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Javier A. Cruz-López, Vincent Boyer
Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León
66451, Monterrey, Mexico

javier.cruz.003@gmail.com, vincent.boyer@uanl.edu.mx,

Didier El-Baz
LAAS-CNRS, Université de Toulouse, CNRS

Toulouse, France
elbaz@laas.fr

Abstract—This paper presents two parallel implementations
of the Back-propagation algorithm, a widely used approach for
Artificial Neural Networks (ANNs) training. These implemen-
tations permit one to increase the number of ANNs trained
simultaneously taking advantage of the thread-level massive
parallelism of GPUs and multi-core architecture of modern
CPUs, respectively. Computational experiments are carried out
with time series taken from the product demand of a Mexican
brewery company; the goal is to optimize delivery of products.
We consider also time series of the M3-competition benchmark.
The results obtained show the benefits of training several ANNs
in parallel compared to other forecasting methods used in the
competition. Indeed, training several ANNs in parallel yields to
a better fitting of the weights of the network and allows to train
in a short time many ANNs for different time series.

Keywords-Product Demand Forecasting, Neural Networks,
Back-Propagation, GPU, Multiprocessing.

I. INTRODUCTION

In recent years, artificial neural networks (ANN) have
proven to be a powerful tool for classification and pattern
recognition. One of the main reasons is its ability to learn
from experience and from general information. The ANNs
have been used in a wide variety of fields such as science,
business and industry.

Back-propagation is an algorithm that has been widely used
in training neural networks for its simplicity of implemen-
tation and its efficiency. This paper deals with the study of
the implementation of the Back-propagation algorithm on a
Graphics Processing Unit (GPU) and on a multi-core CPU
such that several ANNs can be trained simultaneously. The
objective is to increase the diversity of the search to obtain the
best configuration for the problem under study. In particular,
the expected benefits of training several ANNs in parallel
compared to other forecasting methods are a better fitting of
the weights of the network and quick training of many ANNs
for different time series.

GPU are powerful graphics engines but also highly parallel
computing accelerators, this characteristic has spawned the
research community to map different computationally complex
and demanding problems to the GPU. A parallel implemen-
tation via CUDA of the dynamic programming method for
solving the knapsack problem on NVIDIA GPU is presented in
[3] showing a speedup for large size instances compared with

the sequential implementation. In [2] a survey with recent ad-
vances on GPU computing in Operation Research is presented,
which shows that significant works have been proposed to
parallelize meta-heuristics on such an architecture. This effort
in general-purpose computing on the GPU has positioned it
as a compelling alternative to traditional microprocessors in
high-performance computing (HPC) systems.

In this paper, we detail the parallel implementation of the
Back-propagation algorithm on GPU and multi-core proces-
sors. In particular, we study the benefits of training several
ANNs in parallel. We display and analyze computational
results for an industrial application (we consider time series
taken from the product demand of a Mexican brewery com-
pany) and for problems of the M3 competition benchmark.

The paper is organized as follows. Section II is dedicated
to the Back-propagation algorithm. In Section III, GPUs and
their programming environment are presented. Previous works
related to parallel ANNs are described in Section IV. Section
V deals with our proposed GPU parallel implementation of the
back-propagation algorithm. Computational experiments are
presented and analyzed in Section VI. Finally, the conclusion
and the future work are given in Section VII.

II. ANN AND BACK-PROPAGATION ALGORITHM

A. ANN

The first neural network model of ANN was proposed in
1943 by McCulloch and Pitts [12] in terms of a computational
model of nervous activity. Neural Networks were originally an
abstract simulation of biological nervous systems consisting
of a set of units called neurons connected to each other ( see
[1]). A biological neuron receives inputs from other sources,
combines them in some way, performs a generally nonlinear
operation on the result, and then outputs the final result. It
consists of dendrites, which receive input signals from other
neurons; the soma, which processes these incoming signals
over time, then turns the processed value into an output;
and the axon, which carries the output from the neuron to
other neuron dendrites (see [6] and [18]). The neuron collects
the signals from their dendrites by summing the excitatory
and inhibitory influences. If positive excitatory influences
dominate, then the neuron produces a positive signal and sends



this message to other neurons through the axoms. The neuron
acts as a simple step function.
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Fig. 1. Neuron scheme

