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Abstract—Branch and bound algorithm (B&B) is a well
known technique for solving optimally combinatorial optimiza-
tion problems. Nevertheless, these algorithms remain inefficient
when dealing with large instances. This paper deals with
the blocking job shop scheduling (BJSS) problem, which is
a version of classical job shop scheduling problem with no
intermediate buffer between machines. This problem is an NP-
hard problem and its exact resolution using the sequential
approach is impractical. We propose in this paper a GPU-
based parallelization in which a two level scheme is used.
The first level is a node-based parallelization in which the
bounding process is faster because it is calculated in parallel
using several threads organized in one GPU block. To fully
occupy the GPU, we propose a second level of parallelization
which is a generalization of the first level. Therefore, at each
iteration, several search tree nodes are evaluated on the GPU
using several thread-blocks. The obtained results, using the
well-known Taillard instances, confirm the efficiency of the
proposed approach. Also, the results show that our approach
is 65 times faster than an optimized sequential B&B version.
Keywords-Job shop; blocking with swap; GPGPU; parallel
computing; Branch-and-Bound.

I. INTRODUCTION

The job shop scheduling problem (JSSP) consists in
scheduling a set of jobs on a set of machines. Each job has
its own sequence of crossing on machines. The execution of
a job on a machine is called operation and each one uses
the machine for uninterrupted processing time. The classical
JSSP assumes an infinite storage space between machines
which is not realistic. The BJSS is a version of the classical
JSSP with no storage space, where a job has to wait on a
current machine until the next one becomes available. Our
goal is to minimize the Makespan (Cmax). The classical
JSSP is known to be NP-hard in the strong sense [10], and
the blocking extension of this problem BJSS appears to be
even more difficult to solve [14].

This problem has several application areas such as: man-
ufacturing systems with no storage space, train scheduling,
hospital resource scheduling, etc. Despite the large number
of application areas and the economic impact of reducing
the storage space, the BJSS has been treated by few authors

using metaheuristics [13], [8], [1], [15], [16], [17] and exact
methods [14], [1].

The Branch and Bound algorithm (B&B) is a well known
technique for solving optimally the combinatorial optimiza-
tion problems. Nevertheless, this method takes huge time to
solve small instances and remains inefficient when dealing
with large instances. Therefore, the parallelization of this
method is indispensable. A parallel implementation of this
algorithm is interesting due to the nature of the B&B
techniques which are suitable for parallelization.

In the literature, several GPU-based parallelization of the
B&B algorithm have been proposed. Most of these works
deal the flow shop problem [6], [12], [2], knapsack problems
[5] and Traveling Salesman Problem [4]. Also, most authors
take a classical approach: a single GPU thread supports the
evaluation of a single node of the search tree. This approach
uses a lot of GPU resources, therefore, a limited number of
threads are launched in parallel.

To the best of our knowledge, our work is the first het-
erogeneous (CPU-GPU) implementation of B&B algorithm
dedicated to JSSP and its blocking extension. We propose
in this paper a two level parallelization scheme: the first
level (Parallel Evaluation of one Bound) exploits the fact
that the evaluation of each node can be calculated in parallel.
Therefore, at each iteration one node will be sent for parallel
evaluation on GPU by using one thread-block. Experiments
using the Taillard instances show that this version is 7 times
faster than the optimized sequential B&B version. The draw-
back of this first level is the underused of the GPU. For this
reason, we propose a second level of parallelization to fully
occupy the GPU. This level represents a generalization of
the first level named Parallel Evaluation of Several Bounds.
Therefore, at each iteration several search tree nodes will be
sent for evaluation using several GPU blocks. The obtained
results, using the Taillard instances, confirm the efficiency
of the proposed approach and the positive impact of using
parallel architectures to solve this problem. Also the results
of our two level scheme show a good speed up of the
execution time with 65 times faster with NVIDIA K40
GPU accelerator compared to an optimized sequential B&B



version.
The remainder of this paper is organized as follows: Sec-

tion 2 describes the blocking job shop scheduling problem,
the alternative graph model and related work. Section 3
contains a brief description of the sequential B&B algorithm
and its components. Section 4 presents the proposed paral-
lelization and implementation of the B&B algorithm. Section
5 discusses computational results. Finally conclusions and
perspectives are presented in Section 6.

