
HAL Id: hal-02152286
https://laas.hal.science/hal-02152286v1

Submitted on 11 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Model Checking of Complex Robotic Systems
Mohammed Foughali, Félix Ingrand, Cristina Seceleanu

To cite this version:
Mohammed Foughali, Félix Ingrand, Cristina Seceleanu. Statistical Model Checking of Complex
Robotic Systems. 26th International SPIN Symposium on Model Checking of Software, Jul 2019,
Beijing, China. �hal-02152286�

https://laas.hal.science/hal-02152286v1
https://hal.archives-ouvertes.fr

Statistical Model Checking of Complex Robotic Systems

Mohammed Foughali1, Félix Ingrand1, and Cristina Seceleanu2

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
mfoughal@laas.fr,felix@laas.fr

2 Mälardalen University, Västerås, Sweden
cristina.seceleanu@mdh.se

Abstract. Failure of robotic software may cause catastrophic damages. In order
to establish a higher level of trust in robotic systems, formal methods are often
proposed. However, their applicability to the functional layer of robots remains
limited because of the informal nature of specifications, their complexity and
size. In this paper, we formalize the robotic framework GenoM3 and automatically
translate its components to UPPAAL-SMC, a real-time statistical model checker.
We apply our approach to verify properties of interest on a real-world autonomous
drone navigation that does not scale with regular UPPAAL.

1 Introduction
Although robotic software is tested, both in the field and using simulators, its lack
of safety hinders the deployment of robots in costly and human-interaction missions
(e.g. home assistants, deep space). As an example, the NASA Remote Agent Experi-
ment had to be stopped due to a deadlock, never detected during the one-year testing
phase [25]. Other examples include the autonomous vehicle Alice [19] and the museum
guide RoboX9 [32]. Such failures are mainly due to the nature of classical, scenario-
based testing, unable to provide guarantees on important properties. Formal methods
are a promising alternative, but their use in robotics is still marginal, and varies accord-
ing to the software layers [33]. Indeed, at the decisional layer, in charge of high-level
decision making functions (e.g. planning [17]), models are often formal with complete
semantics, which facilitates their formal modeling and verification [7, 12]. In contrast,
functional layer components, in charge of low-level actions involving sensors and ac-
tuators (e.g. localization and navigation), are developed within non formal frameworks
(e.g. ROS [26]), which makes their formalization particularly challenging and costly.
Furthermore, the formal modeling is non reusable (it needs to be redone whenever a
component evolves) and models are not guaranteed to scale. Consequently, many pre-
vious works either focus on simple case studies (usually not deployed on real robots),
resort to non realistic abstractions (e.g. ignoring timing constraints), or propose no al-
ternatives to deal with scalability issues (Sect. 7).

We propose in this paper the use of formal methods to verify the functional layer
of robotic systems. We focus on verification by means of model checking, and use sta-
tistical model checking [22] to tackle scalability issues. A particular interest is given to
real-time properties, e.g. schedulability and bounded response, crucial in robotics (ex-
amples in Sect. 6). To tackle the abovementioned problems, we (1) formalize (Sect. 3)
the robotic framework GenoM3 (Sect. 2), (2) develop automatic, sound transformation

from any GenoM3 specification into UPPAAL and UPPAAL-SMC models (Sect. 4, 5)
and (3) verify crucial real-time properties, while avoiding non-realistic abstractions (e.g.
all timing constraints are considered), on a real drone application (Sect. 6). We conclude
with related work (Sect. 7) and lessons learned (Sect. 8).

2 Preliminaries
2.1 GenoM3

GenoM3 [23] is a tool to specify and implement robotic functional components. Each
component, in charge of a functionality, ranging from sensor control (e.g. laser) to more
integrated computations (e.g. navigation), is organized as shown in Fig. 1a. For space
and readability, we omit in this paper control services and interruption of activities, but
the interested reader may refer to [11] for details.

A component implements the core algorithms of its functionality within activities,
which it executes following requests from external clients. Thus, the component has a
(i) control Task to process the clients requests and report to them accordingly and (ii)
one or more execution task(s) to execute activities. These tasks share parameters and
computed values of the component through the Internal Data Structure (IDS). Finally,
a component provides ports to share data with other components.