The Figure 1 represents the scheme of a neuron. The formal
neuron has n inputs x1, x2, ..., xn that model the signals
coming from the dendrites. The inputs are labeled with the
corresponding synaptic weights w1, w2, ..., wn that measure
their permeabilities. Some of these synaptic weights may be
negative to express their inhibitory character. A neuron could
be biased, that is to say it has additional input x0 with a
constant value. Bias value allows the neuron to shift the
activation function to the left or right, which may be critical
for successful learning. The mathematical formulation of the
neuron function is given by the weighted sum of input values
as shown in equation (1):

yi =
∑
j∈J

wjxj , J = {0, 1, 2, ..., n} (1)

where:

- J is the set of nodes in the input layer;
- xj is the j-th input value; and
- wj is the j-th weight from input layer to neuron yi

connected to input j.

An activation function (see equation (2)) is then applied in
order to produce an output oi. This function can be a step
function, or a nonlinear activation function. The choice of the
activation function depends on the problem to solve. However,
nonlinear activation functions generally allow such networks
to deal with nontrivial problems using only a small number of
neurons.

oi = f(yi) (2)

ANNs are powerful tools for pattern classification and
recognition since they are able to learn and generalize from
experience. They have been used for a wide variety of tasks in
many different fields of industry and science [16], [25]. ANNs
have become an important method for time series forecasting
and have been found to be a contender when compared to
traditional statistical time series models as shown in [26].
The ability to learn from experience is very useful for many
practical problems since it is often easier to have data than to
have good theoretical guesses about the systems from which
data are generated. ANNs can infer the unseen part of the data
even if the sample data contains noisy information.

B. Back-Propagation Algorithm

There are plenty of algorithms for training an ANN, such
as back-propagation, conjugate gradient, cascade correlation,
Levenberg-Marquardt, among others. Detailed information
about those algorithms can be found in [4], [10], [18]. Back-
propagation algorithm is one of the most used. This is due to
its ease of programming and its enormous power to manipu-
late large amounts of data. This algorithm was popularized
by Rumelhart et al. (1986) [19]. The advantage of back-
propagation is the demonstration that layered networks using
differentiable models could perform nontrivial calculations
and offer attractive features such as fast response, learn from
examples, and the ability to generalize beyond the training
data. A typical network is composed by an input layer, an
output layer, and at least one hidden layer. The number of
hidden layer depends on the complexity of the problem [13].
Each layer is fully connected to the succeeding layer, as shown
in Figure 2.
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Fig. 2. Notation for the three-layered network

The first part in the back-propagation algorithm is the feed-
forward section, which calculates the output of the network.
Teaching process for a feed-forward network normally uses
some variant of the Delta Rule, which starts with computing
the difference between the current outputs and the desired
outputs. In the sequel, we use the following notation in order
to describe the multilayer neural network architecture.

- Ti is the target value i;
- x

(i)
j is the j-th input of layer i;

- o
(i)
j is the j-th output of layer i;

- w
(i)
j,k is the j-th weight from layer i to neuron x

(i)
j

connected to neuron x(i+1)
k ; and

- δ
(i)
j is the error of output j of layer i.

The back-propagation algorithm works as follows. The
network is first initialized by setting up all its weights to be
small random numbers. The input pattern is then applied and
the output calculated (the forward pass). The output of each
neuron is calculated as described below, where equation (3)
is the weighted sum of input values and (3) is the sigmoid
activation function.

x
(i)
k =

∑
j∈J

x
(i−1)
j w

(i−1)
j,k o

(i)
k =

1

1 + e−(x
(i)

k
)

(3)



The error of each output neuron is calculated according to
equation (4), which is essentially the target value minus the
output one (Tj − o(i)j ), but as the sigmoid function is used the
error is multiplied by the derivative sigmoid function.

