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Evolving environments challenge researchers with non stationary data flows where the concepts -or states -being tracked can change over time. This requires tracking algorithms suited to represent concept evolution and in some cases, e.g. real industrial environments, also suited to represent time dependent features. This paper proposes a unified approach to track evolving environments that uses a two-stages distance-based and density-based clustering algorithm. In this approach data samples are fed as input to the distance based clustering stage in an incremental, online fashion, and they are then clustered to form µ-clusters. The density-based algorithm analyses the micro-clusters to provide the final clusters: thanks to a forgetting process, clusters may emerge, drift, merge, split or disappear, hence following the evolution of the environment. This algorithm has proved to be able to detect high overlapping clusters even in multi-density distributions, making no assumption about cluster convexity. It shows fast response to data streams and good outlier rejection properties.

Introduction

"The ability to adapt to the environment is an essential quality for any intelligent mechanism" [START_REF] Schlimmer | Incremental learning from noisy data[END_REF]. Technological advances of past decades have resulted in production and service infrastructures highly adaptive to constantly changing environments and now instrumented to deliver massive data flows. There is a crucial need for monitoring these big infrastructures and track the condition of their components precisely from these data. For example, in process industries, components are mostly subject to hazardous environments, such as severe shocks, vibration, heat, friction, dust, etc. [START_REF] Rajakarunakaran | Artificial neural network approach for fault detection in rotary system[END_REF]. These environments cause component health state to change and the process behavior to evolve, as has been widely reported in the cases of tool wear [START_REF] Rajesh | Flank wear detection of cutting tool inserts in turning operation: application of nonlinear time series analysis[END_REF][START_REF] Kilundu | Tool wear monitoring by machine learning techniques and singular spectrum analysis[END_REF] and pipe clogging or leaking [START_REF] Verde | Iterative scheme for sequential leaks location[END_REF][START_REF] Barbosa | Trend-based dynamic classification for on-line diagnosis of time-varying dynamic systems[END_REF]. Even though aging acts on the process components, "normal" conditions may be maintained regardless of some evolution. In telecommunication networks, changing environments may result in evolution of the structure of the network itself (e.g. adding servers) causing in turn the normal operation mode to evolve. Hence, in most real-world applications, processes are not stationary. Among the methods that have been used to track process behavior, machine learning approaches have been chosen in cases where data is abundant and/or the process is too complex to be modeled [START_REF] Kilundu | Tool wear monitoring by machine learning techniques and singular spectrum analysis[END_REF][START_REF] Gama | A survey on concept drift adaptation[END_REF]. In this framework, a specific process behavior is associated with a pattern in the multidimensional space whose axes correspond to the features used to characterize the behavior. A pattern hence corresponds to a concept, for example "normal operation mode" in a monitoring context.

Machine learning algorithms build a model, formed of a set of patterns, based on a previously prepared data set called the training data set. This data set should be representative of the different behaviors of the process. Most machine learning approaches train the algorithm off-line to develop the model that can be used later online. If the available knowledge allows one to label every object of the training data set by a concept, the goal is to learn the contour of the classes corresponding to the different concepts, which refers to supervised classification. If the training data set is unlabeled, the goal is to cluster the objects based on a similarity criterion or based on the objects density, which refers to non-supervised classification, also known as clustering. Assigning a concept to each cluster is then left to the domain expert. In both cases, one obtains a model in the form of a set of classes. In this work, the word classifier is used to refer to this model. When referring to the classification algorithm, we may use classifier system.

The standard assumption made by most machine learning approaches (e.g. classifiers, neural networks, etc.) is that the data has stationary or non-biased distribution [START_REF] Gao | On appropriate assumptions to mine data streams: Analysis and practice[END_REF][START_REF] Zadrozny | Learning and evaluating classifiers under sample selection bias[END_REF], that is both training and testing samples encountered during the online stage are drawn from the same distribution [START_REF] Cieslak | Detecting fractures in classifier performance[END_REF]. Under this assumption, the algorithm can go through the training set as many times as needed but once the model is deployed online, it remains unchanged over time (its structure and sometimes even its parameters) [START_REF] Kilundu | Tool wear monitoring by machine learning techniques and singular spectrum analysis[END_REF]. If the performance of the classifier decreases, the classifier may be re-trained off-line but it does not adapt automatically online. In other words, new objects assigned to a class do not imply a change of the classifier. This type of classification is called static classification [START_REF] Joentgen | Dynamic fuzzy data analysis based on similarity between functions[END_REF]. Classic static approaches include a variety of statistical classifier systems and clustering algorithms. The interested reader is referred to [START_REF] Venkatasubramanian | A review of process fault detection and diagnosis. Part III: Process history based methods[END_REF] for a detailed review. In contrast, learning algorithms modeling time-varying processes should be able to adapt the model online, i.e. when tracking the dynamic behavior [START_REF] Sebastiao | A study on change detection methods[END_REF]. The new objects may cause the classifier to change in time, dynamically [START_REF] Angstenberger | Dynamic fuzzy pattern recognition with applications to finance and engineering[END_REF][START_REF] Guajardo | A model updating strategy for predicting time series with seasonal patterns[END_REF]. One then refers to dynamic classification or more precisely dynamic clustering because, obviously, new entering data is not labeled.

Dynamism in the classifier is achieved when not only the parameters but the classifier structure changes according to input data in an automatic way. One difficulty is to deal with the novelty detection problem, also called concept drift [START_REF] Markou | Novelty detection: a review-part 1: statistical approaches and part 2: neural network based approaches[END_REF], which implies to distinguish outlier data samples and noise from concept drift [START_REF] Schlimmer | Incremental learning from noisy data[END_REF] when the input data falls outside the already learned behavior. A dynamic clustering algorithm can be qualified according to the type of process change that it is able to capture. Abrupt changes in data are captured by cluster creation and elimination. Smooth changes are usually reflected as cluster drifts and less frequently as cluster merging and splitting. We will call a clustering algorithm dynamic if it achieves at least two of these desired cluster operations, and fully dynamic if it achieves all the desired cluster operations (i.e. creation, elimination, drift, merge, and split). Full dynamicity is obviously a highly desirable feature of any dynamic clustering algorithm.

In view of the difficulty in predicting the underlying distribution of data arriving in an on-line fashion, another desired feature is to be able to deal with clusters of any shape, in particular non convex. The aim of our work is to take up this challenge while addressing at the same time the need of processing fast data streams online and coping with big data in real time [START_REF] Angelov | Evolving fuzzy-rule-based classifiers from data streams, Fuzzy Systems[END_REF]. scribed in 4.1.2. Subsection 5 summarizes the algorithm and presents the different possible configurations of DyClee. These are illustrated in Section 6 in which the results of extensive benchmarking are given and compared to several specialized algorithms of the literature. Section 7 then demonstrates the use of DyClee for process monitoring on two real data sets. The first data set refers to a gasifier and the second to the boiler subsystem of a steam generation process. Finally Section 8 concludes the paper and presents future research directions.

Work positioning

Related work

Dynamic clustering has been tackled by several authors. Among the main methods we can mention connectionist approaches like Self-Adaptive Feed-Forward Neural Networks (SAFN) [START_REF] Li | An online clustering algorithm[END_REF] and the evolving cascade connectionist system of [START_REF] Bodyanskiy | An evolving connectionist system for data stream fuzzy clustering and its online learning[END_REF], fuzzy logic approaches among which Evolving Clustering [START_REF] Angelov | Evolving fuzzy-rule-based classifiers from data streams, Fuzzy Systems[END_REF][START_REF] Angelov | Fuzzily connected multimodel systems evolving autonomously from data streams[END_REF], the algorithm pClass to extract fuzzy rules [START_REF] Pratama | pclass: an effective classifier for streaming examples[END_REF] and also [START_REF] Kempowsky | Process situation assessment: From a fuzzy partition to a finite state machine[END_REF][START_REF] Bouchachia | Fuzzy classification in dynamic environments[END_REF], neo-fuzzy approaches [START_REF] Bodyanskiy | Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks[END_REF], Growing Gaussian Mixture Models (2G2M) [START_REF] Bouchachia | Incremental learning based on growing gaussian mixture models[END_REF], and random forests [START_REF] Hu | A novel random forests based class incremental learning method for activity recognition[END_REF]. Deep learning architectures have also been proposed [START_REF] Young | Hierarchical spatiotemporal feature extraction using recurrent online clustering[END_REF]. Finally, we must mention the oDP algorithm [START_REF] Ulanova | Clustering in the face of fast changing streams[END_REF] that is the online version of the DP algorithm [START_REF] Rodriguez | Clustering by fast search and find of density peaks[END_REF] based on identifying density peaks. These approaches classify time-dependent data seen as points in a d-dimensional space. Some of these methods imply high requirements in terms of memory and computational power and are hence not suitable for handling online large amounts of data, such as data arriving in a stream.

All the above mentioned works consider adaptation to abrupt changes through cluster creation but [START_REF] Kempowsky | Process situation assessment: From a fuzzy partition to a finite state machine[END_REF] and [START_REF] Bouchachia | Incremental learning based on growing gaussian mixture models[END_REF] do not consider elimination. Only SAFN [START_REF] Li | An online clustering algorithm[END_REF] is fully dynamic. [START_REF] Angelov | Fuzzily connected multimodel systems evolving autonomously from data streams[END_REF] considers cluster replacement to handle cluster drift. Cluster replacement involves cluster creation around the new focal point followed by the old cluster elimination, which may be poorly adapted to smooth changes. On the other hand, [START_REF] Ulanova | Clustering in the face of fast changing streams[END_REF] considers clustering on sliding windows in which one object is inserted and another is deleted at each time step. All the data outside the current window is simply ignored in the clustering, which also seems inadequate to represent how the concepts drift.

