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Abstract—In this paper, we proposes a parallel ant colony
optimization based heuristic for solving the maximum weight
clique problem, which is a variation of the classical maximum
clique problem. The proposed parallel computing model is
based on a cooperation concept with consideration of a multiple
ant colonies system. In the cooperation system, we are given
a message center and a number of ant colonies. The ant
colonies aim at exploring the solution space with their own
search strategies. The message center first collects the solution
information from the different ant colonies, and then it shares
the best solution with them. The performance of the proposed
method was evaluated on a set of the standard benchmark
instances from literature. The obtained results are compared
to those reached by the Cplex solver and the best solutions
reported in the literature. As shown from the experimental
results, encouraging results have been obtained.
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I. INTRODUCTION

In this paper, we present a cooperative parallel optimiza-
tion model for solving the Maximum Weight Clique Problem
(MWCP). The MWCP is a variation of the classical max-
imum clique problem, which has wide-ranging application
in the social network issues. In MWCP, we are given an
undirected graph G = (V,E), where V = {1, . . . , n}
presents the vertex set and E ⊂ V ×V presents the edge set.
A clique C of G is a subset of the vertex set V , where every
two vertices in V are pairwise adjacent, i.e., ∀ i, j ∈ C,
(i, j) ∈ E. For the weighted case, each vertex i ∈ V is
associated with a positive weight, i.e., ∀ i ∈ V, wi > 0.
The objective of MWCP is to determine a clique C∗ of
maximum weight. Mathematically, MWCP can be written
as the following integer linear program:

(PMWCP ) max
∑
i∈V

wixi

s.t. xi + xj ≤ 1 ∀ (i, j) /∈ E (1)
xi ∈ {0, 1} ∀ i ∈ V.

The decision variable xi (∀i ∈ V ) is equal to 1 if the vertex
i is included in the clique; otherwise xi = 0. Equations
(1) represents the disjunctive constraints ensuring that the
nonadjacent vertices cannot be included in the same clique.
Without the loss of generality, we assume that all input

data wi (∀i ∈ V ) are strictly positive integers.

The remainder of the paper is organized as follows.
Section 2 reviews some previous works on MWCP and the
parallel computing. Section 3 describes the principle of the
sequential version of the proposed approach while section 4
states the parallel one. In section 5, the performance of
the proposed approach is evaluated on a set of benchmark
instances. Finally, section 6 summarizes the contents of the
paper.

II. RELATED WORKS

To the best of our knowledge, few exact methods have
been elaborated for the MWCP (see e.g. Babel [1] and
Ostergard [15]). In order to solve the large scale data of
the MWCP, the exacts methods are always time consuming.
Unlike the exact method, which ensures the optimality of the
provided solution, the metaheuristic only aims at finding the
high quality solution with a reasonable computational effort.
For instance, a number of approximate methods have been
proposed to solve the large MWCP (see e.g., Pullan [16],
Mannino and Stefanutti [14], Busygin [5], Bomze et al. [2]
and Wu et al. [17]).

In recent research, parallel metaheuristics aroused great
interest in combinatorial optimization. Most of these ap-
proches are based on the execution of a (or a set of) sequen-
tial metaheuristic(s) in parallel: 1) with different parameters
settings; 2) with different starting solutions and 3) on a
series of sub-problems after the application of an exact or
an approximate decomposition technique. Among the pio-
neering approaches, we cite here, a warehouse cooperative
parallel meta-heuristic (see Bouthilliera and Crainicb [3]), a
cooperative parallel tabu search (see James et al. [11]), a
parallel multi-start tabu search (see Czapiński [7]), a parallel
dynamic programming method for knapsack problems (see
Boyer et al. [4]), a parallel ant colony optimization on
graphics processing units (see Delévacq et al. [8]) and a
parallel large neighborhood search (see Hifi et al. [13]).