δ
(i)
j = o

(i)
j (1− o(i)j )(Tj − o(i)j ) (4)

This error is used to change the weights in such a way that
the error will get smaller. Let w∗(i)j,k be the new (trained) weight
and w(i)

j,k be the initial weight, then:

w
∗(i)
j,k = w

(i)
j,k + δ

(i)
k o

(i)
j (5)

The errors for the hidden layer neurons is computed by
back-propagating the errors from the output layer as shown in
equation (6).

δ
(i)
j = o

(i)
j (1− o(i)j )(

∑
k∈K

δ
(i+1)
k w

(i+1)
j,k ) (6)

Having obtained the error for the hidden layer neurons, the
weights are changed according to equation (5). and the process
is repeated until the error is minimal or after a fixed number of
iterations. The pseudo code of the back-propagation algorithm
is given in Algorithm 1.

Algorithm 1 The classic backpropagation algorithm
Require: ProblemSize, TrainingPatterns, maxIterations

1: weights ← InitializeWeights()
2: for i = 1 to maxIterarions do
3: error = 0
4: for j = to numPatterns do
5: pattern ← SelectPattern(TrainingPatterns)
6: output ← ForwardPropagate(pattern, weights)
7: BackwardPropagate(pattern, output, weights)
8: error + = MSE(patterns, outputs)
9: end for

10: averageError = error/numPatterns
11: end for

The function InitializeWeights() initialize the weights with
random values. The function ForwardPropagate (see Algo-
rithm 2) computes the values of the outputs for each neuron
from the input layer to the output one, based on equations
(3) and (3). Then BackwardPropagate (see Algorithm 3) the
error is backpropagated as in equations (4) and (6). Then,
the function UpdateWeights (see Algorithm 4) updates the
weights of the network using equation (5). After each iteration,
the function MSE is called, where the Mean Square Error
(MSE) per each pattern is computed, and finally the average
error for all patterns is calculated.

III. GENERAL-PURPOSE COMPUTING ON GPU

General-Purpose Computing on Graphics Processing Units
(GPGPU) is the use of a GPU (which typically handles
computation for computer graphics) to perform computation

Algorithm 2 ForwardPropagate function
Require: input, weight, maxNumLayers, layerSize

1: x ← input, o ← output, w ← weight, M ← maxNum-
Layers

2: for i = 1 to i = layerSize[1] do
3: o

(1)
i = x

(1)
j

4: end for
5: for i = 2 to i =M do
6: for j = 1 to j = layerSize[i] do
7: sum = 0
8: for k = 1 to k = layerSize[i− 1] do
9: sum = sum+(o

(i−1)
k w

(i)
j,k)

10: end for
11: o

(i)
j = 1/(1 + e−(sum))

12: end for
13: end for

Algorithm 3 BackwardPropagate function
Require: target, weight, maxNumLayers, layerSize

1: x ← input, o ← output, t ← target, w ← weight, M ←
maxNumLayers

2: for i = 1 to i = layerSize[M ] do
3: δ

(M−1)
i = o

(M−1)
i (1− o(M−1)i )(ti − o(M−1)i )

4: end for
5: for i = (M -1) to i = 1 do
6: for j = 1 to j =layerSize[i] do
7: sum = 0
8: for k = 1 to k = layerSize[i+ 1] do
9: sum = sum+(δ

(i+1)
k w

(i+1)
k,j )

10: end for
11: δ

(i)
j = o

(i)
j (1− o(i)j )∗sum

12: end for
13: end for
14: UpdateWeights(output, weights)

Algorithm 4 UpdateWeights function
Require: output, weight, maxNumLayers, layerSize