1 activity MoveDistance(in double distRef :"Distance in m") {
2 doc "Move of the given distance";
3 codel <start> mdStartEngine(in distRef, in state.position, out posRef)

yield exec, ether;
4 codel <exec> mdGotoPosition(in speedRef, in posRef, out state, port out

Mobile) yield pause::exec, end;
5 codel <end> mdStopEngine() yield ether wcet 1 ms;
6 task motion;};

Listing 1: Activity MoveDistance

2.1.1 Behavior We briefly explain how a component behaves. We use the support
example of activity MoveDistance that belongs to the component DEMO, developed for
illustration purposes (listing. 1).

Activities: activities are finite-state machines FSM, each state called a codel. An
activity is executed by the execution task it specifies (line 6 specifies that activity
MoveDistance is executed by the motion task).

FSM: define the activity behavior through codels and transitions. A codel is a state
at which a chunk of C or C++ code is executed. It specifies its arguments (e.g. exec uses
the IDS fields speedRef, posRef and state and the port Mobile, line 4) and the possible
transitions subsequent to its execution (e.g. start returns exec or ether, line 3). Taking
a pause transition pauses the execution of the activity until the next cycle (see below)
of its execution task (e.g. taking transition pause::exec, line 4, pauses the activity at
codel exec from which it will be resumed at the next cycle of task motion). A codel
may (optionally) specify a WCET (worst case execution time) on a given platform (e.g.
end has a WCET of 1 ms, line 5). An FSM has always the codels start (entry point)
and ether (end point with no code attached). When the latter is reached, the activity is
terminated and reported to the client.

Activities

Control Task
Control

 Services

Clients

Ports

Execution Tasks

Codels

IDS

read/write

rea
d/w

rit
e

read/write

Requests Reports

start

ether

pa
us

e

(a) A generic GenoM3 component

actual
velocity

IMU

nhfc

Task:
main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuver
pom

state

mikrokopter

Task:
plan 5ms
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task:
io 1ms
Services:
perm, add
Task:
filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor
set_ramp

mocap
pose

optitrack
Task:
publish 4ms
Services:
Init

(b) The quadcopter case study

Fig. 1: Generic GenoM3 component & case study.

Control task: manages requests and reports (from/to clients). When a request for
an activity is received, the control task validates it and activates such activity (which
informs the execution task in charge to execute it). Upon completion of any activity, the
control task sends a report to the corresponding client.

Execution tasks: periodic or aperiodic. With each cycle (triggered by period or
event), an execution task runs, sequentially, all the activities it is in charge of, previously
activated by the control task. The execution of an activity ends when it is paused or
terminated. In the former case, the activity is resumed at the next cycle.

IDS & concurrency: Tasks are run as parallel threads, with fine-grain concurrent
access to the IDS: only the required field(s) by a codel (in its activity, run in a task) are
locked when it executes and simultaneous readings are allowed.

2.1.2 Templates GenoM3 features an automatic generation mechanism based on tem-
plates. A template may access all the component information (e.g. tasks periods, activi-
ties and their codels) and generate text files with no restrictions (examples in Sect. 5.2).
There are templates that, for instance, generate component implementations for PocoL-
ibs [1] and ROS-Comm [26] middleware. These implementation templates also collect
codels execution time, which are reported (average and WCET) upon completion, and
the number of occurrences of transitions in all activities (Sect. 5.2).

2.1.3 Case study In this paper, we consider the quadcopter in Fig. 1b. In Sect. 6, we
explain how we use the components for a navigation mission. For technical details on
each component (out of the scope of this paper), we refer the interested reader to [8].

1 process example () {
2 clock c;
3 state l0 {;10}, l1{x<=2}, l2{x<=1}; branchpoint l1_b; init l0;
4 trans l0 -> l1 {assign x:=0; },
5 l1 -> l1_b {guard x>0; }
6 l1_b -> l0 { probability 1; },
7 l1_b -> l2 {assign x:=0; probability 2; },
8 l2 -> l0 { guard x>0; };
9 }

Listing 2: STA example in .xta format

2.2 UPPAAL

UPPAAL [2] is a real-time model checker. Models are based on timed automata (TA)
and supported properties are mainly safety, liveness and bounded response.

