̃x = Ãx̃+ B̃φφ(yc) + B̃sxs (24a)

ẋs = Asxs + B̃xx̃ (24b)

yc = K̃x̃ (24c)

where

x̃ =

[
xf
xc

]
; Ã =

[
Af +BfDcCf BfCc

BcCf Ac

]
; B̃φ =

[
Bf
Ec

]
B̃s =

[
Afs

0

]
; K̃ =

[
DcCf Cc

]
; B̃x =

[
Asf 0

]
The maintenance control design problem may then be formulated as follows:

Problem 2 Design Ac, Bc, Cc, Dc, Ec and characterize two invariant sets in which the trajectories of the fast
and slow subsystems remain confined, respectively.

5.2 Controller synthesis

The solution presented in this section relies on the following result.

Proposition 2 If there exist two symmetric positive definite matrices P ∈ R(nf+nc)×(nf+nc), Q ∈ Rns×ns , a
diagonal positive definite matrix T ∈ Rm×m, a matrix G ∈ Rm×(nf+nc), matrices Ac, Bc, Cc, Dc, Ec and six
positive scalars τ1, τ2, τ3, τ4, η and δ satisfyingÃ′P + PÃ+ τ1P PB̃φ −G′T PB̃s

? −2T 0
? ? −τ2Q

 < 0 (25)

[
A′sQ+QAs + τ3Q QB̃x

? −τ4P

]
< 0 (26)
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[
P K̃ ′(j) −G

′
(j)

? ηu20(j)

]
≥ 0 j = 1, ...,m. (27)

τ2η − τ1δ ≤ 0 (28)

−τ3η + τ4δ ≤ 0 (29)

then matrices Ac, Bc, Cc, Dc, Ec and sets E(P, η) := {x̃ ∈ Rnf+nc ; x̃′Px̃ ≤ η−1} and E(Q, δ) := {xs ∈
Rns ;x′sQxs ≤ δ−1} are solution to Problem 2.

Proof : The proof mimics that one of Proposition 1 in [40] dedicated to the static state feedback case. Consider
for the fast closed-loop subsystem (24a), the Lyapunov quadratic function V (x̃) = x̃′Px̃, P = P ′ > 0. We
aim at proving that V̇ (x̃) < −α(V (x̃)), α being a K-function, for any x̃ such that x̃ /∈ int(E(P, η), for any
xs ∈ E(Q, δ). In other words, the following inequality must be verified using the S-procedure:

V̇ (x̃) + τ1(x̃′Px̃− η−1) + τ2(δ−1 − x′sQxs) < −α(V (x̃)) (30)

We use also the modified sector condition [37], which expresses that for any x̃ belonging to the polyhedron
S(|K̃ −G|, u0) defined by (recall that u0 is defined in Remark 2):

S(|K̃ −G|, u0) = {x̃ ∈ Rnf+nc ;−u0 ≤ (K̃ −G)x̃ ≤ u0}

the sector condition φ(K̃x̃)′T (φ(K̃x̃)+Gx̃) ≤ 0 is verified, T being a positive diagonal matrix. Thus, a sufficient
condition to verify (30) is that

V̇ (x̃) + τ1x̃
′Px̃− τ2x′sQxs

−2φ(Kx̃)′T (φ(K̃x̃) +Gx̃) < −α(V (x̃))
(31)

and
−τ1η−1 + τ2δ

−1 < 0 (32)

as long as E(P, η) ⊆ S(|K −G|, u0), which is ensured by satisfying the inequality (27). The inequality (31) can
be written as

ζ ′Ωζ < −α(V (x̃)) (33)

with ζ = [x̃′ φ(yc)
′ x′s]

′ and Ω being the left-hand side of inequality (25). The satisfaction of relation (25) means
that ζ ′Ωζ < 0. Therefore there exists a small enough positive scalar α such that ζ ′Ωζ < −αx̃′x̃, and thus (33)
holds. Then, the satisfaction of (25), (27) and (28) guarantees the invariance of E(P, η) for the closed-loop fast
subsystem, for any xs ∈ E(Q, δ). Conversely, the satisfaction of the conditions (26) and (29) guarantees the
invariance of E(Q, δ) for the slow subsystem, for any x̃ ∈ E(P, η). �

Proposition 2 gives a sufficient condition in terms of matrix inequalities to solve Problem 2. Nevertheless,
the inequalities are nonlinear because they include products between decision variables, involving in particular
matrices Ac, Bc, Cc, Dc, Ec and P . In order to linearize at least partially the conditions of Proposition 2,
we consider that we want to design a controller of the same order as the fast subsystem: then we consider
nc = nf . Furthermore, we use the congruence transformation [31] to establish a sufficient set of conditions to
solve Problem 2.