1: o ← output, w ← weight, M ← maxNumLayers
2: for i = 1 to M do
3: for j = 1 to layerSize[i] do
4: for k = 1 to layerSize[i− 1] do
5: w

(i)
j,k = w

(i)
j,k + (δ

(i)
k o

(i)
j )

6: end for
7: end for
8: end for



in applications traditionally handled by the CPU. Micropro-
cessors based on a single Central Processing Unit (CPU)
drove rapid performance increases in computer applications
for more than two decades. However, it has slowed since
2003, as shown in [10], due to energy consumption and heat
dissipation issues that limited the level of productive activities
that can be performed during each clock period within a single
CPU. Microprocessor vendors have switched to models where
multiple processing units are used in each chip to increase the
processing power.

Highly parallel devices like GPUs have led the race of
floating-point performance since 2003 [17]. The widespread
adoption of GPUs in desktops and workstations has made them
attractive as computing accelerators for high-performance par-
allel computing. Now modern GPUs are fully programmable,
highly parallel architectures that deliver high throughput and
hence can be used very efficiently for a variety of general
purpose applications.
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A. NVIDIA’s GPU Architecture

NVIDIA’s GPUs are very powerful and highly parallel
computing architectures. GPUs have thousands of Compute
Unified Device Architecture, CUDA cores and thousands of
threads running concurrently on these cores [5]. Hence all
kinds of computations for which many threads have to execute
the same instruction concurrently are well-suited to run on
GPU. All multiprocessors access a large global device memory
for both gather and scatter operations. The memory model is
displayed in Figure 3.

Shared memory access is faster than global memory access
and usually slower than registers access. The shared memory is
local to each multiprocessor, unlike device memory, and allows
more efficient local synchronization. Each thread block within
the multiprocessor accesses its own part of shared memory
and this part of shared memory is not accessible by any other
thread block of this multiprocessor or of other multiprocessors
[20].

In order to define the threads a grid structure is used. The
Grid consists of thread blocks. Each thread block is further
divided into threads, which will run on the multi-processors.
Figure 4 describes a two-dimensional grid structure and a two-
dimensional block structure. Within a thread block, threads
are organized together in warps, normally composed by 32
threads. All threads of a warp are scheduled together for
execution.
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B. NVIDIA GPU Programming Model

NVIDIA has designed a parallel computing platform and
programming model based on C language called Compute
Unified Device Architecture (CUDA), to use the massively
parallel nature of GPU. CUDA contains a special C function
called kernel, which launch the execution of the program
on the graphics card on a fixed number of threads con-
currently. CUDA Single Instruction Multiple Thread (SIMT)
programming paradigm is a combination of serial and parallel
executions. Figure 5 shows an example of this heterogeneous
type of programming. The C code runs serially on CPU also
called the host. Parallel execution is expressed by the kernel
function which is executed on a set of threads in parallel on
the GPU.
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Fig. 5. The heterogeneous programming model of CUDA

The kernel function can only be invoked by serial code from
the CPU. When the kernel function is called, the number of



threads in a thread block and the number of threads within
a grid must be specified. Each thread within a thread block
executes an instance of the kernel, and has a thread ID within
its thread block, registers, a per-thread private memory, inputs,
and output results.

IV. RELATED WORK

Several works on multiprocessing and ANNs algorithms
have been published showing the advantage of using parallel
architectures. A distributed memory-multiprocessor system
is used in [24] to simulate a fully connected multi-layer
neural network on back-propagation algorithm; this model
is partitioned into subnetworks and each network is mapped
on a processor; in this study the principal issue is how
to partition the data. In [22] two different implementations
of back-propagation via OpenMP are studied, one of them
consists in partitioning the hidden layers among processors
while the other divides the inputs among the processor main-
taining a complete copy of the network on each processor. An
implementation with GPU is also described in [15] where the
training of the ANN is represented as a matrix multiplication.
A partitioning scheme for multilayer network with back-
propagation is presented in [21]. The partitioned network
is mapped into a network of workstations to accelerate the
training process.