Timed Automata: A TA [16] is a tuple 〈L, l0 ,X ,Σ ,E , I 〉 where L is a finite set of
locations, l0 ∈ L is the initial location, X is a finite set of clocks, Σ is a finite set of
actions including synchronization and internal actions, E is a finite set of edges of the
form (l, g, a, ϕ, l′), with l, l′ ∈ L, g a predicate on RX , a ∈ Σ, and ϕ a binary relation
on RX , and I assigns an invariant predicate I(l) to any location l.

Extending TA: In a TA, urgencies are expressed locally through invariants. For global
urgencies, e.g. involving different TA, UTA [4] are introduced. In a UTA, when an eager
edge (denoted

;

) is enabled, time cannot progress and the edge must be taken (or dis-
abled by taking another edge) immediately. TA can also be extended with data variables.
We refer to UTA extended with data as DUTA. Fig. 2 shows a DUTA example with two
locations, l0 (initial, denoted with an inner circle), and l1 , and one

;

edge. Guards are in
green, invariants in purple and operations in blue. ex (resp. O) is a Boolean expression
(resp. some operations) over some variables. In this example, if the guard remains false
for more than 3 time units, the DUTA timelocks.

UPPAAL supports a subclass of DUTA that allows (i) urgent channels (over which
only time-constraint-free edges may synchronize), but not eager edges (example in
Sect. 5) and (ii) Boolean and integer data types and functions without pointers.

2.3 UPPAAL-SMC

UPPAAL-SMC is an extension of UPPAAL based on stochastic timed automata STA.

Stochastic Timed Automata: An STA is a tuple 〈TA, µ, γ〉 where
TA = 〈L, l0 ,X ,Σ ,E , I 〉 is a timed automaton (Sect. 2.2), µ is the set of density delay
functions µs ∈ L×RX , which can be either uniform or exponential distribution, and γ
is the set of probability functions γs over Σ in TA.

In brief, STA extend TA with (i) density functions (on locations) and (ii) probabili-
ties (on edges). Since we target STA as supported by UPPAAL-SMC, we show an STA
example in the .xta format (listing 2). If the location has an associated invariant (e.g.
l1 , line 3), the density function is a uniform distribution (exponential distribution with
a user-supplied rate otherwise, e.g. 10 on l0 , line 3). Probabilities, uniform by default,
can be added using (i) a branchpoint (lines 5 to 7) and (ii) the keyword “probability”
followed by the number of occurrences, used to compute probabilities (the probability
to take the edge from l1 to l0 (resp. to l2) is 1/3 (resp. 2/3)).

Verification in UPPAAL-SMC: In this paper, we are interested in probability evalua-
tion, that is estimating the probability Pr [<= b](Opx≤dφ) where b is a time bound
on runs, Op is either 3 or � and φ lies within the Weighted Metric Temporal Logic
WMTL≤ [5] grammar (atomic propositions endowed with U , the until operator and O,
the next operator).

3 Formalizing GenoM3
We semanticize GenoM3 components using timed transition systems TTS (Sect. 3.1). For
readability and space, control task and aperiodic behaviors are excluded. This version
preserves important mechanisms, e.g. concurrency, and the more complex version can
be found in [11]. Since the control task is excluded, we will often refer to an execution
task as simply task.

x>0 ∧ ex
o, x:= 0

l0

l1 x ≤ 3

clock x

Fig. 2: A generic DUTA example

v0
I(e)
g(e) v1

op(e)
e

Fig. 3: A generic TTD example

3.1 Timed transition systems

We propose a variation of TTS in [15] where (i) a dense-time model (time intervals
have durations in R≥0 with bounds in Q≥0 ∪∞) is considered instead of a discrete one
and (ii) more general time intervals (left- and right-open) are accepted. TTS are suit-
able to semanticize GenoM3. For instance, they are convenient to formalize the global
urgency constraints (e.g. a codel executes as soon as it has the required (shared) re-
sources, Sect. 2.1.1), as opposed to clock-based transition systems such as TA where
urgencies are expressed only locally (see examples in [8]). Semantics in TTS also al-
lowed automatic mapping to Fiacre in [10].