Ant Colony optimization (ACO), originally proposed by
Colorni et al. [6], is a well-known swarm intelligence
method, which achieved great success for solving combi-
natorial optimization problems, even when tackling certain



optimization problems with high complexity. The first par-
allel ant colony optimization conception was also suggested
by Dorigo [10] in the consideration of high-performance
parallel computing. A recent survey on parallel ant colony
optimization was proposed by Pedemonte et al. [9]. They
introduced a new taxonomy for classifying the available par-
allel ACO methods from literature and provided a detailed
survey on parallel ACO implementations.

According to results from previous works, the imbedding
of the cooperative procedure into the parallel model could
contribute to the further reinforcement of ACO. In this work,
we are particularly interested in developing a Multiple Ant
Colonies System (MACS) (see Pedemonte et al. [9]) for
solving large scale instances of MWCP. MACS is based
on constructing a cooperation system among the different
ant colonies, where each colony applies its own strategy to
explore the solution space. Once a colony finds a feasible
solution, we apply a multi-start tabu search, which was
proposed by Wu et al. [17], as a random local search to
improve the current solution. The proposed MACS model
is based on using Message Passing Interface (MPI) which
enables us to build a flexible message passing model of
parallel programming. More precisely, the proposed parallel
program related to MACS consists of gathering data from
the different parallel computing units.

III. ANT COLONY OPTIMIZATION

This section discusses the main principle of the sequen-
tial ACO, which will be imbedded into MACS (i.e., a
parallel model of ACO). The sequential ACO consist of
the simulation of the behavior of a single ant colony. We
recall that ACO is a simple and efficient swarm intelligence
metaheuristic. It has been first introduced in Colorni et
al. [6] for approximately solving the traveling salesman
problem. ACO’s principle is based on the observation of
real ants which are able to find the shortest path using the
pheromone trails deposited by other ants. Generally, an ACO
algorithm consists of two phases. In the first phase, one has
to determine an auto-updating system which directs the ants
towards interesting solutions. As shown in Colorni et al. [6],
after a sufficient number of iterations, the most of ants find
the same solution. In the second phase, one usually applies
several local improvement strategies to enhance the solution
yielded in the first phase. In this work, we apply the Multi-
start Tabu Search (MTS) proposed by Wu et al. [17] as
a random local improvement strategy. In other words, the
second phase can be considered as the fact that one assigns
the ants an useful tool in order to increase its capacity.

The first phase of an ACO algorithm is generally com-
posed of two components: a path building strategy and a
pheromone updating strategy. The goal of the path building
strategy is to determine an available solution in a stepwise
way. The pheromone updating strategy contains two keys:
the enhancement and the evaporation of pheromone. On the

one hand, the enhancement ensures that the more interesting
the path is, the more the ants tend to move onto such a path.
On the other hand, in order to avoid that the search procedure
converges quickly to a local optima, the pheromone trail
evaporates with the time passing.

Algorithm 1 : Ant Colony Optimization Heuristic (ACOH).
Input: An instance of PWMCP .
Output: C?, a local optimum of PWMCP .

1: Set C? as a starting feasible solution, where all variables
are assigned to 0;

2: while the maximum iteration ACOHite is not reached
do

3: Apply a random procedure to find a feasible solution
of PWMCP , noted by C;

4: Apply MTS to improve C;
5: Update C? with the best solution at hand;
6: Update pheromone trails according to C? and C;
7: end while
8: return S?;

Algorithm 1 summarizes the main steps for performing
ACOH. The main loop (step 2-7) of ACOH simulates how
the ants belonging to the same colony cooperate to find a
feasible clique. Step 3 applies a stepwise procedure to yield
a feasible clique, where, at each time, it randomly selects a
vertex to insert into the current clique. The random choice
respects to the probability distribution characterized by the
weights of the vertices and the amount of pheromone de-
posited for a state transition. The state transition considered
in ACOH is simple, let si1 (resp. si0) be the current state
of the vertex i (∀ i ∈ V ) such that the vertex i is included
in (resp. exclude from) the current clique C. Furthermore,
let τ ti1 be the amount of pheromone for the state transition
such that the vertex i is on the state si1 during the t-th
iteration. In order to establish the probability distribution of
choosing a vertex from all available choices, the probability
of inserting the vertex i into the current clique at the t-th
iteration can be defined as follows:

pti1 =
wαi + τ ti1∑

j∈V and j /∈C(wαj + τ tj1)
, ∀ i ∈ V.