Concept drift refers to a subtle change of the underlying data distribution [START_REF] Schlimmer | Incremental learning from noisy data[END_REF]. It can be categorized into two types: virtual concept drift or drift in data distribution, and real concept drift or drift in the conditional distribution of the target concept, while the distribution of the input may -or may not -stay unchanged [START_REF] Gama | A survey on concept drift adaptation[END_REF]. The dynamic classifiers [START_REF] Angelov | Evolving fuzzy-rule-based classifiers from data streams, Fuzzy Systems[END_REF][START_REF] Angelov | Fuzzily connected multimodel systems evolving autonomously from data streams[END_REF][START_REF] Bouchachia | Incremental learning based on growing gaussian mixture models[END_REF][START_REF] Li | An online clustering algorithm[END_REF][START_REF] Kempowsky | Process situation assessment: From a fuzzy partition to a finite state machine[END_REF] manage only virtual concept drift. However, the ability to handle both, virtual and real concept drift, is a highly desirable feature of any clustering algorithm.

The possibility to cope with complex patterns, in particular non-convex clusters, has been pointed as another desired feature. It has been mostly considered by graph-theoretic algorithms. Path-based clustering [START_REF] Fischer | Path based pairwise data clustering with application to texture segmentation[END_REF][START_REF] Chang | Robust path-based spectral clustering[END_REF], spectral clustering [START_REF] Luxburg | A tutorial on spectral clustering[END_REF], expectation-maximization using minimal spanning tree [START_REF] Mitra | Non-convex clustering using expectation maximization algorithm with rough set initialization[END_REF], agglomerative clustering [START_REF] Gionis | Clustering aggregation[END_REF] are some of the non-convex clustering algorithms among others. Unfortunately, these algorithms work in an off-line fashion and with the stationary distribution assumption. To the best of our knowledge, only the quite recent dynamic classifier Cedas proposed in [START_REF] Hyde | Fully online clustering of evolving data streams into arbitrarily shaped clusters[END_REF] assure the detection of non convex sets.

Clustering techniques for data streams have emerged usually as two stages algorithms [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF][START_REF] Kranen | The ClusTree: indexing micro-clusters for any stream mining[END_REF][START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF][START_REF] Hyde | Fully online clustering of evolving data streams into arbitrarily shaped clusters[END_REF]. In the first stage data samples are collected, preprocessed, and compressed in µ-clusters along a distance-based clustering approach. In the second stage, µ-clusters are grouped into actual clusters that can be linked to the concepts of the domain. DyClee is going that way. Through optimized algorithms at each step, it achieves fast processing and detection of non convex sets. This properties are also achieved by the dynamic classifier Cedas [START_REF] Hyde | Fully online clustering of evolving data streams into arbitrarily shaped clusters[END_REF]. However, two important distinctions must be mentioned. At the distance based stage, DyClee uses the L 1 norm or Manhattan distance while Cedas uses the L 2 norm or Euclidean distance. Given that we want the selected distance measure to work in high dimensional spaces, the L 1 norm is more appropriate than the L 2 norm as shown in several works that are discussed in Section 3.1. At the density based stage, DyClee achieves multi-density clustering while Cedas uses only two levels of density. In the case of high and low density clusters, Cedas would reject all the samples of low density clusters as outliers, which is obviously not desired.

Summary of contributions

The main disadvantages of many of the previous approaches consist in high requirements in terms of memory and/or computational power that are not suitable for online stream clustering, poor adaptation to smooth concept drift, impossibility to cope with complex patterns, and impossibility to deal with multi-density data configurations. In regard to these, the contributions of this paper are the following: and a density-based stage that can run in parallel and execute at a high and lower frequency respectively; 2. We demonstrate that DyClee achieves several interesting properties, in particular handling non convex, multidensity clustering with outlier rejection, and full dynamicity; 3. Compared to [START_REF] Barbosa | Trend-based dynamic classification for on-line diagnosis of time-varying dynamic systems[END_REF], we have improved DyClee with several new features that can be used by the user in an optional way, like multi-density clustering; 4. Compared to [START_REF] Barbosa | A novel algorithm for dynamic clustering: Properties and performance[END_REF], we have optimized the density-based stage based on spatial indexing; 5. We provide concrete demonstrations of DyClee clustering on several synthetic data sets and on two real data sets in the engineering domain.

The DyClee algorithm

The dynamic clustering algorithm that we present uses the two stages distance and density-based clustering approach proposed in [START_REF] Barbosa | Trend-based dynamic classification for on-line diagnosis of time-varying dynamic systems[END_REF] modified to be able to discover clusters exhibiting different levels of density without any assumption on linearity or convexity. The use of spatial indexing allows fast access to µ-clusters in the first stage and speeds-up connectivity search in the second stage. Both stages are on-line but operate at different time scales. In our proposal, µ-clusters of similar densities can form clusters of any shape and any size. The multi-density feature allows the detection of novelty behavior in its early stages when only a few objects giving evidence of this evolution are present.

DyClee was developed to work under the unsupervised learning paradigm in an incremental fashion. Many existing learning algorithms do not emulate the way in which humans learn. Humans experience the world on the fly, and carry out learning in an incremental way. Often such learning is unsupervised, with the world itself as the teacher [START_REF] Carpenter | Encyclopedia of machine learning[END_REF].

DyClee learns in a similar way. It makes no a priori assumption about the data structure but discovers it progressively, changing the clusterer structure, and hence the representation of concepts, to describe the received data.

DyClee first stage operates at the rate of the data stream and creates µ-clusters putting together data samples that are close in the sense of the L 1 -norm. µ-clusters are stored in the form of summarized representations including statistical and temporal information.

DyClee second stage takes place at a lower frequency and analyses the µ-clusters distribution. Its cycle is a multiple of the first stage cycle given by t global , where t global specifies the number of samples that have been processed by the first stage algorithm. The density of a µ-cluster is considered as low, medium or high (cf. subsections 3.3.2 and 3.3.3) and is used to create the final clusters by a density-based approach. Similarly to [START_REF] Chen | Density-based clustering for real-time stream data[END_REF], a cluster is defined as the set of connected µ-clusters where every inside µ-cluster presents high density and every boundary µ-cluster exhibits either medium or high density.

Both stages work as parallel threads and exchange information to mutually improve performance. The distanceand density-based parallel structure allows the algorithm to find the final clusters even in evolving environments described in high dimensional spaces and it has proved outlier rejection capabilities [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF][START_REF] Barbosa | Trend-based dynamic classification for on-line diagnosis of time-varying dynamic systems[END_REF]. A global graphical description of DyClee in block diagrams can be seen in Figure 1. The two stages are further explained in subsections 3.1 and 3.3.

Distance-based clustering stage

The first clustering stage aims at forming groups of objects of small controlled size, also called µ-clusters, based on object's similarity. As most methods for data analysis we use an L p norm as dissimilarity measure. Since Aggarwal et al. [START_REF] Aggarwal | On the surprising behavior of distance metrics in high dimensional space[END_REF] proved that the meaningfulness of the L p norm worsens faster with increasing dimensions for higher values of p, we use Manhattan distance, i.e. L 1 norm. In the classification context, this norm outperforms all the other norms in the L p family as is shown in [START_REF] Rubner | Empirical evaluation of dissimilarity measures for color and texture[END_REF].

µ-clusters

Let us consider that an object X = [x 1 , . . . , x d ] marked with a time stamp t X and qualified by d features. A µ-cluster µC k , is the representation of a group of objects close in all dimensions whose location is identified by an index id k and whose information is summarized in a characteristic feature vector CF k of the following form:

CF k = (n k , LS k , SS k , t lk , t sk , D k , Class k ) (1) 
where n k ∈ N is the number of objects in the µ-cluster k, LS k ∈ d is the vector containing the linear sum of each feature over the n k objects, SS k ∈ d is the square sum of features over the n k objects, t lk ∈ is the time when the last object was assigned to that µ-cluster, t sk ∈ is the time when the µ-cluster was created, D k is the µ-cluster density and Class k is the µ-cluster label if known. Using LS k , SS k and n k the variance of the group of objects assigned to µ-cluster µC k can be calculated. Feature vector was introduced in [START_REF] Zhang | Birch: A new data clustering algorithm and its applications[END_REF] and has been widely used since for on-line clustering, see e.g. [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF][START_REF] Kranen | The ClusTree: indexing micro-clusters for any stream mining[END_REF][START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF] .

The data is normalized according to the data context, i.e. the feature range [min i , max i ] of each feature i, i = 1, . . . , d. If no context is available in advance, it may be established on-line. µ-clusters are shaped as a d-dimensional boxes since the L 1 -norm is used as distance measure. The size of the hyperboxes S i along each dimension i is set as a fraction of the corresponding feature range. The hyperbox size per feature is hence found according to [START_REF] Rajakarunakaran | Artificial neural network approach for fault detection in rotary system[END_REF], where φ i is a constant establishing the fraction:

S i = φ i |max i -min i |, ∀i = 1, . . . , d. (2) 
The density of a µ-cluster µC k is calculated using the current number of objects n k and the current hypervolume of the bounding hyperbox V = d i=1 S i , as shown in (3):

D k = n k V . (3) 

Object insertion

DyClee structure starts empty and is built by successive sample insertions. The first arrived sample becomes the center of the first µ-cluster, and from then on, the insertion mechanism described next is applied. This mechanism uses the notion of reachable µ-cluster as defined below.