An algorithm for image processing and pattern recognition
is implemented in [7] using CUDA and OpenMP, showing
an increment around 15 times faster than the implementations
using CPU; in this CUDA implementation the NVIDIA CUDA
Basic Linear Algebra Subroutines (CUBLAS) is used to set
and solve the network matrix for the training stage. In [9] a
Massively Parallel Computing System called SpiNNaker is de-
scribed. It is characterized by massive processing parallelism
and a high degree of interconnection among the processing
units. The objective is to mimic neural computation, and to be
able to simulate neural networks consisting of 109 neurons.
The authors show that a similarly sized collection of biological
neurons would run at the same speed.

A zero-order Takagi-Sugeno-Kang (TSK)-type Fuzzy Neu-
ral Network (FNN) algorithm is developed in [8] using the
GPU architecture, which significantly reduce the training time
as compared with a CPU implementation. In [14] a parallel
implementation of a Spiking Neuronal Network is proposed
using the CUDA framework, for increasing the training speed
of ANNs. Locally-connected Neural Pyramid (LCNP) is a neu-
ral network model developed in [23]; this model is optimized
for large-scale, high-performance object recognition and it is
implemented using NVIDIA CUDA.

As seen in this section, all works are focused on creating
massive parallel architecture as the size of neural networks is
typically conceived as being very large. The ability to simulate
them is generally limited by the speed and storage capacity of
digital computers. However, there are situations for which size
of data sets that we want to train is not very large, but there
is a large number of different sets that need to be trained
independently, that is the problem we are dealing with. As

an example, a local company provided us some of its data
sets which have 250 distribution centers and each of them
has around 80 different items with different demand. This
gives us a total of 20000 different data sets that need to be
forecasted. The objectives of this GPU implementation is first,
to train in parallel the same network among all cores in order
to explore more solutions; secondly, to show the benefits of
training different data sets in parallel.

V. BACK-PROPAGATION IMPLEMENTATION ON GPU

As mentioned in section III, programming on GPU is differ-
ent from programming on traditional architectures. Amongst
the main concerns are data management and memory band-
width that impact directly on the performance of the algorithm.
In this section we show how the back-propagation algorithm
has been implemented on GPU.

In our implementation, each thread deals with an ANN. All
variables containing the patterns and the initial weights of the
network are copied to the register memory, which is private
and has faster access than global memory. The pseudo-code
described in Algorithm 5 shows how the algorithm is initiated.
This initialization function requires the patterns to train the
networks; the number of threads to execute; and the number
of weights per network.

Algorithm 5 Network initialization
Require: patterns, numThreads, numWeights, numPatterns

1: allocMemoryGPU(patternsGPU, numPatterns)
2: allocMemoryGPU(weightsGPU,

numThreads*numWeights)
3: fillRandom(weightsGPU)
4: patternsGPU ← patterns
5: output ← kernelTrainingANN << numThreads >>

(patternsGPU, weightsGPU)

The function allocMemoryGPU allocates space on the
global memory of the GPU for the variables; fillRandom
generates random numbers and assigns them to weightsGPU
which contains the weights for all the networks, i.e. the
number of weights in a network per the total number of
networks that will be trained in parallel; next, the patterns
are copied from the CPU to the GPU global memory; finally
the function kernelTrainingANN is called, this is the kernel
function where back-propagation is executed (see details in
Algorithm 6).

Algorithm 6 is similar to Algorithm 1. The function ker-
nelTrainingANN, which runs on the GPU, copies the weights
from the global memory to a new variable stored in the register
memory.When the kernel finishes, the network with the lowest
MSE is returned.