Let I be the set of well-formed (time) intervals. An element i of I can have the form:
(f1) [a, b] (f2)]a, b] (f3) [a, b[or (f4)]a, b[, where a ∈ Q≥0, b ∈ Q≥0 ∪ ∞, and with
a 6 b for f1 (a < b otherwise). Interval i is thus the set of reals x ∈ R≥0 such that
a ≤ x ≤ b (f1), a < x ≤ b (f2), a ≤ x < b (f3), a < x < b (f4). In any form, we say
that ↓i = a (resp. ↑i = b) is the lower (resp. upper) bound of i.

A TTS is a tuple 〈U, S, s0, τ, I〉 where:
- U is a finite set variables,
- S is a set of states. Each state of S is an interpretation of variables in U ,
- s0 is the initial state (s0 ∈ S) that maps each variable in U to its initial value,
- τ is a set of transitions. Each transition t ∈ τ defines for every state s ∈ S a (possibly
empty) set of successors t(s) ⊆ S,
- I : τ 7→ I maps each transition t ∈ τ to a static (time) interval I(t) ∈ I.

The semantic “meaning” of time intervals depends on the enabledness of transi-
tions: if transition t is enabled at s (s is the current state of the TTS and t(s) 6= ∅) since
date ∆ then we can take t starting at date d s.t. ∆ + ↓I (t) < d if I (t) is of form (f2) or
(f4) (∆ + ↓I (t) ≤ d otherwise) and must take it no later than date d′ < ∆ + ↑I (t) if
I (t) is of form (f3) or (f4) (d′ ≤ ∆+ ↑I (t) otherwise), unless it is disabled in between

by taking another transition. If t is disabled, then I(t) has no semantic effect (detailed
semantics in [11]).

3.1.1 TTDs A timed transition diagram TTD (inspired from [15]) is a finite directed
graph with a set of vertices V and a set of edges E. The unique initial vertex is v0 ∈ V .
Each edge e ∈ E is labeled with: an interval I(e) (omitted if equal to [0 ,∞[); a guard
ge (omitted if tautology); and an atomic sequence of operations ope (omitted if has no
side effects). An edge e connecting vertex v to vertex v′ is denoted, interchangeably,
e ∈ E or v e−→ v′ ∈ E. Fig. 3 shows a simple generic TTD with two vertices, v0 (initial,
denoted with an incoming edge without source) and v1, and one edge e.

3.1.2 Composition of TTDs The parallel composition of n TTDs, P1, . . . , Pn, over a
set of shared variables, Us, results in a TTS {Θ}[‖i∈1..n Pi], where Θ gives the initial
valuations of each variable in Us and each component Pi accesses Us and a set of local
variables Ui. For detailed semantics of such TTS, we refer the interested reader to [11].

For simplicity, we stop referring to the names of edges in TTDs: v e−→ v′ (Sect. 3.1.1)
will be referred to, from now on, as simply v → v′, or v → (resp. → v′) when the
identity of v′ (resp. v) is irrelevant. This is because in our GenoM3 semantics (Sect. 3.3),
edges are uniquely defined through their source and target vertices.

3.2 Syntax and syntactical restrictions of a GenoM3 component

3.2.1 Activity An activity A is a tuple 〈CA,WA,TA,T
P
A 〉 where:

-CA is a set of codels with at least two codels (for starting and termination, Sect. 2.1.1):
{startA, etherA} ⊆ CA,
- WA : CA\{etherA} 7→ Q>0 associates to every codel its WCET (Sect. 2). The codel
etherA (reserved for termination) is excluded (no code attached to it, Sect. 2.1.1),
- TA is a set of transitions of the form c → c′ (each transition is uniquely defined
through its source codel c and target codel c′). We denote this relation by simply c →
(or→ c′) when the identity of codel c (or c′) is unimportant,
- TP

A ⊆ TA is the set of pause transitions.

3.2.2 Task A task T is a triple 〈Per ,A, V 〉 where:
- Per ∈ Q>0 is the period,
- A is the non-empty set of activities T is in charge of,
- V is a set of variables.

3.2.3 Component A component Comp is a triple 〈E, V, µ〉 where:
- E is a set of tasks,
- V is a set of variables,
- µ : C 7→ P(C) is the conflict function, where C is the union of all codels in all
activities of all tasks in E and P(C) its powerset. µ(c) is the set of codels that are
in conflict (cannot execute simultaneously) with c. If µ(c) = ∅ then c is thread safe
(thread unsafe otherwise).