The parameter α is used to adjust the impact of the weight
of vertices on the computation of the probability. Without
the lose of generality, one has pti0 = 1 − pti1. The building
procedure stops when no more vertex can be inserted into
the clique. After using MTS to improve the clique previously
determined (cf., step 4), the probability of selecting the
vertices is dynamically updated at the end of each iteration.
The pheromone updating strategy generally depends on
the local optima obtained from previous iterations and the
number of iterations already completed. Formally, at the end
of the t-th iteration, the amount of pheromone of the vertex



i on the state si1 is modified according to the following
equality:

τ t+1
i1 = (1− ρ) · τ ti1 + ∆t

i1, ∀ i ∈ V,

where 0 < ρ < 1 is the evaporation parameter and ∆t
i1

denotes the reinforcement value for the pheromone of the
vertex i on the state si1 at the t-th iteration. Note that
the evaporation parameter ρ adjusts the diversity of the
search procedure used in ACO (i.e., the step 3) whereas the
reinforcement value ∆t

i1 adjusts its convergence. However,
the right choice of both parameters can direct the ant system
towards good local optima.

∆t
i1 =

{
f(ut) if vertex i is on si1 at the t-th iteration
0 otherwise,

where ut (resp. u?) is the current objective value (resp. the
best objective value at hand) and f(.) is a function of ut

such that:
f(ut) = 0.1× (

ut

u?
)λ. (2)

The parameter λ is used with the consideration that the
better solution is, the more pheromones are deposited on
the corresponding states. Finally, ACOH (cf., Algorithm 1)
exits with the best solution when the maximum iteration is
reached.

IV. PARALLEL ANT COLONY OPTIMIZATION

Parallel programming is a technology of computing which
carries out the calculation by calling simultaneously com-
puting units. In this section, we introduce a Parallel ACO
Heuristic (PACOH) for solving WMCP. The proposed model
is designed by using Message Passing Interface (MPI),
which addresses primarily the message-passing parallel pro-
gramming model. In MPI, the data is moved from the
address space of one process to that of another process
through cooperative operations on each process. The main
advantages of MPI is the ease of use, in addition, it enables
us to build a portable, efficient, and flexible message passing
model of parallel programming.

In this section, we describe the cooperation mechanism
used by the proposed parallel algorithm. Indeed, as previ-
ously indicated, the core of ACO is composed of two phases:
the auto-updating system and local improvement procedure.
As already discussed in section 3, the auto-updating system
depends: 1) the path building strategy and 2) the pheromone
updating strategy. As shown in Wu et al. [17], the applica-
tion of different stating solutions has a strong impact on the
performance of MTS. The main concept of PACOH is based
on the simulation a multiple ant colonies system, where
PACOH performs simultaneously ACOH (Algorithm 1) in
parallel. We assume that the multiple ant colonies system
has a message center and a number of ant colonies. In
MACS, the message center is responsible for the collection
and the distribution of the feedback of different ant colonies.

For every ant colony, it first constructs a solution according
its individual behavior. Next, it sends its best solution to
the message center. Then, the message center choses the
best one among the solutions received from all ant colonies.
Through the use of the solution sent by the message center,
each ant colony updates its own pheromone trails. According
the new pheromone trails, each ant colony recalls ACOH to
generate new solutions. Finally, the message center stops the
global cooperative search procedure when the runtime limit
of PACOH is met.

Algorithm 2 : Parallel Ant Colony Optimization Heuristic
(PACOH)
Input: A instance of PWMCP ;
Output: C?, a local optimum of PWMCP ;

1: Call nbp+1 threads and set thread 0 as the root (message
center);

2: while the time-limit PACOHtime is not met do
3: For all threads (ant colonies), apply ACOH to find

local optima and send them to the root;
4: Update C? according to the solutions returned by the

threads;
5: The root sends C? to all threads;
6: For all threads, update their own pheromone trails

according to the solution sent by the root;
7: end while
8: return C?.