Definition 3.1 (Reachable µ-cluster). A µ-cluster µC k is reachable from a data sample X = [x 1 , . . . , x d ] if L ∞ (X, c k ) ≡ max i x i -c i k < S i 2 , ∀i = 1, . . . , d
where

c k = [c 1 k , . . . , c d k ] T is the center of µC k and the c i k 's are calculated from LS k as c i k = LS i k /n k .
Data samples are inserted into the closest (w.r.t. Manhattan distance) reachable µ-cluster. The distance between the object X = [x 1 , . . . , x d ] T and a µ-cluster µC k , named as dis(X, µC k ), is calculated as the sum of the distances between the µC k vector center c k = [c 1 k , . . . , c d k ] T and the object value for each feature as shown below:

dis(X, µC k ) = L 1 (X, c k ) = d i=1 x i -c i k ( 4 
)
If there is a tie between several µ-clusters, the data sample is mapped to the denser one. Once found, the feature vector of the selected µ-cluster is updated with the data sample information.

In order to speed-up the retrieval of the closest µ-cluster when a new sample arrives, µ-clusters are stored in one of two lists. The first list is the 'Active µ-cluster' list, the A-list, in which medium and high density µ-clusters are stored. The A-list hence contains the µ-clusters in which sample are more frequently mapped. This list is the first source queried for reachable cs, giving priority in search to the high and medium density µ-clusters over the low density µ-clusters. The second list, the O-list, hence contains the low density µ-clusters. This list is queried only if the data sample does not reach any of the µ-clusters in the A-list.

If the data sample does not reach any of the existing clusters in the two lists, a new µ-cluster is created with the data information and using its time-stamp as cluster time of creation. It is appended to the O-list.

The algorithm 1 given in Figure 2 provides the pseudo-code for µ-clusters formation, i.e. for the distance-based stage of DyClee. 

Density-based clustering

In this stage, density-based clustering is executed over the µ-clusters, which allows the algorithm to find clusters of arbitrary shape. A µ-cluster is qualified according to its density as one of three options: dense µ-cluster (Dµ-cluster), semi-dense µ-cluster (Sµ-cluster) or low density (outlier) µ-cluster (Oµ-cluster). The µ-cluster type is decided automatically based on the density of surrounding µ-clusters as explained in subsections 3.3.2 and 3.3.3). Sµ-clusters may result from an increase in the number of outliers from which one can expect a cluster creation, so they have to be updated more frequently than other µ-clusters.

As stated at the beginning of this section, a cluster is defined as a set of connected µ-clusters where every inside µ-cluster is a Dµ-cluster and every boundary µ-cluster is either Sµ-cluster or Dµ-cluster. The definition of connected µ-clusters is given by Definition 3.3 that relies on Definition 3.2 defining the notion of directly connected µ-clusters. This definition allows us to define the notion of group of µ-clusters that is used to define the clusters. Definition 3.2 (Directly connected µ-clusters). Let µC kα and µC k β be two µ-clusters, then µC kα and µC k β are said to be directly connected if their hyperboxes overlap in all but ϕ dimensions, where ϕ is an integer. The parameter ϕ establishes the feature selectivity of the classifier and can be set by the user (cf. Section 5.2).

The µ-clusters µC j directly connected to a µ-cluster µC k are those that are at a given distance with respect to the L ∞ norm of µC k , i.e. whose center c j satisfies the following condition:

∃I ϕ = {i 1 , . . . , i d-ϕ } ⊆ {1, ..., d} such that max i c i j -c i k < S i 2 , ∀i ∈ I ϕ ( 5 
)
Definition 3.3 (Connected µ-clusters). A µ-cluster µC k1 is said to be connected to µC kn if there exists a chain of µ-clusters {µC k1 , µC k2 , • • • , µC kn } such that µC ki is directly connected to µC ki+1 for i = 1, 2, • • • , n -1.

Definition 3.4 (µ-clusters group).

A set of connected µ-clusters is defined as a group.

Definition 3.5 (Cluster).

A set of µ-clusters is defined as a cluster if they belong to the same group, i.e. they are connected, and every inside µ-cluster is a Dµ-cluster and every boundary µ-cluster is either Sµ-cluster or Dµ-cluster.

Group search and µ-cluster indexing

The task of finding all the groups of µ-clusters can be seen as that of finding all the connected µ-clusters to a µ-cluster µC k . Finding the all the connected µ-clusters comes back to finding all the directly connected µ-clusters, that can be seen as neighbors, and then finding all the directly connected µ-clusters to its neighbors and so on. The task of finding the neighbors, which is computationally expensive, is similar to that of finding the nearest neighbors [START_REF] Gutin | Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the tsp[END_REF], which has been widely studied and specific strategies have emerged to improve this search [START_REF] Kumar | A fast dbscan clustering algorithm by accelerating neighbor searching using groups method[END_REF]. Spatial indexing methods have been widely investigated to speed-up the NN-query. These methods sort data based on its spatial occupancy. Specifically, they use hierarchical data structures to decompose the data space into regions which can be further decomposed into sub-regions, and so forth. These regions, usually represented as a tree structure, facilitate the NN query and also intersection queries [START_REF] Fang | Spatial indexing in microsoft sql server[END_REF].

Since we use hyperboxes to represent data samples the use of a spatial index seems appropriate. Multi-dimensional indexing structures have proved to reduce similarity search time in low to medium dimensional spaces. This indexing should allow fast access to µ-clusters in the first stage and speed-up connectivity search in the second stage. Several options were analyzed in order to find the index best suited to our research problem. Three different tree data distributions were tested in order to find the index structure best suited to our goals. The selected structures are: the 'R*Tree' [START_REF] Beckmann | The r*-tree: An efficient and robust access method for points and rectangles[END_REF], the 'BallTree' [START_REF] Omohundro | Five balltree construction algorithms[END_REF] and the 'KDTree' [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF]. These structures were tested using three data sets exhibiting different spatial behavior: a uniformly distributed data set and two geometrically distributed data sets. Tests were performed varying the number of samples among the values N = {10, 100, 1000, 1000} and the number of dimensions as d = {2, 4, 8, 16, 32, 64, 128}.

The R*Tree showed the poorest performance in terms of both computation time and memory usage. The BallTree was found to be an order of magnitude slower than the KDTree. The KDTree was selected as spatial index since it proved to be more efficient in µ-clusters group retrieval and index construction. Some graphical results are summarized in Figure 3 and the complete test results are reported in [START_REF] Roa | Comparison of spatial indexes[END_REF]. It can be seen from Figure 3 that the tree-like indexes perform poorly when the number of indexed elements is bigger than a thousand. Consequently, in the algorithm implementation a limit of a thousand µ-clusters should be considered if the analyzed dimensions scale up to a hundred.

DyClee implements two different approaches to establish the dense character of µ-clusters, named global-density approach and local-density approach. The former approach allows to detect clusters according to two levels of density while the later allows the detection of clusters with varied densities. DyClee global-and local-density approaches are explained in the following subsections. 

Global-density approach to clustering

In the global-density approach, density is considered as a µ-cluster characteristic with respect to all the other µclusters. Two measures are considered as representative of the µ-clusters, the average of µ-cluster's density and the median. These measures work as thresholds for establishing the dense character of a µ-cluster, with no need of any user defined parameter. The intuition behind the selection of these measures is that the median and average densities of an heterogeneous set of µ-clusters are significantly different, although, if the set of µ-clusters is uniformly dense, these two quantities are equal.

Formally, a µ-cluster µC k is said to be dense at time t if its density is greater than or equal to both global measures, i.e. the median and the average. On the contrary if its density is bigger or equal to one of the two measures and lower than the other, the µ-cluster is said to be semi-dense (Sµ-cluster). Finally if the µ-cluster µC k has a density below both thresholds it is said to be an Oµ-cluster. These conditions are given by inequalities ( 6) to [START_REF] Gao | On appropriate assumptions to mine data streams: Analysis and practice[END_REF], where D i is the density of the µ-cluster µC i and K is the total number of µ-clusters:

µC k dense ⇔ D k ≥ median (D 1 , • • • , D K ) ∧ D k ≥ avg (D 1 , • • • , D K ) , (6) 
µC k semi-dense ⇔ D k ≥ median (D 1 , • • • , D K ) ∨ D k ≥ avg (D 1 , • • • , D K ) , (7) 
µC k outlier ⇔ D k < median (D 1 , • • • , D K ) ∧ D k < avg (D 1 , • • • , D K ) . (8) 
As stated before, in order to find the final clusters, we take into account the dense character of the µ-clusters and their connections. Connections are accounted for by the notion of group. Every group of µ-clusters is analyzed one after the other in order to identify the clusters. A cluster is created if every inside µ-cluster of the group is a Dµ-cluster and every border µ-cluster is either a Dµ-cluster or a Sµ-cluster.

To better illustrate the cluster formation process, let us consider a group of connected µ-clusters exhibiting two areas of high density as shown at the top left of Figure 4. In the figure, µ-clusters density is represented by opacity. DyClee searches the Dµ-clusters inside the group and all the µ-clusters surrounding them with medium or high density. This subgroup of µ-clusters is qualified as a cluster as depicted in red in Figure 4 (top right). The remaining µ-clusters of the group are then analyzed in a similar manner. Since some Dµ-clusters are found, another cluster is formed as shown in blue at the bottom right of Figure 4. The pseudo-code of the second stage algorithm is given in Figure 5 as Algorithm 2. 

Local-density approach to clustering

Density-based algorithms as DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], DenStream [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF], the initial version of DyClee [START_REF] Barbosa | Trend-based dynamic classification for on-line diagnosis of time-varying dynamic systems[END_REF] or the global density approach presented in Section 3.3.2 group data samples according to a notion of density that remains the same in all the data space. The problem of this global point of view to identify a sample as dense appears when regions of varied densities are present in the same data set as can be seen in Figure 6, where density is represented by µ-cluster opacity.

In this case, global density-based algorithms may misclassify low density clusters, like the bottom cluster of Figure 6, as noise.