II. BLOCKING JOB SHOP SCHEDULING PROBLEM

A. Problem Formulation

The classical job shop scheduling problem can be defined
by a set J of n jobs (J1, ..., Jn) to be processed on a
set M of m machines (M1, ...,Mm). Each machine can
process at most one job at given time. The execution
of a job on a machine is called operation. We note by
O the set of operations (o1, ..., on∗m). Each operation oi
needs the use of a machine M(i) for an uninterrupted
duration called processing time pi. Each job has its own
sequence of crossing on machines which creates precedence
constraints between consecutive operations of the same job.
A solution (schedule) for this problem consists in assigning
a starting and finishing times ti, ci for each operation oi
(i = 1, ..., n ∗m), while satisfying all constraints. Our goal
is to minimize the Makespan (Cmax). The JSSP assumes that
there is an unlimited intermediate buffer capacity between
consecutive operations of a job which is impossible in real
manufacturing.

The BJSS is a version of the classical JSSP with no
intermediate buffers, where a job has to wait on a cur-
rent machine until the next machine becomes available for
processing. It can be modeled by the alternative graph
introduced by Mascis et al. [14] which is a generalization
of the disjunctive graph of Roy and Sussman [18]. This
model can be defined as G = (N,F,A). N represents a
set of operations with two additional dummy operations
(start and finish) modeling the start and the finishing of
the schedule. F represents a set of fixed arcs imposed by
precedence constraints between consecutive operations of
the same job and fqp is the length of arc (q, p) ∈ F . Finally,
A is a set of alternative pairs ((i, j), (h, k)) which represent
the processing order for concurrent operations on the same
machine and aij is the length of alternative arc (i, j). Each
arc represents the fact that one operation must be completed
before starting the processing of other operation.
We call the last operation of each job (example or) an
ideal operation because the machine becomes immediately
available after the end of it processing time pr.
If oi is a blocking operation, we denote by σ(i) the operation
immediately following oi in the same job.

Let us consider two blocking operations oi, oj and one
ideal operation or, where M(i) =M(j) =M(r). Since the

three operations cannot be executed at the same time, we
associate with them a pair of alternative arcs.

Case 1: alternative pair between oi and oj (Fig. 1).
If oi is processed before oj , and since oi is blocking, M(i)
can start processing oj only after the starting time of σ(i)
(when oi leaves M(i)), we represent this situation with the
alternative arc(σ(i), j) having length 0. The same for the
other alternative arc(σ(j), i) since oj is a blocking operation.

j

00

j+1


i+1
i
P

P

i

i

Figure 1. Alternative pair between blocking operations.

Case 2: alternative pairs between oi, or and oj , or (Fig. 2).
The same as the first case for the alternative arcs (σ(i), r)
and (σ(j), r) because both oi and oj are blocking opera-
tions. The other alternative arcs depend on the fact that or
is an ideal operation, then we add the alternative arcs (r, i)
and (r, j), with length pr.
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Figure 2. Alternative pairs between blocking and ideal operations.

A selection SL is a set of arcs obtained from A by choosing
at most one arc from each pair, and G(SL) = (N,F ∪SL)
represents the obtained graph. We say that a selection SL is
feasible if there is no positive length cycle in G(SL) and the
evaluation (Makespan) of SL is the longest path in G(SL).

As we said SL is a complete selection if exactly one
arc is chosen from each pair, i.e. |A| = |SL|. We define
a schedule (solution of the problem) as a complete feasible
selection. Finally, given a feasible selection SL, let l(i, j) be
the length of a longest path from operation i to j in G(SL).

Table 1 represents BJSS instance with two products (jobs)
and three machines. The first product (J1) has 5 min
processing time on machine M1, 3 min on M2 and 8 min on
machine M3. The second product (J2) has 8 min processing
time on machine M2, 2 min on M1 and 7 min on machine
M3.