In algorithm 2, we introduce the main steps of PA-
COH. The algorithm starts by initializing nbp+1 threads
(ant colonies) (cf., step 1), where the thread 0 presents
the message center (the root) and the other nbp threads
presents the different ant colonies. The main loop (steps 2-
7) performs the cooperative search among the different ant
colonies. The teamwork consists of the application of ACOH
for each ant colony (cf., step 3), the sharing of the best local
optima (cf., step 5) and the update of the MACS, i.e., the
pheromone trails of each colony (cf., step cp:8). Step 4 stores
the best solution in the root. PACOH exits with the best local
optimum until the time-limit PACOHtime is met.

V. COMPUTATIONAL RESULTS

In this section, the proposed Parallel Ant Colony Opti-
mization Heuristic (PACOH) was evaluated on the bench-
mark instances from literature. The test sets for WMCP
were generated from the DIMACS benchmark set proposed
by Johnson and Trick [12]. The considered test set for
WMCP was also used in Pullan [16] and Wu et al. [17].
The DIMACS-based benchmark set for WMCP contains
either randomly generated graphs or graphs whose maximum
clique has been hidden by incorporating low-degree vertices.
The number of vertices (resp. edges) of these instances
range from 50 to 3300 (resp. 1000 to 5000000) In order
to display the performance of PACOH, the obtained results



were compared with those provided by Cplex solver and
the best solutions from literature. The proposed parallel
algorithm was coded in C++ using MPI library and run on
a machine with Intel Xeon, 2× 3.06 Ghz with 6-Core.

PACOH is performed with some parameters. According
to the results obtained after different trials, the set of values
chosen in our experiment ensures the best performance
for PACOH on the considered test set. For each thread,
the parameters used in ACOH are set as follows: α is
randomly generated from 0.8 to 1, ρ takes a random value
in [0.96, 0.98], λ = 10 and ACOHite = 50. For the root, the
parameter used in PACOH are set as follows: nbp = 10 and
PACOHtime = 1000 seconds (i.e., the total CPU runtime
consumed by each active thread is limited to 1000 seconds).

Table I reports the best objective values from literature
(cf., Pullan [16] and Wu et al. [17]), the best objective
values provided by the Cplex (version 12.6) in 3600 seconds
and the best solution provided by PACOH with the previ-
ously discussed parameter setting. Column 1 displays the
name of each instance. The best objective values from liter-
ature are shown in column 2. Columns 3-4 (resp. columns 5-
6) display the best objective values provided by Cplex (resp.
PACOH) and their execution time.

As shown in Table I, within the considered runtime limit
the Cplex was able to prove the optimality of 44 solutions
over 65. For the other 21 hard instances, the Cplex found
a new best solution on MANN a81 (i.e., 111379) in 3600
seconds. However, for the rest of the cases, the Cplex
performs worse than the considered algorithms. We can
observe that the Cplex even failed to find a feasible solution
on p hat1500-1 in 3600 seconds.

From Table I, we can also observe that, PACOH outper-
forms the Cplex in 64 cases over 65, where PACOH finds
20 solutions strictly better than the Cplex. When comparing
PACOH with the best solutions from literature, PACOH
match the best solutions in 63 cases.