While it is deemed desirable to detect clusters of multiple densities, it is also important to maintain the ability to reject outliers. DyClee's solution to multi-density clustering, as named in [START_REF] Mitra | Non-convex clustering using expectation maximization algorithm with rough set initialization[END_REF], is based on local analysis. The dense character of each µ-cluster is assessed with respect to the density of the other µ-clusters in the same group.

The average and the median of the µ-clusters within the same group are chosen as thresholds for this group. In other words, for each group G l , the µ-clusters having their density higher than or equal to the average density of the Algorithm 2: Clustering using global-density analysis group (avg(D G l )) and higher than or equal to the median density of the group (median(D G l )) are considered as dense. µ-clusters having a density higher than or equal to only one of those measures (either average or median) are considered as Sµ-clusters and those with density below both measures are considered as Oµ-clusters. Assuming that µC k is a µ-cluster within the group G l , this is summarized by:

DM C ← µC k such that D k > Davg ∧ D k > D median //
µC k dense ⇔ D k ≥ median (D G l ) ∧ D k ≥ avg (D G l ) , (9) 
µC k semi-dense ⇔ D k ≥ median (D G l ) ∨ D k ≥ avg (D G l ) , (10) 
µC k outlier ⇔ D k < median (D G l ) ∧ D k < avg (D G l ) . (11) 
Interestingly, the subsequent procedure is the same as in the global density approach presented in Section 3.3.2. A cluster is created if every inside µ-cluster of the group is a Dµ-cluster and every border µ-cluster is either a Dµ-cluster or an Sµ-cluster (in a local sense). After this stage, the group G l is reduced to the µ-clusters that do not contribute to any cluster and the same procedure is applied recursively. The µ-clusters groups shown in Figure 6 are analyzed in this manner in Figure 7: first, for each group, clusters are formed with the denser connected µ-clusters resulting in the red and blue top clusters of the figure. Each group is then analyzed in turn with respect to the remaining µ-clusters following the same method. The final classification is shown on the right of Figure 6. The group or groups with the lowest density are taken as outliers. It is worth noting that global-density approaches as the ones proposed in [START_REF] Barbosa | Trend-based dynamic classification for on-line diagnosis of time-varying dynamic systems[END_REF], [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] or [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF] are unable to detect the green cluster because the densities of the µ-clusters in that group are low with respect to those in the other groups. In fact, the main drawback of those approaches can be observed in overlapping distributions with contiguous regions of different density. Global density algorithms may cluster those regions as one big cluster or consider all the samples in the lowest density regions as noise, missing the characterization of those samples. On the other hand, multi-density approaches may fail to reject noise, since they can cluster it in one low density cluster. In order to avoid the inclusion of outliers in multi-density distributions, DyClee considers the cluster with the lowest density as noise. Local-density analysis is optional in DyClee, and can be set on or off according to the user's needs (cf. Section 5.2, Table 6).

Main functionalities of DyClee

Novelty detection and cluster evolution

Novelty detection imposes itself as a key factor in clustering and classification problems and work has been done on detecting and tracking data changes. [START_REF] Kempowsky | Process situation assessment: From a fuzzy partition to a finite state machine[END_REF][START_REF] Bouchachia | Incremental learning based on growing gaussian mixture models[END_REF] reflect data evolution with possible creation of new clusters. Another track of work was done to adapt the whole cluster structure automatically. Cluster changes, creation and elimination, are tracked based on the study of the spatio-temporal properties of a cluster. Cluster evolution is relevant for many applications as customer relationship management [START_REF] Chen | A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data[END_REF][START_REF] Pyon | Service improvement by business process management using customer complaints in financial service industry[END_REF], fraud detection and marketing [START_REF] Angstenberger | Dynamic fuzzy pattern recognition with applications to finance and engineering[END_REF], network security [START_REF] Mazel | Sub-space clustering, inter-clustering results association & anomaly correlation for unsupervised network anomaly detection[END_REF], etc. In order to maintain an up-to-date structure, more weight should be given to incoming data to make it more relevant to the algorithm.

Representation of a forgetting process

DyClee implements a forgetting process in order to cope with cluster evolution. Specifically, µ-clusters are weighted with a decay function dependent on the current time t and the last assignation time t lk . This function f (t, t lk ) emulates a forgetting process. When a new d-dimensional object X = x 1 , . . . , x d T is assigned to a µcluster µC k at t, the cluster last assignation time is updated to t lk = t. The other attributes of the feature vector are updated as follows:

n k (t) = n k (t -1)f (t, t lk ) + 1 ∀k ( 12 
)
LS i k (t) = LS i k (t -1)f (t, t lk ) + x i ∀ i, i = 1, . . . , d. ( 13 
)
SS i k (t) = SS i k (t -1)f (t, t lk ) + (x i ) 2 ∀ i, i = 1, . . . , d. (14) 
In general, if no object is added to a µ-cluster during the time interval (t, t + ∆t), its CF at t + ∆t can be calculated from CF (t) using the decay function for the weighted parameters as follows:

CF (t+∆t) k = f (∆t) CF (t) k . ( 15 
)
Subsection 4.1.2 shows several options for the decay function f (t, t lk ). If the object cannot be assigned to any of the existing µ-clusters, a new Oµ-cluster is formed using the object information as feature vector. We assume that a µ-cluster with low density (Oµ-cluster) is either outlier or a potential cluster in an emerging state. The later case reveals itself with an increment in the µ-cluster density and consequently, the µ-cluster "grows" into a Sµ-cluster as new data is provided as input.

Decay functions

As stated above, in order to follow the data evolution, data in clusters are subject to a forgetting process. Numerous machine learning methods have implemented some kind of forgetting process through a decay function to be able to detect or track concepts that drift or shift over time. Table 1 presents the set of decay functions implemented in DyClee, hence allowing proper adaptation to all kinds of process evolution underlying the incoming data. In the last column, Table 1 also refers to previous works that used these functions for clustering. These functions are plotted for t w=0 = 6000, t ∼a = 2000 and t lk = 0 in Figure 8. The choice of the decay function is left to the user. She/he may also select the default configuration in which no forgetting process is applied (cf. Section 5.2).

Decay function

Equation Also used by Linear decay

f 1 (t, t lk ) = 1 -m (t -t lk ) t -t lk ≤ t w=0 0 t -t lk > t w=0 concept drift adaptation [56] Trapezoidal decay f 2 (t, t lk ) =      1 t -t lk ≤ t ∼a m-t m-t∼a t ∼a ≤ t -t lk ≤ t w=0 0 t -t lk > t w=0
Monitoring parameter for clustering [START_REF] Angstenberger | Dynamic fuzzy pattern recognition with applications to finance and engineering[END_REF] Z-shape function

f 3 (t, t lk ) =          1 t ≤ t ∼a 1 -2 t-t∼a tw=0-t∼a t ∼a ≤ t -t lk ≤ t∼a+tw=0 2 2 t-tw=0 tw=0-t∼a t∼a+tw=0 2 ≤ t -t lk ≤ t w=0 0 t -t lk > t w=0 Exponential decay f 4 (t, t lk ) = e -λ d (t-t lk )
Stream clustering [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF], [START_REF] Kranen | The ClusTree: indexing micro-clusters for any stream mining[END_REF] Half life function The simplest forgetting function f 1 (t, t lk ) corresponds to a linear decay. The function slope m could be inversely proportional to the time it takes to the function to go from one to zero, m = 1/t w=0 . If a non-forgetting time range is appended to a linear decay, we get a trapezoidal decay profile. This profile is often used in electronic applications. In the trapezoidal decay function f 2 (t, t lk ), t ∼a represents the no forgetting time and t w=0 the time when the function reaches zero. Fuzzy logic makes use of the Z-function f 3 (t, t lk ). This spline-based function uses only two parameters, the extremes of the sloped portion of the graph t ∼a and t w=0 .

f 5 (t, t lk ) = β -λ d (t-t lk ) Fuzzy classification [24] Sigmoidal decay f 6 (t, t lk ) = 1 1+e -a(t-c)
Statistical processes use overall the exponential decay function f 4 (t, t lk ), where λ d is a positive rate known as exponential decay constant. This type of functions is the most widely used to model decay since it has applications in all fields of science. A generalization of exponential decay given by the change in the base from e to any value β provides interesting properties to f 5 (t, t lk ). For example, if β is chosen to be β = 2ψ, then the time at which half of the data is forgotten, is 1 ψλ d . This function is known as the half life function and is widely used in biological processes.

Although exponential decay has been widely used, several processes do not follow this imminent decay dynamics. Logistic functions are the common alternative when dead zones or saturation make part of the process behavior. The Sigmoid function f 6 (t, t lk ) is a particular case of the logistic function which has been widely used in ecology, statistics, medicine, machine learning, etc. to describe, for example, growing processes. It introduces a dead zone, which in our case, is used to describe the time gap during which cluster's data should not be affected by the forgetting process.

In DyCleethe forgetting process (cf. Table 2) impacts the µ-cluster feature vector, in particular the density of the µ-clusters. Every time t global samples have been processed to form µ-clusters, the density of all µ-clusters is updated as explained in Section 4.1.1. Changes in density imply that the µ-cluster type may change: density decrease may result in Dµ-clusters becoming Sµ-clusters and Sµ-clusters becoming Oµ-clusters, and vice-versa. This is the feature at the core of clusters evolution.

Long-term and short-term memory

We claim that clusters that are Dµ-clusters at some point in time should be given particular attention because they represent well-established concepts. Therefore they should not be forgotten only because the concepts they describe do not correspond to the incoming data anymore. Indeed, some data sets, in particular those coming from dynamic processes, could go through cycles and hence they could return to previous states that were defined previously.