The following proposition gives constructive conditions for the dynamic output feedback controller design
Problem 2.

Proposition 3 Suppose that there exist symmetric positive definite matrices X ∈ Rnf×nf , Y ∈ Rnf×nf , M1 ∈
Rnf×nf , M2 ∈ Rnf×nf , Q ∈ Rns×ns , a diagonal positive definite matrix S ∈ Rm×m, matrices L ∈ Rm×nf ,
F ∈ Rnf×p,W ∈ Rnf×nf , Z1 ∈ Rm×nf , Z2 ∈ Rm×nf , Q1 ∈ Rnf×m, Dc ∈ Rm×p, K ∈ Rnf×nf and positive
scalars α, τ1, τ2, τ3, τ4, η and δ satisfying

He(L+ τ1
2
Y ) ? ? ? ? ?

W ′ +A′ + τ1I He(H+ τ1
2
X) ? ? ? ?

SB′
f − Z1 Q′

1 − Z2 −2S ? ? ?
A′
fs A′

fsX 0 −τ2Q ? ?
0 X 0 0 −M1 ?

L+K 0 0 0 0 −M2

<0 (34)

9



M1 +M2 < 2I (35)
A′sQ+QAs + τ3Q ? ? ? ?

0 −τ4Y ? ? ?
A′sfQ −τ4I −τ4X ? ?

0 AsfY 0 −αI ?
αQ 0 0 0 −αI

 < 0, (36)

 Y ? ?
I X ?

L(j) − Z1(j) Dc(j)Cf − Z2(j) ηu20(j)

 ≥ 0, j = 1, ...,m (37)

τ2η − τ1δ ≤ 0 (38)

−τ3η + τ4δ ≤ 0 (39)

with A = Af +BfDcCf , L = AfY +BfL and H = XAf +FCf . Then, the dynamic output feedback (12) with
matrices:

Dc

Cc = (L−DcCfY )(V ′)−1

Bc = U−1(F −XBfDc)
Ac = U−1(W ′ +XK + FCfY +XBfDcCfY )(V ′)−1

Ec = U−1(Q1 −XBfS)S−1

(40)

where U and V are nonsingular matrices such that UV ′ = I −XY and

P =

[
X U

U ′ X̂

]
, X̂ = U ′(X − Y −1)−1U (41)

and the sets E(P, η) and E(Q, δ), defined as in Proposition 2, are solution to Problem 2.

Proof : Consider matrix P defined in (41), then one can define its inverse P−1 as follows

P−1 =

[
Y V

V ′ Ŷ

]
(42)

for which the following relations hold

XY + UV ′ = I U ′V + X̂Ŷ = I

U ′Y + X̂V ′ = 0 XV + UŶ = 0

Define

J =

[
Y V
I 0

]
(43)

which is nonsingular by construction. Pre- and post-multiplying (25) respectively by diag{J , S, I} and
diag{J ′, S, I}, with S = T−1, it followsJ (PÃ+ Ã′P + τ1P )J ′ ? ?

SB̃′φPJ ′ −G′J ′ −2S ?

B̃′sPJ ′ 0 −τ2Q

 < 0 (44)

By replacing in (44) matrices Ac, Bc, Cc, Dc and Ec by their expressions given in (40), relation (44) can be
written as follows

Z0 + U ′1U2 + U ′2U1 < 0 (45)

with

Z0 =


L+ L′ + τ1Y ? ? ?
W ′ +A′ + τ1I H+H′ + τ1X ? ?
SB′r − Z1 Q′1 − Z2 −2S ?
A′fs A′fsX 0 −τ2Q


U1 =

[
0 X 0 0

]
U2 =

[
L+K 0 0 0

]
(46)
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and with G = [G1 G2]; Z1 = G1Y + G2V
′; Z2 = G1, Q1 = XBrS + UEcS. By taking into account the

definition of Z0, U1 and U2 given in (46), relation (34) can also be written as follows: Z0 ? ?
U1 −M1 ?
U2 0 −M2