Figure 3 represents an alternative graph of the BJSS
instance in Table 1. This graph has three alternative pairs,



Table 1
BJSS INSTANCE WITH TWO JOBS AND THREE MACHINES.

job sequence processing times

J1 M1,M2,M3 5, 3, 8
J2 M2,M1,M3 8, 2, 7

two between blocking operations and one between ideal
operations. Both operations 2 and 4 need the same machine
M2 and since M2 can not process both operations at
the same time, we associate with them an alternative pair.
Since operations 2 and 4 are blocking operations the first
alternative arc (3, 4) represents the choice whereby operation
2 must be finished before the beginning of operation 4. His
mate, arc (2, 5) represents the choice whereby operation 4
must be finished before the beginning of operation 2. We use
the same process to generate the alternative pair ((2,5), (6,1))
between operations 1 and 5. The alternative pair between
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Figure 3. Alternative graph for BJSSP instance of table 1.

operations 3 and 6 is ((3, 6), (6, 3) ) because both operations
3 and 6 are ideal.

Figure 4 represents a feasible schedule (solution) for the
BJSS instance in Table 1, obtained by choosing one arc
from each pair in the alternative graph in Figure 3. The
Makespan (Cmax = 26) of this schedule is the longest path
in the obtained graph.
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Figure 4. Schedule for BJSP in table 1 whit Cmax=26.

The Gantt chart in Figure 5 represents both the processing
and blocking times of the solution in Figure 4.
For example, after the end of its processing time the job

J1 blocks the machine M1 until machine M2 becomes
available for processing J1.
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Figure 5. Gantt chart of the schedule in figure 4.

B. Related works

Most of B&B methods, for the job shop problem, are
based on the resolution of single machine problems proposed
by Carlier. For solving optimally the BJSS we find the
B&B method proposed by Mascis et al. [14]. The authors
formulate the problem by means of an alternative graph
model which is a generalization of the disjunctive graph
of Roy and Sussman [18]. Based on this model, They solve
optimally the 10 × 10 benchmark instances of this problem.
Ait Zai et al. [1], proposed an original B&B method
based on graph theory to solve the BJSS. The idea of his
branching scheme relies on the implicit enumeration of all
possible combinations on a given machine. The authors gave
solutions for local instances only.

The B&B algorithms are not efficient when dealing with
large problem instances, therefore computing accelerators
like GPUs are required. Several authors have proposed to
accelerate the B&B method using GPUs. Most of these
works focus on solving permutation Flow Shop Problem
(FSP), knapsack problem and Traveling Salesman problem.

In [6] and [12]. Chakroun et al. take the classical approach
of sending nodes to be evaluated on GPU to solve the
FSP problem since this step takes more than 98% of the
global execution time. Therefore, each GPU thread supports
the evaluation of a single node of the search tree. In [2]
Bendjoudi et al. extend the approach below and propose
a multi-core/GPU scheme to exploit both multi-core CPU
processors and GPU accelerator to solve the same problem.

In [5], Alami et al. proposed a CPU-GPU based B&B
applied to the knapsack problem. In the proposed paralleliza-
tion scheme the branching and bounding can be done either
on the CPU or the GPU according to the size of the search
tree. This approach uses less CPU-GPU communication and
better management of data-structures in GPU memory.

In [4], Carneiro et al. apply the B&B to the traveling
salesman problem where a pool of nodes is sent to the GPU
for evaluation. Each GPU-thread applies the branching and
bounding operators to a single node and builds its own local



tree. The resulting nodes are moved back to the CPU where
the promising nodes are inserted into the tree.

To the best of our knowledge, our work is the first het-
erogeneous (CPU-GPU) implementation of B&B algorithm
dedicated to JSSP and its blocking extension.

III. THE BRANCH AND BOUND ALGORITHM FOR BJSS

The B&B algorithms make an intelligent enumeration
of all feasible solutions. They are characterized by two
operators: branching and bounding. The branching is a
recursive process, which consists in replacing the search
space of a given problem by a set of smaller sub-problems.
The lower bounding operator is used to compute the lower
bound for the evaluation of all feasible solutions in the
considered sub-problem. The elimination operator uses the
bounds to eliminate the sub-problems that cannot improve
the current best solution found for the problem.

Table 2
THE DESCRIPTION OF THE SYMBOLS USED IN OUR B&B ALGORITHM.

Symbol Description

UB Upper Bound.
LIST A set of nodes (sub-problems).
s∗ The optimal solution.
Ri The ith successor of node R.
LB Lower Bound.
LB(Ri) Lower bound of node Ri.

Algorithm 1 and Table 2 describe the general structure and
symbols used in the proposed Branch-and-Bound algorithm.