In order to improve the clustering evolution process, the user can configure DyClee (cf. Table 3) to implement short-term and long-term memory. Short-term memory refers to the µ-clusters describing the most recent behavior, i.e µ-clusters in the A-list and in the O-list (cf. Section 3.1.1). Short-term memory is subject to the forgetting process as previously described. If a Oµ-cluster was once dense, it is stored in a database of old known concepts, i.e. in the long-term memory. If the density of an Oµ-cluster drops below the low-density threshold, it is eliminated only if it has never been Dµ-cluster before. The long-term memory is accessed when an input object is not found to belong to any µ-clusters in the short-term memory. This action verifies if the input object belongs to a previously learned concept, speeding up its recognition in case the concept was already learned before.

Outlier detection

Outlier detection has been widely investigated in several knowledge disciplines, including statistics, data mining and machine learning and several approaches have been proposed ( [START_REF] Hawkins | Identification of outliers[END_REF], [START_REF] Markou | Novelty detection: a review-part 1: statistical approaches and part 2: neural network based approaches[END_REF], [START_REF] Zimek | A survey on unsupervised outlier detection in high-dimensional numerical data[END_REF]). This problem is related to other problems such as novelty detection, anomaly detection, deviation detection, etc. A classical, intuitive, definition of 'outlier' was given by Hawkins in [START_REF] Hawkins | Identification of outliers[END_REF]: 'an observation, which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism'. In general, outliers indicate the occurrence of unknown events or unexpected patterns resulting from system evolution or reconfiguration. Nevertheless, outliers can also be an indication of noise, damage or errors.

Outlier detection methods can be classified according to several characteristics: the use of training (pre-labeled) data, the assumption of a standard statistical distribution, the type of data set, the dimension of detected outliers, the type of detected outliers (global/local), among others. Most commonly used outlier detection approaches are those classified as distribution-based, distance-based [START_REF] Knorr | Distance-based outliers: algorithms and applications[END_REF], density-based [START_REF] Breunig | Lof: Identifying density-based local outliers[END_REF] or angle-based [START_REF] Kriegel | Angle-based outlier detection in high-dimensional data[END_REF]. If the probability density function (or functions) is (are) known and alleged to follow a normal distribution, the simplest approach to outlier detection is to compute the probability of a sample to belong to a class (or to classes), and then use a threshold to establish its outlier character. This approach is equivalent to finding the distance of the sample to class means and threshold on the basis of how many standard deviations away the sample is [START_REF] Markou | Novelty detection: a review-part 1: statistical approaches and part 2: neural network based approaches[END_REF]. Unfortunately, in most real world applications the data distribution is not known a priori, as a result non parametric methods are generally preferred. Non parametric approaches like distance-based, density-based or angle-based, make no assumption about the statistical properties of the data which makes them more flexible than parametric methods.

Since no formal unique definition of outlier exists, the notion of outlier may greatly differ from one outlier detection technique to another. In this work, the outlierness or not of a sample is related to the outlierness of the µ-cluster that contains the sample. Explicitly, for DyClee, an outlier sample is defined as: 'a sample contained in an Oµ-cluster and an Oµ-cluster is defined as a representation of samples that, due to their position and density, do not correspond to any of the identified clusters'.

The distance and density analysis that DyClee performs allows it to detect both, global and local multivariate outliers, the former in all configurations and the latter when multi-density clustering is used. The outlier character of a sample is binary, that is, a sample can only be considered as outlier or not outlier. Nevertheless, the outlierness of a µ-cluster may be associated with its density which provides a score about how much outlier a µ-cluster is. In other words, the set of all Oµ-clusters can exhibit different densities although their densities remain in the same relative lower level with respect to the clusters densities that are composed of Sµ-clusters and Dµ-clusters.

If global density as presented in Section 3.3.2 is used, DyClee detects only global outliers. In this approach, a µ-cluster is considered as outlier if its density is lower than its group median density and its group average density, being its group the set of all the µ-clusters connected (directly or indirectly) to it (cf. Definitions 3.2 and 3.3). This is given by equation ( 8) repeated below:

µC k outlier (global) ⇔ D k < median (D 1 • • • D K ) ∧ D k < avg (D 1 • • • D K ) . (16) 
If multi-density clustering as presented in Section 3.3.3 is used, the equation ( 11) (repeated below) shows that an µ-cluster is considered as outlier if and only if its density is lower than its group median density and its group average density:

µC k outlier (local) ⇔ D k < median (D G k ) ∧ D k < avg (D G k ) . (17) 
Summarizing, DyClee may detect global or local outliers depending on the configuration. Its ability to detect local outliers is optional, activated only when the local-density approach is used. The next subsection explains it in more details as it provides a presentation of the main algorithmic loop and of the different clustering options offered by DyClee.

DyClee operation

Summary of the main algorithmic loop

When a new object X is given as input, DyClee maps the object into the closest reachable µ-cluster. If no reachable µ-cluster exists, it creates a µ-cluster using the object attributes. If there is a tie between several µ-clusters, the data sample is mapped to the denser µ-cluster. The feature vector of the selected µ-cluster is then updated with the data sample information. If no of the existing µ-clusters, including those in the long-term memory, is reachable from X, a new µ-cluster is created with the data sample and it is be appended to the O-list. This is performed by the distance based clustering stage (cf. Section 3.1).

Every time t global samples have been processed, the density based algorithm enters into play (cf. Section 3.3). The first task is to update the µ-clusters density types according to their current density. In particular, Dµ-clusters may become to Sµ-clusters, Sµ-clusters may become Oµ-clusters or Oµ-cluster and Oµ-cluster(s) may become Sµclusters or be eliminated (or put in the long-term memory if configured). Then, the groups are formed and the clusters are identified according to the configuration selected by the user, i.e. global or local density procedure.

DyClee parametrization

DyClee requires only one parameter, which is the parameter relative-size that provides the value of all the φ i s of Equation ( 2), i.e. relative-size = φ i , i = 1, . . . , d. This parameter specifies the size of the hyperboxes shaping the µ-clusters (cf. section 3.1) by defining a portion of the total range along every dimension 1 .

relative-size is a real number in the interval [0, 1]. Although values of relative-size > 0.5 can be used to deal with specific cases, they are not recommended because they drastically limit the number of µ-clusters and the clustering grain is too rough. Note that low relative size may result in too many clusters because of an excess sensitivity to density gradients. On the other hand, too large relative size leads to incorrect merging of clusters because µ-clusters tend to be dense and connected (cf. experiment in Section 6.2.5).

Although DyClee has a default configuration, it can be configured differently when the user has specific knowledge about the process that underlies the data and/or the distribution of the data. The different options might also be used to analyze and mine the data. They are though to help the user discover the patterns hidden in the data.

DyClee optional features are listed below:

• forget method DyClee implements six different decay functions that can be used to achieve correct tracking of the data evolution process as explained in Subsection 4.1.2. The default value is none that implies that DyClee does not use any forgetting process. This configuration is to be used when there is no dynamic process underlying the data, i.e. the data does not refer to time. The choice of any of the other options depends on the knowledge about the dynamic process underlying the data. The reader can refer to Subsection 4.1.2 to select the most appropriate decay function.

• ltm [Long-term memory]: Boolean value.

values of each feature. The context is used for normalization purposes. If not provided minimum and maximum values of the features are found on-line by DyClee.

• t global[Period of the density-based clustering cycle]: Integer value. t global specifies the number of input samples between two runs of the density-based clustering algorithm. In the default configuration, t global=1, which means that the density-based clustering procedure is run for every input sample. t global establishes how often the cluster structure is updated as an output for the user. It is worth noting that the runs of the density-based clustering stage ensue in parallel with the distance-based clustering stage and its results (cluster labels) are returned to the later after each run.

• uncdim [Uncommon dimensions]: Integer value.

Configuration

Behavior of DyClee uncdim=0 (default) µ-clusters are directly connected when their hyperboxes overlap in all dimensions uncdim=ϕ µ-clusters are directly connected when their hyperboxes overlap in all dimensions but ϕ The uncdim option allows the user to set the feature selectivity of the clusterer. By default uncdim=0, thus direct connection is established when hyperboxes overlap in all dimensions (cf. Definition 3.2 of Section 3.3; uncdim corresponds to the parameter ϕ).

DyClee performance

In this section DyClee is compared with other known algorithms in order to assess its performance. As stated in subsection 5.2, DyClee requires only one user pre-defined parameter that determines the size of the hyperboxes that shape the µ-clusters. Nevertheless, if the user has some knowledge about the data to be clustered, DyClee can be configured to achieve the clustering that best fits user's expectations, as seen in subsection 5.2.

Complexity analysis

Since DyClee has two stages that work independently, its complexity analysis is also made independently. The complexity of the distance-based stage is O (dm) for each analyzed d-dimensional element, with m being the average amount of µ-clusters per list (A-list and O-list). Since DyClee is an incremental algorithm, in general m << n, where n is the total amount of elements to be clustered, it results a total complexity of O (n). In the optimistic scenario, data is to be mapped to the most representative µ-clusters, so distance comparison is performed only against the µ-clusters in the A-list, leaving out all the Oµ-clusters that are in the O-list. The worst case scenario refers to high dimensional data sets with small number of samples and sparse distribution, and also all the µ-clusters in the same list A-list or O-list. In this case m << n and d << n do not stand any more. In this case, the complexity of the distance-based stage is Θ (dmn). Note however that data sets with small number of samples are not the target of DyClee.

The complexity of the density-based stage is that of the group retrieval and density analysis. As said in subsection 3.3.1, the KDTree is used as spatial index to improve µ-clusters group retrieval. A KDTree for a set of p µ-clusters can be build in O (p log (p)) time [START_REF] Blum | Time bounds for selection[END_REF][START_REF] Wald | On building fast kd-trees for ray tracing, and on doing that in o (n log n)[END_REF]. Looking for µ-cluster's groups is querying for those µ-clusters whose volume intersect the volume of the query point. The query time is bounded by O p (1-1/d) + k with k being the number of reported µ-clusters [START_REF] Cormen | Introduction to algorithms[END_REF].