3.2.4 Well-formed components Well-formed components are defined by the follow-
ing syntactic restrictions. For any activity A, we require that (i) each codel in
CA\{etherA} has at least one successor in the relation defined by TA, (ii) TA must
not include any transition whose source codel is etherA (reserved for termination), and
(iii) etherA cannot be the target of a pause transition because the latter is for pausing

while the former is for termination. These requirements can be expressed succinctly as
follows:

∀c ∈ CA\{etherA} ∃c′ ∈ CA : (c→ c′ ∈ TA)
∀c, c′ ∈ CA : (c→ c′ ∈ TA)⇒ (c 6= etherA)
∀c, c′ ∈ CA : (c→ c′ ∈ TP

A)⇒ (c′ 6= etherA)

Finally, ether codels are thread safe. Also, there is no conflict within the same task:
any two activitiesA andB in the same task are executed sequentially “by construction”
(one task = one thread). Therefore, we require that µ(c) ∩ CB = µ(c′) ∩ CA = ∅ for
all c in CA and c′ in CB .

3.3 Operational semantics of a GenoM3 component

Before we go further, we need to distinguish between what the programmer specifies
(reflected at the syntactical level, e.g. in transitions TA, Sect. 3.2.1), and what is en-
forced to produce the expected behavior (e.g. starting and mutual exclusion edges, Def-
inition 3). We present operational semantics “top-down”, from component to activities.

3.3.1 Component semantics A component Comp semantics is given by the TTS
Comp = {Θ}[‖i∈1 ..n Ti] where n =| E | is the number of tasks in E (Sect. 3.2.3)
and Ti are tasks. For each codel c ∈ C s.t. µ(c) 6= ∅ (Sect. 3.2.3), there is a Boolean
r c in the set of shared variables Us (V in Sect. 3.2.3), initially false (Θ(r c) = False
for all r c ∈ Us). These variables help semanticize concurrency (Definition 3).

3.3.2 Task semantics. The semantics of a task is given by the TTS
T = {Θ}[Tim||M ||(‖A∈A A)] where Tim is the timer (Definition 1), M is the task
manager (Definition 2), and ‖A∈A A is the composition of all activitiesA (Definition 3)
in A (Sect. 3.2.2). The set of shared variables Us (V in Sect. 3.2.2) contains: N , the set
of “names” of activities to execute, sig , the period signal, and Π , the control passing
variable. Π ranges over TTDs “names” (by abuse of notation, M is the name of the
manager TTD and the name of activity A is A), N has the same type as Π excluding
M , and sig is a Boolean. The initial values are Θ(N) = ∅, Θ(sig) = False , and
Θ(Π) =M (the manager has the control when the system starts).

Definition 1 Timer semantics. The timer semantics is given in Fig. 4.

Changing the value of sig to true corresponds to transmitting a signal asynchronously
to the manager (Definition 2). The time interval [Per ,Per] ensures that this signal is
transmitted at exactly each period (each Per time units).

Definition 2 Manager semantics. The manager semantics is given in Fig. 5.

Vertex wait denotes waiting for the next period and manage is to execute activities,
if any. The operation Π := rand(N) gives the control to one of the activities in N (by
assigning randomly an element from N to Π). The manager transits back to wait as
soon as it has the control and N is empty.

Since Θ(N) = ∅, no activity would ever be executed. This is because fulfilling
activities requests is the role of the control task that we do not represent here. Therefore,
the manager performs the operation rrand(N) to initialize N randomly, over the set of
activities T is in charge of; while respecting the condition (A ∈ N ∧B ∈ N)⇒ (A 6=

B). The operation rrand(N) covers all the possible evolutions of tasks, as the resulting
set of configurations of N is a superset of that obtained when a control task is present
(details in [11]). Note how the guard on the edge from wait to manage does not contain

start [Per, Per]
sig:= true

Fig. 4: Timer TTD

wait
[0, 0]

sig:= false,
rrand(N)

sig

N ≠ ∅ ∧ π = M

π := rand(N)
[0, 0]

manage
[0, 0]

N = ∅ ∧ π = M

Fig. 5: Manager TTD

[0,0]

]0
,1

]

[0,0]