Algorithm 1 Pseudo-code of the sequential B&B algorithm
LIST ← {original problem};
UB ←∞;
while LIST != ∅ do
R← LIST (Choose a Node R from LIST );
Generate successors Ri from R | (i = 1, ..., n);
for Each successour Ri do

if LB(Ri) < UB then
if Ri represents one solution then
UB = LB(Ri);
s∗ = solution in Ri;

else
LIST = LIST ∪Ri;

end if
end if

end for
end while
return s∗

The most effective B&B algorithms, for the JSSP, are
based on the disjunctive graph model [3]. Our B&B is based
on the adaptation of this approach to the blocking case
(alternative graph) [14]. Our method consists in fixing an

order (precedence) between every two concurrent operations,
which leads to fix the corresponding alternative pair (from
A), and a set of fixed arcs represents a selection.

A. Branching

The B&B algorithm can be represented by a search tree.
The tree is rooted by the original problem; no alternative
pairs are fixed (|S0|=0).

A search tree node R is characterized by (SR, AR) and
represented by the graph G(SR)=(N,F ∪ SR). SR denotes
the set of fixed alternative arcs and AR represents a set of
unselected alternative pairs in this node.

The branching creates two immediate successors (R1, R2)
of R by fixing an alternative pair ((i, j), (h, k)) ∈ AR that
has a direct impact on the longest path in the graph. The
node R1 (resp. R2) is characterized by SR1 = SR ∪ (i, j)
(resp. SR2 = SR∪(h, k)) and ARi = AR−{((i, j), (h, k))}.
The corresponding successors represent the sub-search space
related to the fixed alternative arc. After this, each successor
is handled recursively in the same way until we find a
complete selections or eliminate sub-problems and prune the
tree if the lower bound value of the current sub-problem
is bigger than the upper bound. Finally, our exploration
strategy consists in choosing after a branching process the
node which has the bigger Makespan (worst first strategy).
The advantage of this strategy is the huge number of feasible
solutions explored in short time which leads to improve the
UB and eliminates a large number of branches.

S = {φ}
 Α={ ((2, 3)(4, 1)) ;  ((4, 2)(2, 4))}
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Figure 6. Search tree for the BJSS instance.

Figure 6 represents a search tree for a BJSS instance
with 2 jobs and 2 machines. The Figure shows also the
existence of two alternative pairs, the first one ((2,3), (4,1))
is between operations 1 and 3 and the second pair ((2,4),
(4,2)) is between operations 2 and 4.

B. Evaluation (Bounding)

Any solution of the problem can be considered as an
initial value for an upper bound (in our case UB=+∞) which
is updated as soon as a new better solution is found. The



lower bound (Evaluation) used in our case is the one used
by Carlier et al. [7] to solve optimally the JSSP. It is based
on the one machine scheduling problem. To do a link with
alternative graph model, each search tree node represents
an alternative graph. The lower bound used is similar to
the Makespan of the sub-problem obtained by adjusting the
head and tail structures (Hi = l(0, i), Ti = l(i, n ∗m)) for
each operation oi (i = 1, ..., n∗m); in the graph representa-
tion. This process is very expensive and consumes 70% of
global execution time of the method. This process is done
sequentially for all operations affected by the change made
and can be repeated several times for the same operation if
there are multiple paths that lead to this operation.

The complexity of the evaluation process depends on the
number of operations (n×m) in the treated instance, there-
fore, the evaluation time increases by increasing the size of
the instances. The implementation of the evaluation process,
as illustrated below, requires six data structures. The matrix
MP (n∗m)× (n∗m) represents the length of all alternative
arcs, MP[i][j]=aij if the arc exists and -1 if not. The matrix
Succ ((n∗m)×n) contains the successors of each operation
therefore, row i represents the successors of operation oi.
Similarly, the matrix Pred ((n ∗m)×n) contains the prede-
cessors of each operation. Vector S contains all selected and
unselected pairs. Vector H (resp. T) contains the Head (resp.
Tail ) of each operation. The element H[i]=l(0, i) represents
the longest path from o0 to oi. The same T[i]=l(i, n∗m) the
longest path from oi to the last operation in the graph on∗m.