DyClee comparison on literature synthetic test cases

In Figures 17 to 22, we show DyClee clustering results for different test cases. Clusters are represented using a combination of colors and glyphs. As a result, samples belonging to the same cluster have both the same color and the same glyph. For example, in Figure 17 (right), there are four green clusters and in Figure 19 (right) there are four blue clusters (even if the tonality is different); however, each of these clusters are represented using different glyph ( , , , • for 17 and , •, × and + for 19), so they denote different clusters. Detected outliers are represented as black dots.

Test cases will show that DyClee performance is up to the performance of several existing specialized clustering algorithms. Let us note that the real value of DyClee is to put together in one unique algorithm all the features achieved by different specialized algorithms. Hence its performance is not to be evaluated on each experiment separately but on the whole set of experiments. These experiments are also used to illustrate DyClee optional features. For those experiments for which visual inspection is not enough to assess the results, the following metrics are used to evaluate the clustering:

• T pi denotes the number of true positive samples for cluster i, i.e. the number of samples assigned to cluster i whose label does correspond to the dominant label in this cluster,

• F pi denotes the number of false positive samples for cluster i, i.e. the number of samples assigned to cluster i whose label does not correspond to the dominant label in this cluster,

• F ni denotes the number of false negative samples for cluster i, i.e. the number of samples not assigned to cluster i whose label corresponds to the dominant label of cluster i,

• Purity is defined as the percentage of the total number of samples that were classified correctly:

P urity = 1 n K i=1 T pi ( 18 
)
where n is the total amount of samples clustered and K the number of clusters.

• Precision represents the proportion of retrieved samples which are relevant, i.e. the proportion of true positive samples:

P recision = 1 K K i=1 T pi T pi + F pi (19) 
• Recall represents the proportion of relevant samples found, defined as the number of true positives over the number of true positives plus the number of false negatives:

Recall = 1 K K i=1 T pi T pi + F ni (20)

Detection of convex and non-convex distributions

When data is organized according to non-convex sets, classic clustering algorithms like k-means and stream algorithms like CluStream [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF] and ClusTree [START_REF] Kranen | The ClusTree: indexing micro-clusters for any stream mining[END_REF] tend to fail at clustering them. This section presents DyClee's capabilities to separate neighboring non-convex shaped clusters and to account for local as well as global outliers. To show these properties, we have chosen to cluster some synthetic sets available in the scikit-learn Python module [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. Our algorithm is compared to scikit-learn module provided implementations of different clustering algorithms, namely MiniBatch KMeans (MBK-m), Agglomerative Clustering, Affinity Propagation, DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] and BIRCH [START_REF] Zhang | Birch: A new data clustering algorithm and its applications[END_REF].

Four noisy data sets were evaluated: concentric circles, moons, blobs and random data with no structure. These data sets were generated using the scikit-learn data set module. Each distribution, is composed of 1500 samples each and is time invariant. In consequence, DyClee's forgetting process was disabled for this test.

The parameters for each algorithm for the test were: MBK-m (# of clusters), AC (linkage "average", affinity "cityblock", # of clusters, connectivity2 ), AP (damping=0.9, preference=-200), BIRCH (# of clusters), DBSCAN (eps=0.2), DyClee (relative-size=0.06). The results of the test are reported in Figure 9. Note that the AC algorithm, as well as the MBK-m and BIRCH require the number of clusters as initial parameter, which is quite restrictive.

Figure 9 shows that MBK-m, BIRCH and Affinity Propagation are not able to cluster the non-convex sets properly, even if MBK-m, BIRCH are given as input the desired number of clusters. The Affinity Propagation algorithm does not perform well at all in this distribution, creating a high number of clusters. Agglomerative Clustering, DBSCAN and DyClee are able to detect the non-convex distribution, nevertheless, Agglomerative Clustering is unable to detect outliers and DBSCAN rejects less outliers than DyClee.

Multi-density Clustering

In order to illustrate the multi-density feature, two test sets are used. The first one is taken from [START_REF] Fahim | Scalable varied density clustering algorithm for large datasets[END_REF] and shown on the left of Figure 10. The second is a synthetically generated set shown in Figure 13. DyClee results for the test case of [START_REF] Fahim | Scalable varied density clustering algorithm for large datasets[END_REF] with the global-density option and the local-density option are shown in Figure 11, on the left and center positions respectively. By default, DyClee sets the µ-cluster in the lowest density cluster as outliers (black dots) and that's why the center image of Figure 11 identifies all the samples on the right as outliers. If the user wants to detect the lowest density class, it is enough to deactivate the Unclass accepted option (cf. Table 4) to obtain the complete clustering. This result is shown on the right of Figure 11.

The CluStream [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF] and Denstream [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF] algorithms were confronted to this data set for comparison. in Figure 12 (left), CluStream micro-clusters are depicted in green and the final clustering result in red. DenStream micro-clusters are depicted in green in Figure 12 (right), and the final clusters are represented changing color to blue. It can be seen that DenStream can only detect the two denser clusters; samples in yellow and cyan are not clustered. In addition, even if in this example the target classes are convex sets, CluStream fails to correctly cluster them due mainly to the overlapping of the distributions. Table 8 summarizes the clustering results and show that DyClee is outperforming the two other algorithms.

Interestingly, using the local-density scheme helps to better shape clusters that share frontiers, that is, clusters that Table 8: Clustering evaluation of streaming methods over the multi-density test case are side by side, in highly overlapping situations. To do this, DyClee first finds all possible clusters, allowing multiple densities. Second, it finds the border of the clusters and then analyzes every µ-cluster in the border. Border µ-clusters are assigned to the connected cluster that has the most similar average density. In that way, cluster frontiers can be precisely drawn, which is key in highly overlapping distributions. To further illustrate this, a test case based on cluster distributions exhibiting different densities is shown in Figure 13 (left). DyClee clustering results are shown in Figure 13 (center) and DBSCAN results in Figure 13 (right) with the best possible configurations for the two algorithms (DyClee relative-size=0.07, DBSCAN eps = 0.15). Glyphs are set according to the original distribution and color to the current clustering. Visual inspection is enough to assess that DyClee outperforms DBSCAN both in outlier rejection and sparse sample recognition. 

Robust path based clustering

Classical clustering approaches have powerful capabilities in modeling compact data. Nevertheless they mostly fail in detecting elongated structures. For this kind of challenge, connectivity based or graph based approaches such as [START_REF] Zanghi | Fast online graph clustering via erdős-rényi mixture[END_REF] behave better but they are often very sensitive to outliers. Figure 14 shows the three spirals unnoisy distribution used in [START_REF] Chang | Robust path-based spectral clustering[END_REF] to test what is called robust path-based clustering. In the center of each spiral, samples are more abundant and they become sparser as the spirals grow out. This kind of distribution is path based, which makes its clustering specially difficult for an algorithm only based on distance or only based on density. Even more, path based clustering methods found in the literature work over the entire data set which makes them unsuitable for real-time, large-data applications.

Since DyClee uses an incremental distance-based and density-based approach, it can overcome this kind of challenge, achieving results comparable to those of the original paper by Chang and Yeung [START_REF] Chang | Robust path-based spectral clustering[END_REF] that uses the so-called robust path-based spectral clustering method. DyClee clustering results and the original results of [START_REF] Chang | Robust path-based spectral clustering[END_REF] are shown in Figure 14. These results are achieved forcing DyClee to cluster all samples (option Unclass accepted=False)(cf.

Table 4).

Robust path-based clustering [START_REF] Chang | Robust path-based spectral clustering[END_REF] gives a measure of the inter-point similarity arguably robust in presence of noise. The concentric spirals example was also considered with noise in [START_REF] Chang | Robust path-based spectral clustering[END_REF] and the robust path-based clustering is unable to correctly label the noisy samples as outliers. The main advantage of DyClee over path-based methods like [START_REF] Chang | Robust path-based spectral clustering[END_REF] is its ability to recognize outliers. DyClee does not only work under a unsupervised paradigm which does not require a priori knowledge of the number of clusters, but it also excludes outlier samples from the clusters thanks to Oµ-clusters.

The CluStream [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF] and Denstream [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF] algorithms were also confronted to this data set, setting the time horizon as the length of the samples, hence giving the same importance to all the samples. This scenario was also the test scenario for our algorithm. CluStream micro-clusters in Figure 15 (left) are depicted in green and the final clustering result in red. It can be seen that CluStream actually creates the micro-cluster representation for the samples but the final clusters mix samples of the three spirals. DenStream micro-clusters are depicted in green in Figure 15 (right) and the final clusters are represented changing points color to blue. DenStream does not mix elements of several spirals, but it creates 32 clusters putting apart samples of the same spiral. Using the three spirals distribution, the value of DyClee's minimum mc optional parameter (cf. Table 5) can be illustrated. Figure 16 shows DyClee results with minimum mc disabled (on the left) and enabled (on the right). As can be seen in the figures, the density of samples increases in the middle of the spirals leading the algorithm to group middle samples as belonging to a denser cluster (Figure 16 left). If the minimum mc option is activated, no cluster including less than half of the average amount of µ-clusters is allowed. By default, the µ-clusters belonging to this unaccepted clusters are return as "unclassified".

Images in Figure 16 show several samples at the head of the spirals that are classified as outliers due to the difference in density with µ-clusters in the middle of the spiral. If the option Unclass accepted is set to False (cf. Table 4), the unclassified samples are forced to belong to the closest cluster. The activation of this option is recommended when no noise is present in the data or when clustering all samples is mandatory. In the particular case of this dataset, the activation of the Unclass accepted option leads to the clustering result shown on the right side of Figure 14, which is just the right result.