A B

π = A

 π =A ∧ ¬ r_startD
startA exec

etherA

r_startA = true

UP(A,N), π := M,

r_startA = false
]0,1]

UP
(A

,N
),
π

 :=
 M

,
r_

st
ar

t A
=

fa
lse

]0,1]

]0,2]

[0,0]
π = B

π = B

UP(B ,N),
 π := MstartB

mainB

etherB

startA π
=

 B

UP
(B

 ,N
),

π
:=

 M]0
,2

]

Fig. 6: Activities A and B in task T

the clause Π = M because this is always true at vertex wait (Θ(Π) = M and the
manager cannot lose the control at vertex wait).

Definition 3 Activities semantics. The operational semantics of an activity
〈CA,WA, TA, T

P
A 〉 (Sect. 3.2.1) is given by a TTD such that:

- Vertices V : each c ∈ CA is mapped to a vertex c ∈ V . A vertex cexec ∈ V is added
for each thread-unsafe codel c (µ(c) 6= ∅, Sect. 3.2.3). The initial vertex v0 is etherA,
- Edges E = E N ∪ E A are nominal (in E N) or additional (in E A):
– EN : each transition c → c′ in TA is mapped to an edge c → c′ (resp. cexec → c′)

in E N if µ(c) = ∅ (resp. otherwise). We distinguish three disjoint sets of nominal
edges: E N = E P ∪ E T ∪ E X . E P is the set of pause edges that maps the set of
pause transitions T P ; E T is the set of termination edges of the form→ ether and
E X the set of the remaining (execution) edges.

– E A = E S ∪ E M where E S contains the starting edge ether → start and EM the
mutual exclusion edges of the form c→ cexec (for each thread-unsafe codel c).

- Time intervals I: I (e) =]0 ,WA(c)] iff e ∈ E N (I (e) = [0 , 0] otherwise).
Now we define the guards and operations:
- Each edge in E T ∪ E P is augmented with the operation Π := M and the operation
UP(A,N) that removes A (the activity “name”) from N ,
- The edge in E S , and each edge c → in E N ∪ E M such that exists an edge → c in
E P , are guarded with Π = A,
- Each edge c → in E M is augmented with the operation r c := true (see shared vari-
ables in Sect. 3.3.1).
Finally, (i) the guard of each edge c → in E M is conjuncted with the expression
∀c′ ∈ µ(c) : ¬r c′ and (ii) r c := false is added to the operations of each edge cexec →
in E N .

Nominal edges map transitions that the programmer specifies, while additional edges
reflect actions enforced by GenoM3 to handle starting and concurrency. Edges are
uniquely defined through their source and target vertices. For activities, this can be con-

cluded from syntax, restrictions and semantics (Sect. 3.2.1, Sect. 3.2.4 and Definition 3).
For the manager and the timer, it is shown in Fig. 4 and Fig. 5.

Let us illustrate through an example how activities evolve following these seman-
tics, and how this coincides with the behavior in Sect. 2.1.1. We consider a component
with two tasks T and T ′. T is in charge of two activities A and B (on which we focus)
while T ′ is in charge of one activity D. We give the syntactical definitions of A and B:

Activity A
– CA = {startA, etherA},
– WA(startA) = 1 ,
– TA = {startA → startA,

startA → etherA},
– T P

A = {startA → startA}.

Activity B
– CB = {startB ,mainB , etherB},
– WB (startB) = 1 ,WB (mainB) = 2 ,
– TB = {startB → mainB ,

mainB → mainB ,mainB → etherB},
– T P

B = {mainB → mainB}.

Now, because of the mutual exclusion between T and T ′, the start codels of
A (in T) and D (in T ′) are in conflict: µ(startA) = {startD} (and symmetrically
µ(startD) = {startA}). The remaining codels are thread safe.

We apply Definition 3 to get the TTDs of A and B in Fig. 6 evolving within T (the
manager and timer (generic) TTDs are given in Fig. 5 and Fig. 4, respectively). Starting
an activity, from ether or wherever it was paused last, is subject to having the control
throughΠ (e.g. edge etherB → startB). At the end of execution, either by pausing (e.g.
edge mainB → mainB) or terminating (e.g. edge startA exec → etherA), the control is
given back to the manager (Π := M), and the activity removes its “name” from N
(UP(), no further execution for this activity in this cycle). Π ensures thus a sequential
behavior within the same task, that is between the manager and each A in A (no two
edges in two different TTDs can be enabled simultaneously).