VI. EXPERIMENTATION

The results presented in this section were obtained with
a workstation HP z420 and processor Intel Xeon E5-1620
v2 3.70GHz with 4 Cores, and a GPU accelerator NVIDIA
Tesla K20c with 2496 CUDA cores. The configuration used



Algorithm 6 Training the network
Require: patternsGPU, weightsGPU

1: outputs, averageError
2: weights ← copyWeights(weightsGPU)
3: for i = 1 to maxIteration do
4: error = 0
5: for j = 1 to numPatterns do
6: pattern ← SelectPattern(patternsGPU)
7: output ← ForwardPropagate(pattern, weights)
8: BackwardPropagate(pattern, output, weights)
9: error += EQM(patterns, outputs)

10: end for
11: averageError = error/numPatterns
12: end for
13: weightsGPU ← copyWeights(weights)

in GPU to execute the parallel code was 2480 blocks running
64 threads each of them giving a total of 158720 threads.

The forecast of 73 time series that correspond to product
demand in a Mexican brewery company was carried out. These
instances consist of 52 observations over one year. We train
the artificial neural network using the first 34 observations
and the remaining ones are kept to validate the forecast of the
time series. Currently, the company uses several exponential
smoothing methods for the demand forecast taking into ac-
count three years of information.

The neural network is composed of three layers: input, hid-
den, and output layers, where each layer has three neurons. We
purposely use a small ANN in order to show that substantial
results can be obtained even with such a network and to better
analyze the effect of the approaches on the quality of the
forecast.

The experiment has been carried out with the K20 GPU,
once with all instances, i.e. the ANNs for the 73 products
are trained in one kernel call. Indeed, 158702 threads are
created and they are divided in 2174 networks per product. The
execution time is around 54 seconds and when the program
finishes it returns the network with the lowest MSE for each
product demand. We also carried out experiments with the
OpenMP version setting the time limit to 54 seconds. We
use the Symmetric MAPE (SMAPE) in order to evaluate the
results because the time series have some values equal to 0 for
which the MAPE does not work. SMAPE is given in equation
(7).

SMAPE =
1

n

n∑
t=1

|Ft −At|
(|At|+ |Ft|)/2

(7)

where At is the current value and Ft is the forecast value.
Table I shows the number of times and the associated

percentage, respectively, the GPU and the OpenMP implemen-
tations obtain a better SMAPE in the forecast stage than the
method used by the brewery company for the total demand of
the 73 products. Table I also gives the number of times the
company’s algorithm performs better thant the GPU imple-

mentation. We observe that although our implementation uses
less observations than the method from the brewery company,
it yields to a better approximation of the demand for around
60% of the instances tested.

TABLE I
SMAPE OBTAINED DURING FORECAST

GPU OpenMP Company

# 44 41 29
% 60.27 56.16 39.73

We have also considered time series provided by the M3-
Competition, e.g., see http://forecasters.org/resources/time-
series-data/m3-competition

The M3-Competition permits one to compare the perfor-
mance of time series forecast methods, some of which have
been designed by recognized experts [11]. In our experi-
mentation, we select 146 instances of the M3-competition
corresponding to micro economy data. They consist in 20
yearly observations where 14 observations are taken to train
the neural networks and the remaining 6 observations are used
to test their accuracy.

We compare three different back-propagation algorithms.
The first case corresponds to a sequential algorithm, i.e., the
classic back-propagation method described in Section II. The
second method is a OpenMP shared memory multiprocessing
algorithm; in this particular case, parallel computing is per-
formed on a multi-core CPU. The third algorithm is carried
out on GPU, see Section V.

A time limit for the sequential and OpenMP implementa-
tions is imposed, which corresponds to the processing time
required by the GPU implementation. Table II shows the time
needed to run the GPU version, and the number of ANNs
trained in that time by the different implementations. Each
neural network training carries out one million iterations and
the ANN with the best MSE is returned. As can be seen in
Table II, the OpenMP algorithm can explore four times more
solutions than the Sequential algorithm. The GPU parallel
algorithm can explore 496 times more solutions than the
OpenMP algorithm, and 2034 times more solutions than the
Sequential algorithm.