 < 0 (47)

which is equivalent by using the Schur complement to

Z0 +
[
U ′1 U ′2

] [ M−11 ?
0 M−12

] [
U1

U2

]
< 0 (48)

By combining relation (35) with the properties (I −M1)M−11 (I −M1) ≥ 0 and (I −M2)M−12 (I −M2) ≥ 0, one
gets M−11 ≥M2 and M−12 ≥M1, respectively. From this, it follows that[

M−11 ?
−I M−12

]
> 0 (49)

Then, one gets:
Z0 + U ′1U2 + U ′2U1

< Z0 +
[
U ′1 U ′2

] [ M−11 ?
0 M−12

] [
U1

U2

]
< 0

(50)

Hence, one can conclude that if relation (34) holds, then (25) is satisfied.
By pre- and post-multiplying relation (26) by diag{I, J } and diag{I, J ′}, respectively, one obtains:A′sQ+QAs + τ3Q ? ?

Y A′sfQ −τ4Y ?

A′sfQ −τ4I −τ4X

 < 0, (51)

The left-hand side of (51) can be written also as follows

Z1 =

A′sQ+QAs + τ3Q ? ?
0 −τ4Y ?

A′sfQ −τ4I −τ4X


+He(

 0
Y A′sf

0

 [Q 0 0
]
)

(52)

which satisfies:

Z1 ≤

A′sQ+QAs + τ3Q ? ?
0 −τ4Y ?

A′sfQ −τ4I −τ4X


+α−1

 0
Y A′sf

0

 [0 AsfY 0
]

+ α

Q0
0

′ [Q 0 0
] (53)

for some positive scalar α. By using the Schur complement on the right-hand side of (53), one gets the left-hand
side of relation (36). It follows that if relation (36) holds then relation (51) holds and therefore relations (26)
is also satisfied.

Finally relation (37) is derived by pre- and post-multiplying relation (27) by diag{J , I} and diag{J ′, I},
respectively. �

5.3 Numerical issues

The conditions of Proposition 3 still contain some products between the decision variables and cannot be formally
considered as LMIs. Most of the nonlinearities concern the product between a scalar τi, i = 1, · · · , 4 and a
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matrix (or scalar) and come from the use of the S-procedure. Although their impact on the solution cannot be
neglected, it is rather common to select them such as to find a feasible solution, either with some trial-and-error
procedure or with a grid search. Moreover, τ1 acts as a pole placement constraint on the closed-loop system and
may be selected as such. Parameter α is used to break the nonlinear term QAsfY . It has also to be selected a
priori such as to find a feasible solution. The optimization may then be to enlarge the sets E(P, η) and E(Q, δ)
thanks for example to the parameters η and δ, by solving the optimization problem:

min δ + η

under (34)− (39)
(54)

The design step performed thanks to Proposition 3 must be followed by an analysis step (Proposition 1) to
make more accurate the determination of the full ellipsoidal invariant set D.

6 Numerical illustration

Let us consider a patient whose characteristics are: male, 53 years, 177 cm and 77 kg. The associated pharma-
cokinetic parameters are computed with the Schnider model [32], allowing to define:

A =


−0.9170 0.0683 0.0035 0

0.3021 −0.0683 0 0
0.1958 0 −0.0035 0
0.1068 0 0 −0.4560


with an equilibrium associated to BIS = 50 given by:

xe1 = 14.51mg, xe2 = 64.26mg, xe3 = 809.2mg,

xe4 = 3.4mg/l, ue = 6.08mg/min

and parameters a1 = 0.5 and a2 = −0.5. The parameters used in the output equation (3) are EC50 = 3.4mg/l
and γ = 3 [3], allowing to determine those of the linearized output equation (4): kbis = 22.06 and kbis0 = 125.
With the set of parameters: τ1 = 2.5, τ2 = 0.00052, τ3 = 0.0055, τ4 = 27, α = 5.75, a solution to the
optimization problem (54) is given by the controller:

Ac =

[
−13.11 −798.26

0.13 −24.28

]
, Bc =

[
28.31
1.08

]
, Ec =

[
−0.89
−0.01

]
Cc =

[
13.66 −194.14

]
, Dc = 18.07.