Pseudo code of Update Head and Tail.

int Update head tail ()
{list = { Operations affected by the change};
int cycle = 0;
while (list! = ∅ && cycle == 0){

int o= list[0];list = list− {o};
for(int i = 0; i < Successor o; i++){

int s=Succ[o][i]; int aos =MP[o][s];
if(H[o]+aos > H[s]){

if(s == op){cycle = 1;}
else{ H[s]=H[o]+aos; list = list ∪ s; }

}}
for(int i = 0; i < Predecessor o; i++){

int p=Pred[o][i]; int apo =MP[p][o];
if(T[o]+apo > T[p]){

if(p == op){cycle = 1;}
else{ T[p]=T[o]+apo; list = list ∪ p; }

}}
}
}

C. Immediate selection

The immediate selection represents several techniques
which allows to accelerate the B&B algorithm by reducing
the number of branching necessary to obtain the optimal
solution. This process is done sequentially and costs 18% of
the global processing time since there is a large number of
alternative pairs (99000) for big instances. This process uses
the head and tail values computed in the bounding process.

Given a sub-problem R with feasible selection SR and
a set of unselected pairs AR. For each unselected pair
((i, j), (h, k)) ∈ AR:
if l(0, h)+ahk+l(k, n) ≥ UB then SR=SR∪(i, j). This rule
expresses the fact that adding the arc (k, h) (resp. (i, j)) to
SR will produce a sub-problem with a lower bound greater
than the upper bound. Consequently the arc (i, j) (resp.
(h, k)) is added to SR.

Pseudo code of the Immediate selection

int Immedia-selection ()
{ int cycle=0;

for(int l = 0; l < nbpair; l ++){
int p=S[l];
if(p > 2){

Let ((i, j), (h, k)) be the corespondent pair
int aij =MP[i][j];
int ahk =MP[h][k];
int u2=H[h]+ ahk+T[k];
int u1=H[i]+ aij+T[j];

if(u1 > UB && u2 > UB) { cycle = 1; l =∞;}
else if(u1 > UB){S[l]=2;}
else if (u2 > UB){S[l]=1;}

} }
return cycle;

}

IV. THE PROPOSED GPU-BASED B&B ALGORITHM

The parallelization of B&B algorithm is amplified by the
fact that each node of the B&B search-tree can be explored
independently. To the best of our knowledge, there is no
GPU-based parallel B&B dedicated to JSSP and its blocking
extension. We have seen that the evaluation process and the
immediate selection consume more than 85% of the global
execution time. Therefore, it is crucial to parallelize this
phase in order to accelerate the B&B execution time.

The GPU architectures are based on SIMT (Single In-
struction, Multiple Threads) paradigm. According to this
paradigm, the same program called kernel is executed si-
multaneously by a set of parallel threads with different
data. The threads are organized according to a grid of
thread-blocks hierarchy specified in the kernel call. The
Grid represents a set of thread-blocks. Threads of the same
block can cooperate by using a private shared memory



and barrier of synchronization. Threads can access multiple
memory spaces: constant memory and texture memory
are read-only cached memory accessible by all threads. The
global memory is a read-write memory, also accessible by
all threads. Unlike the global memory the shared memory
is cached memory accessible only by threads in the same
block;

In the following, we present a new parallelization scheme
for B&B algorithm exploiting GPU-based architecture. The
proposed scheme has two levels of parallelization. The first
level exploits the fact that the evaluation step can be done in
parallel for each node and the second level of parallelization
is developed to fully occupy the GPU. We also present
the mapping of different data structures needed during the
evaluation step.

A. Parallel Evaluation of one Bound (PEB)

This first level scheme is a node based parallelization
[9]. It does not change the design of the B&B algorithm
because it is similar to the sequential version except that
the evaluation is done in parallel on GPU for each node as
shown in Figure 8.
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Figure 8. First level PEB scheme.

As already presented, each node of the search tree repre-
sents a graph of n ×m operations. The evaluation process
consists in updating the head and tail values for each
operation in the graph. At the PEB level, we propose a
parallel evaluation scheme based on the idea that each GPU-
thread supports updating head and tail values for a single
operation in the graph. Exploiting the fact that the updating
can be done independently for each operation. Therefore,
the GPU block size equals n×m the number of operations
in the graph.

As shown in Figure 7, at each iteration, only one
node is sent to the GPU for evaluation and immedi-

ate selection using one thread-block. Each thread up-
dates the head and tail values for one operation. The
new values are sent back to the CPU to be used in
the branching and elimination process. Furthermore, the
following Kernel illustrates the pseudo-code of evalu-
ation and immediate selection used by GPU threads.