VI. CONCLUSION

In this paper, we proposed a parallel algorithm based
upon ant colony optimization for solving the maximum
weight clique problem. The proposed approach was designed
using message passing interface. Ant colony optimization-
based heuristic was introduced in the parallel model in order
to provide high quality solutions. The performance of the
proposed method was evaluated on the set of the standard
benchmark instances of the literature. The obtained results
were compared to those provided by the Cplex solver and to
those obtained by one of the best methods from literature.
As shown in the experimental results, the proposed model
was able to provide high quality solutions in most of cases.
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Best Cplex PACOH
Inst. OV OV CPU OV10 CPU
brock200 1 2821∗ 2821 70.8 2821 1000
brock200 2 1428∗ 1428 32.2 1428 1000
brock200 3 2062∗ 2062 25.3 2062 1000
brock200 4 2107∗ 2107 75.3 2107 1000
brock400 1 3422 3164 3600 3422 1000
brock400 2 3350 2991 3600 3350 1000
brock400 3 3471 3300 3600 3471 1000
brock400 4 3626 3223 3600 3626 1000
brock800 1 3121 2713 3600 3121 1000
brock800 2 3043 2464 3600 3043 1000
brock800 3 3076 2462 3600 3076 1000
brock800 4 2971 2695 3600 2971 1000
c-fat200-1 1284∗ 1284 15.7 1284 1000
c-fat200-2 2411∗ 2411 10.2 2411 1000
c-fat200-5 5887∗ 5887 27.1 5887 1000
c-fat500-1 1354∗ 1354 198.5 1354 1000
c-fat500-2 2628∗ 2628 184.2 2628 1000
c-fat500-5 5841∗ 5841 65.7 5841 1000
c-fat500-10 11586∗ 11586 45.0 11586 1000
hamming6-2 1072∗ 1072 0.005 1072 1000
hamming6-4 134 ∗ 134 0.14 134 1000
hamming8-2 10976∗ 10976 0.01 10976 1000
hamming8-4 1472∗ 1472 3.5 1472 1000
hamming10-2 50512∗ 50512 0.06 50512 1000
hamming10-4 5129 5029 3600 5129 1000
johnson8-2-4 66∗ 66 0.004 66 1000
johnson8-4-4 511 ∗ 511 0.01 511 1000
johnson16-2-4 548 ∗ 548 0.01 548 1000
johnson32-2-4 2033∗ 2033 0.07 2033 1000
keller4 1153∗ 1153 1.9 1153 1000
keller5 3317∗ 3317 1781 3317 1000
keller6 8062 6954 3600 8062 1000
MANN a9 372 ∗ 372 0.029 372 1000
MANN a27 12283∗ 12283 3.44 12273 1000
MANN a45 34265∗ 34265 126.9 34192 1000
MANN a81 111128 111379 3600 111116 1000
p hat300-1 1057∗ 1057 78.1 1057 1000
p hat300-2 2487∗ 2487 81.4 2487 1000
p hat300-3 3774∗ 3774 231.1 3774 1000
p hat500-1 1231∗ 1231 1856 1231 1000
p hat500-2 3920∗ 3920 2353 3920 1000
p hat500-3 5375 5356 3600 5375 1000
p hat700-1 1441 1372 3600 1441 1000
p hat700-2 5290 5290 3600 5290 1000
p hat700-3 7565 7341 3600 7565 1000
p hat1000-1 1514 1483 3600 1514 1000
p hat1000-2 5777 5550 3600 5777 1000
p hat1000-3 8111 7610 3600 8111 1000
p hat1500-1 1619 - 3600 1619 1000
p hat1500-2 7360 5888 3600 7360 1000
p hat1500-3 10321 9756 3600 10321 1000
san200 0.7 1 3370∗ 3370 1.9 3370 1000
san200 0.7 2 2422∗ 2422 1.04 2422 1000
san200 0.9 1 6825∗ 6825 0.54 6825 1000
san200 0.9 2 6082∗ 6082 3.77 6082 1000
san200 0.9 3 4748∗ 4748 19.3 4748 1000
san400 0.5 1 1455∗ 1455 21.4 1455 1000
san400 0.7 1 3941∗ 3941 87.4 3941 1000
san400 0.7 2 3110∗ 3110 560.2 3110 1000
san400 0.7 3 2771∗ 2771 330.1 2771 1000
san400 0.9 1 9776∗ 9776 94.7 9776 1000
san1000 1716∗ 1716 1796 1716 1000
sanr200 0.7 2325∗ 2325 77.4 2325 1000
sanr200 0.9 5126∗ 5126 30.7 5126 1000
sanr400 0.9 1835∗ 1835 2460 1835 1000
sanr400 0.7 2992 2757 3600 2992 1000

Table I
PERFORMANCE OF PACOH ON THE STANDARD BENCHMARK

INSTANCES OF THE LITERATURE.