Table III shows the number of instances where the best MSE
is obtained for the different implementations. Note that for all
instances the GPU implementation obtains the lowest error.
The MSE is the error computed over all the patterns used for
training the ANN but it does not show the accuracy of the
forecast.

TABLE III
INSTANCES WITH THE LOWEST MSE OBTAINED

GPU OpenMP Sequential Total

# 146 0 0 146
% 100 0 0 100

During the training and the forecast stage, the Mean Ab-



TABLE II
NUMBER OF ANNS TRAINED

GPU OpenMP Sequential Processing Time

#Networks 158720 320 78 56s

solute Percentage Error (MAPE) is calculated as shown in
equation (8).

MAPE =
1

n

n∑
t=1

At − Ft

At
(8)

where At is the current value and Ft is the forecast value.
Table IV shows that in most cases the ANN obtained by the

GPU implementation has a lower MAPE with respect to the
others implementations (during the training phase). In contrast,
one can see in Table V that the sequential algorithm obtains
better forecasting performance in more instances tested than
the GPU and OpenMP implementations. This can be explained
by an overfitting of the weights.

TABLE IV
MAPE OBTAINED DURING THE TRAINING STAGE

GPU OpenMP Sequential Total

# 83 33 30 146
% 56.849 22.603 20.548 100

TABLE V
MAPE OBTAINED DURING FORECAST

GPU OpenMP Sequential Total

# 53 33 60 146
% 36.301 22.603 41.096 100

To analyze in detail these results, Table VI displays the
percentage difference between the MSE obtained with the
different algorithms. We note that for almost 70% of the
instances, this difference is below 10%. However, considering
that the best MSE obtained with each implementation is of the
order of 10−4, a difference below 10% could be considered
as negligible.

Table VII shows the average of the MAPE obtained with 25
different forecast methods published by the M3-Competition
and our approaches for the 146 instances used for experimen-
tation. The three proposed implementations achieve in most
cases a lower error compared to the average one. Besides,
we note that the OpenMP algorithm obtains in average the
best results compared to the sequential and the GPU imple-
mentations. It seems to offer the best compromise between
the number of ANNs explored during the training phase and
weights fitting .

VII. CONCLUSION AND FUTURE WORK

In this paper, we compare parallel back-propagation al-
gorithms for training multiple Artificial Neural Networks

simultaneously; we consider their implementations on GPU
computing accelerators via CUDA and multi-core CPU via
OpenMP.

We carry out computational tests on real data issued from
the product demand in a brewery company and instances
taken from the literature. The results show that the parallel
implementations are able to explore a greater number of
solutions and to obtain artificial neural network with a low
Mean Square Error. The proposed parallel implementations
have a competitive Mean Absolute Percentage Error as com-
pared with other methods presented in the M3-Competition
benchmark. Besides, with the real data, we were able to
improve the forecast for 60% of the products and all the
artificial neural networks were trained in less than one minute.

The great advantage of the parallel implementations is the
number of different ANNs that can be trained in the same
amount of time. It is a good alternative when many different
time series have to be forecasted. For instance, the GPU
implementation is able to train up to 159744 ANN simultane-
ously. However, we note that weights overfitting can occur
in the training phase. A balance should be found between
the number of ANNs trained and the performance of the best
ANN reported. Hence, training a single ANN is not a good
strategy, it is indeed better to trained in parallel different ANNs
corresponding to different forecasts. This approach allows
to decrease the number of threads dedicated to a particular
instance and to improve the efficiency of the training phase.

Future work concerns tuning the Mean Square Error; indeed,
the risk of having an overfitting problem tends to increase
when the Mean Square Error is close to 0. We shall consider
also the design of a parallel multi-configuration algorithm that
will evaluate a time series with different configurations of the
artificial neural network, e.g. different number of layers and
neurons. The objective is to obtain the ANN with the smallest
error and with the best configuration.
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