Clustering aggregation problem

The clustering aggregation problem was presented by Gionis et al. in [START_REF] Gionis | Clustering aggregation[END_REF]. This problem is defined as finding a single clustering that agrees as much as possible with the information gathered from other clusterings used as input. Clustering aggregation is claimed to be useful in improving the robustness of clustering. Figure 17 shows the test case used by Gionis et al. [START_REF] Gionis | Clustering aggregation[END_REF]. An intuitively good clustering for this data set consists of the seven perceptually distinct groups of samples. The authors of [START_REF] Gionis | Clustering aggregation[END_REF] ran five different clustering algorithms implemented in MATLAB (single linkage, complete linkage, average linkage, Ward's clustering, and k-means), setting the number of clusters to 7 in each case. Nevertheless, the correct clusters distribution was not found by any of the named algorithms. Gionis et al. [START_REF] Gionis | Clustering aggregation[END_REF] then proposed several solutions using clustering aggregation, in particular deriving a clustering distribution that merges the results of the five clustering algorithms used in the previous stage. Unfortunately the aggregation techniques they consider are NP-hard, which makes their implementation unfeasible for practical problems.

DyClee has properties that make it efficient for the test case presented in [START_REF] Gionis | Clustering aggregation[END_REF]. As can be seen in Figure 17 Using the same data set one interesting aspect of DyClee can also be exemplified, which is its ability to reject clusters composed of few µ-clusters. If the clusters distribution is assumed to be relatively uniform, rejecting such clusters can improve outlier detection. When the user selects to enable the minimum µ-clusters cluster option but setting minimum mc=true (cf. Table 5), clusters with few µ-clusters are not accepted and the corresponding samples are taken as noise/outliers. Figure 18 shows DyClee's clustering results with this option. As can be seen from the figure, this option causes sparse clusters to be eliminated and their samples identified as noise (black dots).

Clustering in highly overlapping situations

In order to illustrate DyClee's performance in presence of highly overlapping classes, we selected the R15 data set from [START_REF] Veenman | A maximum variance cluster algorithm, Pattern Analysis and Machine Intelligence[END_REF]. This data set of 600 samples is generated by 15 similar 2D Gaussian distributions. DyClee deals with high overlapping data distributions by design. Its implementation of µ-clusters of different densities allows it Figure 18: DyClee clustering results for test case in [START_REF] Gionis | Clustering aggregation[END_REF]. On the left the minimum-mc option is off, on the right it is on.

to detect low density regions between connected clusters which subsequently enables the detection of adjacent clusters. Figure 19 (right) shows DyClee's clustering results compared to those of the original paper (left) [START_REF] Veenman | A maximum variance cluster algorithm, Pattern Analysis and Machine Intelligence[END_REF]. The 15 classes are correctly recognized and outliers are detected. For this test, DyClee was forced to cluster all samples (Unclass accepted=False)(cf. Table 4). If the user wants to improve cluster characterization by including detection of non representative samples (outliers), he/she can turn off the Unclass accepted parameter.

This test allows us to show DyClee's sensitivity to changes in the relative-size parameter, that is, the relative size of the µ-clusters. It is worth remembering that relative-size is the only mandatory parameter for running DyClee and it can take values from 0 to 1. Figures 20 and21 show DyClee's clustering results when the µ-cluster relative size varies from 0.01 to 0.06 of the feature range. For this test we set Unclass accepted=true, hence allowing the detection of outliers. Figures 20 and21 show that DyClee can correctly cluster the data set using µ-cluster relative size from 0.03 up to 0.05. When the µ-clusters relative size is too low, values under 0.02, more clusters are created due to density changes inside the cluster, in other words regions of low relative density are found between regions of higher density, forming two clusters as can be seeing on the left and middle images of Figure 20. On the other hand, if the µ-cluster relative size is taken too large (as on the right of Figure 21) clusters can be incorrectly merged due to the proximity of µ-clusters of high density.

Clustering Chameleon data sets

Finally we consider the t4.8k data set from the Chameleon data sets 3 . Chameleon is a hierarchical clustering algorithm developped by Karypis et al. [START_REF] Karypis | Chameleon: Hierarchical clustering using dynamic modeling[END_REF]. The t4.8k data set has six clusters of different size, shape, and orientation, as well as random noise samples and special artifacts such as streaks running across clusters making clustering particularly difficult. For this data set, Chameleon finds eleven clusters, out of which six correspond to the genuine clusters in the data set, and the rest contains outliers. Chameleon clustering results over this data set are the poorest over the five data sets proposed in [START_REF] Karypis | Chameleon: A hierarchical clustering algorithm using dynamic modeling[END_REF] 4 and this test case was excluded from the final paper [START_REF] Karypis | Chameleon: Hierarchical clustering using dynamic modeling[END_REF] reporting Chameleon. Nevertheless, this data set remains an interesting test case for clustering algorithms and has been extensively used for clustering validation [START_REF] Borah | A clustering technique using density difference[END_REF][START_REF] Fahim | Scalable varied density clustering algorithm for large datasets[END_REF][START_REF] Tran | D-impact: A data preprocessing algorithm to improve the performance of clustering[END_REF][START_REF] Thang | A hybrid clustering algorithm: The fastdbscan[END_REF]. DyClee results for this test case are given in Figure 22, showing the correct detection of six natural clusters, which correspond to the genuine clusters, but including some outlier samples in the natural clusters. DyClee results are hence quite good for this difficult clustering problem.

Concept drift problem

In the previous section, DyClee features were shown in static distributions that exhibit interesting challenges. Since in most of the real world applications, non-stationarity is typical, data is expected to evolve over time, that is, its underlying distribution can change.

In this section, algorithms are confronted with slowly time varying distributions, or as usually called in the online learning scenarios, with concept drift [START_REF] Gama | A survey on concept drift adaptation[END_REF]. As explained in the introduction, concept drift refers to a subtle change of the data distribution and it can be categorized in two types: virtual and real concept drift.

In this test, algorithms are confronted with real concept drift. Three clearly differentiated distributions are used to form three clusters. Two of these distributions drift in time: synthetic data are generated changing the center of the two distributions each 100 samples. In consequence, the positions of the corresponding clusters significantly rotate, as can be seen in Figure 23 in which the x-axis corresponds to the algorithm number of iterations. Dynamic data cause several clusterers to fail in finding clusters distribution since they cannot cope with evolution. Lets take as example the DBSCAN algorithm. In the considered test case, note that samples at k = 5000 in cluster 2 (green in Figure 23) take the position of samples at k = 0 in cluster 1 (blue in Figure 23). DBSCAN clustering results with min samples= 5 and eps= 0.2 are shown on the left side of Figure 24. Since the DBSCAN implementation does not consider time evolution and takes all data samples as input independently of time, the two drifting clusters are merged in one single cluster. the right side of Figure 24. One of the cluster's distribution is time invariant (the cluster in the middle of the figure), however MiniBatchKMeans links the samples of this cluster to those of drifting cluster and it is unable to capture the clusters' evolution. 

Experimental evaluation on real case studies

In this section, we consider three case studies and show the results of DyClee on real data sets.

Gasifier case study

A gasifier is a chemical reactor that heats and decomposes biomass into synthesis gas, a mixture of hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2), in a restricted oxygen (O2) environment. The key reaction is pyrolysis, a combination of thermal decomposition and incomplete combustion, typically from air or pure oxygen. Gasifiers can operate on any carbon-containing feedstock, and are more typically used with coal or waste wood. A sketch of the gasifier is given in Figure 27. The fluidised bed reactor operates continuously at 930C and 1200hPa. Biomass is fed through an electronically feeding screw at the bottom of the reactor over the gas distributor. The gasifying agent, air plus steam, is fed at the reactor bottom side, allowing solid fluidisation. The inlet steam is produced by the addition of water with a membrane pump to a pre-heater. The desired product is obtained at the top outlet. Its composition is measured indirectly by on-line continuous monitoring of CO2 and O2 concentrations in the output gases. The gasifier is equipped with two pressure sensors, two flow-meters, four thermocouples and an on-line analyzer. It has also actuators for the heating system, the rotary screw and the pumps. The features available for clustering are temperature of steam in the inlet (Tl); temperature in the base of the reactor (T2); reactor temperature (T3), CO2 and O2 concentrations in the product gas.

The scenario that has been provided to DyClee is given in Figure 28 (top). Ground truth indicates that it includes four operating states: Normal operation (mainly represented by samples 110 to 380, also 430 to 540), High steam flow state (corresponding to the temperature peaks of samples around 70 and 420), No Solid Feed state (samples 540 to 590), and Shut-down state (samples 590 to 630). DyClee was set with the parameter relative-size=0,05, the default configuration was taken for all the other parameters but Unclass accepted was set to false (cf. Table 4), which means that there was no outlier rejection. The clustering provided by DyClee is shown in Figure 28 (bottom). It identifies six main clusters as reported in Table 10. It is consistent with the ground truth and it is even more precise since it makes the difference between normal state in start up mode and normal state at operation (Class 1). Also, it detects a combustion problem that results in the temperatures dropping down (Class 3).

Steam generation process case study

DyClee has also been applied to the data acquired from the boiler of a steam generation process illustrated in The boiler is heated by a thermal resistor. The feed water flow F3 is pumped to the boiler via the pump P1. To maintain a constant water level L8 in the boiler, an on-off controller acts on the pump. The heat power value Q4 depends on the pressure P7 in the steam accumulator. When the accumulator pressure drops below a minimal value, the resistor delivers maximum heating power, and when the accumulator reaches maximal pressure the resistor heating is cut off so that the pressure is maintained within ± 0.2 bar of the set-point. The generated steam flow is measured with sensor F10. The scenario that has been given to DyClee (cf. Figure 30 (top) is quite atypical. The pump and its controller suffer some fault resulting in a pumping problem : water is pumped into the system (around sample 100) but then drops to zero, which results in the boiler operating correctly but the level L8 not being maintained and dropping down to zero. Only then the pump controller reacts and water is injected into the boiler (around sample 1700) but the input water flow is cut almost immediately again. DyClee was set with the parameter relative-size=0,2, the default configuration was taken for all the other parameters but Unclass accepted was set to false (cf. Table 4), which means that there was no outlier rejection, and a linear forgetting function was used (cf. Table 2).