Evaluation and Immediate selection Kernel

global Evaluation (int * H1, int * T1, int * S)
{ shared int cycle = 0, MAJ = 0;

shared int H[n ∗m];
shared int T[n ∗m];

int index = blockIdx.x ∗ blockDim.x+ theadIdx.x;
/*Initialization of MP, Pred, Succ using vector S*/

if(index < n ∗m){
/*copy the vectors H and T in shared memory*/

H[index] =H1[index];
T[index] =T1[index];

Do{ MAJ = 0;
for(int i = 0; i < nbjob; i++){

int p=Pred[index][i];
int apo =MP[p][index];
if(t[index]+ap index > t[p])
{t[p] =t[index]+ap index; MAJ = 100; }
}

for(int i = 0; i < nbjob; i++){
int s=Succ[index][i];
int aindex s =MP[index][s];
if(H[index]+aindex s > h[s])
{H[s]=H[index]+aindex s; MAJ = 100;}
}

syncthreads();
}while (MAJ ! = 0 && cycle == 0)
}

/*Immediate-selection*/

int nt = (nbpair/threadDim.x) + 1;
for(int l = 0; l < nt; l ++){

int id = (l ∗ threadDim.x) + threadIdx.x;
if(id < nbpair){int p=S[id];

if(p > 2){ Let ((i, j), (h, k)) be the corresponding pair
int aij =MP[i][j]; int ahk =MP[h][k];
int u2=H[h]+ ahk+T[k];
int u1=H[i]+ aij+T[j];

if(u1 > UB && u2 > UB) { cycle = 1; id =∞;}
else if(u1 > UB){S[id]=2;}
else if (u2 > UB){S[id]=1;}
else {S[id]=Max(u2, u1 );}
}

}
}
}
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As we have seen in Figure 7, a single block is used on
the GPU to evaluate one node. Therefore, only one block is
involved in the evaluation process and the others are idle.
The weakness of this solution resides in the underutilization
of the GPU capacity and thus a waste of a significant
computing power. To overcome this drawback, we propose
a second level of parallelization.

B. Parallel Evaluation of Several Bounds (PESB)

We propose in this section a second level of parallelization
which allows to fully occupy the GPU. This level represents
a generalization of the first level (PEB) and it is called
Parallel Evaluation of Several Bounds (PESB). This level
generalizes the idea of the first level (Bounding is faster)
to exploit the power of GPUs. At each iteration a pool of
nodes is sent to the GPU for evaluation and immediate-
selection. i.e. each thread-block supports the evaluation of
a single node. Then, the new results for each node are sent
back to the CPU to be used by the selection, branching and
elimination process as shown in Figure 9.

As we have already seen, six data structures are used. The
vectors Head (H [m∗n]), Tail (T [n∗m]) and alternative pairs
(S [nbpair]) are sent from the CPU to the GPU. Therefore,
they are stored in the global memory of the GPU. The
matrices MP, Succ and Pred are also stored in the GPU
global memory. These matrices are calculated on the GPU
using the vector S. To accelerate the initialization phase the
calculation is divided across all the threads in the block.

The access to the global memory is much longer than the
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Figure 9. GPU evaluation of several nodes.

shared memory, but the latter is small compared to the global
memory. The number of blocks that can run in parallel on
each Streaming Multiprocessor depends on the amount of
shared memory used by each block. Therefore, we use the
shared memory only for the Head and Tail vectors in order
to have a large number of blocks running in parallel and
since there is a high number of accesses to these vectors.



V. EXPERIMENTATIONS

In this section computational results are given using
benchmarks obtained from the well known classical job shop
instances by dropping the infinite buffer capacity constraint,
and replacing it by a zero buffer capacity.
We tested our algorithms using 80 benchmarks proposed by
Taillard’s [19]. The different instances are designated by n
× m, where n and m represent respectively the number of
jobs and the number of machines.
The experiments have been carried out using Intel Xeon
E5640 CPU with 2.67GHz clock speed and four cores and
Nvidia Tesla K40 with 2280 cuda cores and 12 GB GDDR5
of global memory. The approach has been implemented
using C-CUDA 7.0.