The analysis of the closed-loop system (14) may then be performed thanks to the optimization procedure (17)
(including also the constraint (19)) to build the set D. To build the induction control uI , one optimization is
performed with the Matlab function fminsearch. With parameters Umin = −ue and Umax = 100mg/min, and
recalling that λ∗1(0) is known a priori, one obtains:

λ∗(0) =
[
−0.0094 −0.1876 0.0011 0.0007

]
With this initial co-state vector and initial patient state xan(0) = 0, uI turns out to be initially equal to
Umax + ue then commutes to 0 at time Tcom = 0.545min, with an optimal Tf = 1.842min.

The patient state trajectory obtained with the switched controller (11) is plotted on Figure 3, with the
associated control plotted on Figure 4. The switch between uI and uM occurs as soon as the trajectory enters
D. It may be seen in Figure 5, which plots the time evolution of the function X ′εN−1X, that this happens at
time Tswitch = 1.7507min (i.e. X ′εN−1X becomes lower than 1).

The corresponding evolution of the BIS is plotted on Figure 6. One can check that the BIS trajectory enters
the interval [40, 60] at time t = 1.1min. Furthermore, one can observe that the positivity constraints discussed
in Section 2.6 are satisfied.
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Figure 3: Time evolution of the controlled nominal patient state (components 1 to 4 of state X).

Figure 4: Time evolution of the switched control u (uI followed by uM as soon as the trajectory enters D).

7 Robustness issues

Until now, we have considered an ideal case where the model of a patient is perfectly known. Of course, this is
far from being the reality, and we suggest here how the results may be used to approach more realistic situations.
Typically, different sources of uncertainty have to be taken into account to go closer to reality.

First of all, the patient model is uncertain, even for a given patient, and the structure itself (4 compartments,
Schnider model used to describe the uncertainty), although very frequently used in the literature, should be
regarded with caution. Considering the same structure but used to represent a set of patient (the idea being
to represent some intra-patient variability as an inter-patient variability), the uncertainty is encapsulated in
parameters k10, k12 and k21. The uncertainties of the dynamics may then be described using an uncertain
matrix A included in a polytope with N = 23 = 8 vertices (3 being the number of uncertain linear parameters
in the matrix), that is:

A =

N∑
i=1

λiA
[i], with

N∑
i=1

λi = 1, λi ≥ 0 (55)

with A[i] corresponding to the vertices of the polytope in which A is defined.
A key property of Proposition 1 is that convexity is preserved when considering a polytopic uncertain

matrix A. It means that, as soon as conditions (15)-(16) are satisfied for all the vertices A[i], the stability of
the uncertain system is satisfied and the resulting set D = E(N−1, ε) is a region of invariance for the uncertain
closed-loop system [37]. Sources of uncertainties in the equilibrium (then in parameters ak and cx) may be
addressed in the same way and the optimisation problem (17) may be directly applied for the uncertain case.
Moreover, the closed-loop maintenance system is actually globally stable (it can be checked by replacing Z by
NK in Proposition 1). It means that one can switch from uI to uM before entering the ellipsoid D without
loosing stability, although to the detriment of the guarantee that the BIS will not pass below 40. Then, as soon
as the trajectory will go in D, the closed-loop maintenance control will guarantee that the performance will be
satisfied.

On the other hand, the computation of the induction control uI is patient dependent since it has to be
performed in open loop. The variability of the patient directly influences the instant of commutation between

13



Figure 5: Time evolution of the function X ′εN−1X. It becomes lower than 1 as soon as the state X enters D.

Figure 6: Time evolution of the bispectral index.

Umax and Umin. This is not a problem to personalize the induction policy to each patient as the computation
of λ∗(0) (which will induce the commutation) is performed offline, but the intra-patient variability should also
be taken into account, at least to guarantee that, although not being time optimal, the open-loop trajectory of
the fast state will approach the invariant set D before to switch.

Let us illustrate those aspects numerically. To evaluate the intra-patient uncertainty, simulations are per-
formed by considering uncertainty of ±10% on the parameters k10, k12 and k21, but considering the initial
co-state vector λ∗(0) equal to the solution with the nominal patient (see Section 6). The switch from uI to uM
occurs either when entering D or after 2 minutes. Figure 7 illustrates the simulations with the vertices of the
intra-patient uncertainty. One can check that, except for the nominal case (black line), the switch occurs with
the time trigger, but this does not prevent the BIS to remain in its safe interval [40, 60].