The clustering provided by DyClee is shown in Figure 30 (bottom). It identifies four main clusters as reported in Table 11. The clustering is consistent with the behavior of the boiler. The water injection states are identified by Class 4. Class 1 and 2 alternate correctly detecting P7 pressure drops and intermittent heating power Q4. It should be noticed that, thanks to the forgetting function, Class 2 is identified over all the boiler normal operating period although the water level L8 is constantly decreasing. 

Conclusions

In this paper, we have presented DyClee, a fully Dynamic Clustering algorithm for tracking Evolving Environments, that handles non-convex, multi-density clustering with outlier rejection even in highly overlapping situations. This algorithm includes multi-density clustering that allows to detect rare behaviors and implements a novelty detection procedure. The use of a two stages algorithm, distance-based and density-based, cycling at different frequencies allows DyClee to cluster data arriving at fast rates, since the heavy tasks of the density-based algorithm are not applied at the input data rate.

The clustering performance of DyClee has been tested on several test cases from the literature obtaining comparable results to those of specialized clustering systems in path based detection, clustering aggregation and non-convex cluster detection, hence proving that DyClee achieves a set of valuable properties that are not generally found together in the same algorithm. DyClee has also been tested on two real case studies in the engineering domain, a gasifier and the boiler subsystem of a steam generation process, for which it has demonstrate good performance at monitoring the operating state.

Future work includes to implement a post-processing stage that analyzes DyClee's results for better semantic characterization. Barbosa et al. [76] present some work in this direction, generating online a Markov chain model from DyClee clustering results. In addition, cluster drift is interesting to characterize system evolution and can provide important information. Another interesting work is to provide a feature selection algorithm targeting dynamic clustering and able to rank the available features on-line according to their discriminability power. The idea behind this work is to change not only the selected inputs to the classifier but also the number of inputs dynamically.
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 1 Figure 1: Principle of DyClee
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 2 Figure 2: Pseudo-code of the distance-based clustering stage
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 3 Figure 3: Comparison between different tree indexes for the tree building task (Top) and group retrieval task (Bottom) in a spherical distribution. The R*Tree was removed from (a) and (c) to illustrate the difference between KDTree and BallTree
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 4 Figure 4: Global-density clustering. Top left: original µ-clusters group. Top right: the first cluster is identified. Bottom left: The remaining µ-clusters of the group to be analyzed. Bottom right: the second cluster is identified, ending the clustering process.
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 5 Figure 5: Density-based clustering pseudo-code
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 7 Figure 7: Local-density clustering. Left: the first cluster is identified. Center: The second cluster is identified. Right: the low density cluster is identified, ending the clustering process.
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 9 Figure 9: Algorithm comparison in convex and non convex sets. Samples belonging to the same cluster have the same color. Detected outliers appear as black dots. For the MBK-means and the Affinity Propagation algorithms, cluster centers are depicted as black circles.
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 1011112 Figure 10: On the left, clusters of varied density, from [66]. On the right, DBSCAN clustering results with eps = 0.1
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 13 Figure 13: Multi-density test case (left), DyClee clustering results (center) and DBSCAN clustering results (right)
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 14 Figure 14: Chang and Yeung robust path-based spectral clustering (left) and DyClee clustering results (right) for test case in [32].

Figure 15 :

 15 Figure 15: CluStream (left) and DenStream (right) tested against the three spirals distribution. Figures are screen shots from MOA software [67].

  , DyClee correctly clusters the test set, achieving almost the same result as Gionis et al. whereas Gionis et al. solution requires to aggregate the results of five different clustering methods. DyClee does not even require the number of clusters as input parameter.
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 1617 Figure 16: DyClee clustering results for test case in [32] with minimum mc option set to False on the left and set to True on the right
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 19 Figure 19: Veenman Maximum Variance Cluster Algorithm (left) and DyClee clustering results (right) for this test case [69].
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 2021 Figure 20: DyClee's clustering results. µ-cluster relative size of 0.01 (left), 0.02 (middle) and 0.03 (right)
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 22 Figure 22: Chameleon (left) and DyClee clustering results (right) for the test cases in [71].
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 23 Figure 23: Concept Drift toy example -The x-axis corresponds to the algorithm number of iterations, start on top left and end on bottom right.
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 2425 Figure 24: Clustering results on the concept drift example. Left DBSCAN results, middle Incremental DBSCAN, right Mini-BatchKMeans results.
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 26 Figure 26: DyClee clustering results on the concept drift example.
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 27 Figure 27: Gasifier
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 28 Figure 28: Gasifier normalized data scenario (top) and clustering from DyClee (bottom)
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 29 Figure 29: Steam generator boiler subsystem (from [75])
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 30 Figure 30: Boiler normalized data scenario (top) and clustering from DyClee (bottom)

  dense already seen= [ ] for µC k in DM C do if µC k not in already seen then already seen.append(µC k ) if µC k .label=Unclass then cid ← get next cluster label assign cid as current µC k label end Connected µC k ←all µC in neighborhood overlapped with current µC k while Connected µC k not empty do neighbor←Connected µC k .pop() if neighbor is dense then neighbor.label← cid already seen.append(neighbor) NewConnected µC k ←all µC overlapped in neighborhood of neighbor for newneighbor in NewConnected µC k do if newneighbor is dense then Connected µC k .append(newneighbor)

	end
	newneighbor.label← cid
	end
	end
	end
	end
	end

Table 1 :

 1 Decay functions implemented in DyClee to emulate a forgetting process Profile of the decay functions implemented in DyClee (cf.

	12

Table 1 )

 1 

Table 2 :

 2 Configuration of the forgetting process

	Configuration	Decay function used by DyClee
	forget method=none (default) none
	forget method=linear	Linear decay function
	forget method=expo	Exponential decay function
	forget method=sigmo	Sigmoidal decay function
	forget method=z func	Z shape decay function
	forget method=trapezoidal	Trapezoidal decay function
	forget method=half life	Half life decay function

[Forgetting function]: String input.

Table 7 :

 7 Configuration of the µ-clusters direct connectivity

Table 9 :

 9 Table 9 summarizes the experimental results. Clustering evaluation of streaming methods over the path-based test case

	Algorithm Purity Precision Recall NumClusters
	Clustream	0.43	1.0	0.82	3
	Denstream	1.0	1.0	0.6	32
	DyClee	1.0	1.0	1.0	3

Table 10 :

 10 Identification of the clusters provided by DyClee for the gasifier scenario

Table 11 :

 11 Identification of the clusters provided by DyClee for the boiler scenario

In the current implementation of DyClee, the φ i s are all set to the same value given by relative-size but this would be easy to modify if necessary.

connectivity estimated using scikit function kneighbors graph with n neighbors=10.

Available at http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download

The original technical report[START_REF] Karypis | Chameleon: A hierarchical clustering algorithm using dynamic modeling[END_REF] which includes the test data set is available on the page of the author (http://www-users.cs.umn. edu/han/dmclass/chameleon.pdf).
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Configuration

Behavior of DyClee ltm=false (default) Long-term memory deactivated ltm=true Long-term memory activated If the long-term memory is activated, Oµ-clusters that have once been Dµ-clusters, i.e. which are in the longterm memory, are not eliminated even though their density drops below a low density threshold. The long-term memory should be activated for data coming from processes that may undergo long cyclic behaviors.

• Unclass accepted [Non-informative label accepted]: Boolean value.

Configuration

Behavior of DyClee Unclass accepted=true (default) Outlier rejection

Unclass accepted=false

No outlier rejection In the default configuration, outliers are detected as explained in Section 4.2. This configuration should be used when the data could be corrupted by noise [START_REF] Kempowsky | Process situation assessment: From a fuzzy partition to a finite state machine[END_REF] or when data samples that do not fit the clusters distributions should be detected, e.g. in anomaly detection applications. However, in some applications, it is desirable to label all samples as described by Pyon et al. [START_REF] Pyon | Service improvement by business process management using customer complaints in financial service industry[END_REF]. That is the case of credit card issuing process for renewal, where all samples should be labelled as approved or rejected. In this case Unclass accepted should be set to false.

• minimum mc [Minimum amount of µ-clusters]: Boolean value.

Configuration

Behavior of DyClee minimum mc=false (default) All clusters are retained minimum mc=true

Clusters with few µ-clusters are discarded In the default configuration, all clusters are retained in the final clustering. The user can choose the sparse cluster procedure option by setting minimum mc to true. This option should be used when the focus of the analysis is on populated cluster profiles. On the other hand, in some situations such as fault diagnosis applications, the default configuration should be used because faulty behavior is far less frequent than normal behavior. Discarding sparse clusters could lead to late fault detection and even non-detection of faulty situations.

• multi-density [Local-density analysis]: Boolean value.

Configuration

Behavior of DyClee multi-density=false (default) Global density procedure is applied multi-density=true

Local density procedure is applied Global density and local density based procedures are explained in subsection 3.3.3 DyClee. In the default configuration, the global density procedure is applied and the clustering is based on two levels of density. The user should set multi-density to true when she/he wants to obtain clusters with varied density. In this case, density thresholds are found locally using the groups densities.

• Data context (context): Matrix. The user can choose to provide a matrix for context. This matrix should contain the maximum and minimum