In the following, we report the execution times of the
sequential and the proposed GPU B&B method. For both the
tables 3 and 4, the first column (Size) reports the size of the
treated problem and each row displays the average execution
time in second of 10 benchmark instances where each one
explores 700,000 nodes. Column Seq. B&B reports the
average execution time in seconds of an optimized sequential
B&B developed in another project. finally, column (speedup)
reports The ratio between the sequential and parallel execu-
tion time.

Table 3
AVERAGE EXECUTION TIME OF THE FIRST LEVEL PEB TO EXPLORE

700000 NODES.

Size Seq. B&B B&BPEB speedup

15×15 188 612 0.31
20×15 384 672 0.57
20×20 393 760 0.51
30×15 1076 832 1.30
30×20 1127 1000 1.13
50×15 4246 1244 3.41
50×20 10546 1726 6.51

Table 3 reports the results of the first level of paral-
lelization (PEB). Column B&BPEB reports the average
execution time obtained by sending one node for evaluation
on GPU at each iteration.

The first result from table 3 is the positive impact of using
GPU architectures to reduce the execution time needed to
solve the BJSS problem. We notice a loss in performance
for small instances because the communication time between
the CPU and the GPU is more important than the computing
time on the GPU. With the increase of instance size,
we notice a significant improvement in execution time as
compared with the sequential case.

The results also confirm the efficiency of our first level
which is 7 times faster as compared with the sequential
B&B version. Notice that this level does not depend on GPU
capacity since we use one thread-block. For the 100 × 20
benchmark instances there are more than 2000 operations.

Therefore, we can not use this approach since the GPU
hardware limit is 1024 threads par block.

Table 4
AVERAGE EXECUTION TIME OF THE SECOND LEVEL PESB TO EXPLORE

700000 NODES.

Size B&BSeq. B&BMcore B&BPESB Blocksused speedup

15×15 188 52 23 240 8.2
20×15 384 113 29 240 13.2
20×20 393 120 41 240 9.6
30×15 1076 375 48 240 22.4
30×20 1127 447 69 240 16.3
50×15 4246 1454 114 100 37.3
50×20 10546 3728 161 100 65.5

Table 4 reports the results of the second level of paral-
lelization (PESB). Column B&B

Mcore
gives the execution

time, in second, obtained by exploiting only the CPU cores
of our workstation. Four instances of parallel B&B with
message exchange have been launched since our workstation
CPU contains four cores. Column B&BPESB reports the
average execution of our second level PESB obtained
by sending several nodes for evaluation on GPU. Finally,
column blocks-used shows, at each iteration, the number of
nodes sent to the GPU for evaluation by B&BPESB version.

Unlike the first level, this level scheme (PESB) provides
good acceleration even for small instances. This level de-
pends on the GPU-hardware since we send several nodes
to be evaluated on the GPU. The number of nodes sent to
the GPU depends on GPU hardware limit and the resources
consumed by our kernel (shared memory and registers).
To facilitate this task, Nvidia has developed a tool called
Cuda Occupancy Calculator [5]. that is used in our case
to know the right number of blocks to run on the GPU.
This step results boost the speed up to reach more than 65
times faster as compared with an optimized sequential B&B
method. Also the results confirm the efficiency of our two
level scheme GPU-B&B.

Comparing the results of our GPU B&B with those of
multi-core B&B, shows the advantage of using GPUs against
CPUs that usually contain a limited number of cores. We
also notice that our GPU B&B scheme reaches around 23
times faster than multi-core B&B version.

VI. CONCLUSION

In this paper we propose an original way to accelerate the
B&B method. The proposed two level scheme represents
a first work to accelerate the B&B method dedicated to
job shop problem and its blocking extension. This problem
is NP-hard and represents a version of the JSSP with no
intermediate buffer between machines. The first level scheme
does not change the design of the B&B algorithm except that
the bounding operator is faster. A second level is proposed in
order to fully occupy the GPU. Therefore, at each iteration



several search tree nodes will be sent to be evaluated using
several GPU blocks.

The obtained results confirm the efficiency of the pro-
posed approach and the positive impact of using computing
accelerators like GPUs to solve this problem. Also the results
show a good speedup since we have obtained an acceleration
around 65 for large instances as compared with an optimized
sequential B&B version.

As a perspective, we plan to explore heterogeneous archi-
tectures like multi-core CPUs, coupled with GPUs and Intel
Xeon Phi.
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