To evaluate now the inter-patient uncertainty, the idea is to consider one single output feedback controller
for the maintenance phase, but considering that the induction phase control uI has been adjusted (offline) for
each patient. Then if we consider a set of patients, male or female, belonging to interval 20-70 years, 50-100 kg,
150-200 cm, the uncertain pharmacokinetic parameters are given in Table 1.

Table 1: Pharmacokinetic model parameters for the nominal patient (section 6) and for a set of adult patients.
Parameters Nominal patient Set of adult patients
k10 (min−1) 0.4191 [0.249, 0.898]
k12 (min−1) 0.3020 [0.206, 0.487]
k21 (min−1) 0.0683 [0.065, 0.072]
k13 (min−1) 0.1958 0.1958
k31 (min−1) 0.0035 0.0035

From this set of parameters, one can build the eight vertices A[i] of the uncertain dynamics matrix A.
Then, considering the nominal controller computed in Section 6, the objective is to evaluate the stability of
the closed-loop maintenance system. The uncertain version of the optimisation problem (17) allows to verify
that the problem is feasible and the ellipsoidal domain obtained in the uncertain case is almost unchanged.
Moreover, simulations plotted on Figure 8 allow to illustrate the maintenance control strategy, as soon as the
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Figure 7: Time evolution of the bispectral index (upper plot) and input u (lower plot) - Uncertain case (±10%
of variation of parameters k10, k12 and k21). The nominal case is also plotted in solid black line.

optimal control uI is preliminary computed for each patient (eventually with some intra-patient uncertainty).

Figure 8: Time evolution of the bispectral index (upper plot) and input u (lower plot) - Uncertain case repre-
senting the inter-patient variability described in Table 1.

One can also check that, for the nominal controller computed in Section 6, the closed-loop dynamics is subject
to the influence of uncertainties on the closed-loop maintenance control system. Typically, the slow modes are
almost unchanged (as expected), and the modes issued from the controller are also the same around {−15± 4}.
On the other hand, the two modes related to the fast dynamics significantly vary between {−2.78, − 7.36} and
{−3.80± 1.72} for the set of patients described in Table 1.

Another source of uncertainty could be taken into account. Although not very often explicitly considered in the
literature, the presence of a delay in the relationship between the site effect concentration and the BIS indicator
has been underlined by several authors [30, 18]. Just to illustrate the importance of taking into account the
delay, one can check in Figure 9 that increasing delay may induce instability: the system remains stable with
10 seconds of delay but becomes instable with 30 seconds of delay. During the induction phase, the control is
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essentially open loop and, then, is not affected by such a measurement delay. During the maintenance phase,
delay may be considered with a delay-version of Proposition 1 (see [15] for example, which could be expanded
to the case with fast-slow dynamics).

Figure 9: Time evolution of the bispectral index (upper plot) and input u (lower plot) - Influence of an output
delay.

8 Conclusion

In this paper, we have shown how to construct a switching control strategy inspired by medical practice. Indeed,
using an optimal control scheme, we mimic the strategy already considered by the anesthesiologist with an initial
injection of a large quantity of drug (bolus) for a short time, followed by a phase without addition of drugs
(uan = 0) before switching to the maintenance phase. Only the open-loop phase may be considered as optimal.
As soon as the trajectory enters the invariant ellipsoidal domain, the controller switches to the closed-loop
maintenance phase and it is no more question of time optimality but of regulation. This type of result can be
also recovered by using the invariant set theory (see, for example, the developments in the discrete-time case in
[14]). The stability of the overall scheme is guaranteed when the switch occurs in a safe invariant domain of the
closed-loop maintenance system. The approach considers a nominal problem where the patient model is known
(related to its physical characteristics as suggested by [32]) but the extension towards more realistic situations
is discussed. Of course, this paper does not claim to solve the real-life control problem, but intends rather to
give significant insights to approach it, with a switched control rule combining an optimal open-loop action to
induce anesthesia and a output feedback control to maintain hypnosis of the patient.

The results proposed in the paper imply several directions for future works. In particular, one could consider
the reference tracking problem and address it through the addition of an integrator in the control loop or thanks
to the use of more advanced techniques as that one issued from reset control systems. Furthermore, in order
to be closer to the real-life anesthesia, control scheme with sampled output or even event-triggered output
controller could be investigated. Finally, further works could more explicitly consider some key properties of
anesthesia dynamics, that are singularly perturbed systems and positive systems, in a combined control design
strategy.
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