At the codels level, outgoing edges of vertices c (the underlying codel is thread
safe, e.g. startB) and cexec (otherwise, e.g. startA) are associated with the interval
]0 ,W (c)] to reflect that the execution of a codel takes between a non-null time and its
WCET. Boolean expressions involving r c′ variables, which take part in the guards on
edges c → cexec , prevent the thread-unsafe codel c to execute if there is at least a codel
in µ(c) that is already running, and the time interval [0, 0] allows it to execute as soon as
this is no longer the case. For instance, the guard on startA → startA exec disables this
very edge (even when A has the control) as long as the activity D (in the concurrent
task T ′, not shown here) is at vertex startD exec (denoting the execution of startD),
captured through the truth of the Boolean r startD . Similarly, operations r c := true
on edges c → cexec prevent thread-unsafe codels in µ(c) to run in parallel with c (e.g.
r startA := true on startA → startA exec). Finally, operation r c := false on edges
of the form cexec → (e.g. r startA := false) allow activities with codels in conflict
with c to capture the end of execution of c through the falseness of r c.

4 Translation
TTS semantics are translated to DUTA in order to automatically map GenoM3 to UP-
PAAL and UPPAAL-SMC. We show the translation for activities, since it is rather
straightforward for the manager and the timer (Fig. 7).

Mapping intervals into clock constraints and

;

edges may lead to incorrect transla-
tions, as shown in Fig. 8 (activityB). Indeed, ifBta is paused (taking mainB → mainB),

sig:= false,
rrand(N)

sig

N ≠ ∅ ∧ π = M
π := rand(N)

N = ∅ ∧ π = M

sig:= true,
xt:= 0

wait

manage

start

xt ≤ Per

xt = Per

clock xt

Fig. 7: DUTA translation of manager and timer

it will timelock after 2 time units unless it resumes the control before then (all outgoing
edges from location mainB are disabled). This is encountered when there is a vertex
in the TTD that (i) maps a thread-safe codel and (ii) is the target of a pause edge. This
problem is due to clocks evolving independently from edges enabledness in DUTA (in
contrast to intervals in TTDs). We propose a generic translation for all activities.

startB

Bta

π = B

π = B ∧ xB>0
UP(B ,N),

π:= M, xB:= 0
clock xB

xB ≤ 1 xB ≤ 2

x
B := 0

mainB

etherB

xB>0
xB:= 0

UP
(B ,N

),
 π

:=
 M

B

]0,1]

]0,2]

[0,0]
π = B

π = B

UP(B ,N),π := M
startB

mainB

etherB

π
=

 B

UP
(B

 ,N
),

 π
 :=

 M]0
,2

]

π
=

B
∧

x B
>0

Fig. 8: Incorrect translation (activity B)

startB

Bta

π = B

clock xB

xB ≤ 1 xB ≤ 2

x
B := 0

mainB

etherB

xB:= 0

UP
(B ,N

),
π:

=
M

mainB pause

π = B

UP(B ,N), π:= M
xB>0

xB:= 0
xB>0

x B
>0

Fig. 9: Correct translation (activity B)

Definition 4 Activities Ata (DUTA). The DUTA translation Ata of the TTD A (Defini-
tion 3), is given by the following rules:
- Clocks: Ata has a clock xA, whose initial valuation is zero,
- Locations: Each vertex c in A of a thread-safe codel c s.t. there exists→ c in T P is
mapped to two locations c and cpause . Each remaining vertex in A is mapped to a loca-
tion with the same name. Each location c that maps a vertex c 6= ether of a thread-safe
codel is associated with an invariant xA ≤ ↑I(c→) with c→ any outgoing edge of c.
The same invariant rule is applied to each location cexec,
- Edges: - Each pause edge c

g,op−−→ c′ in A s.t. c′ is thread safe is mapped to an edge
c

xA>0 ,op−−−−−→ c′pause, and an eager edge c′pause
g,x :=0−−−−→ c′ is added.

- Each remaining edge in A is mapped to an edge in Ata with the same source and
target, where: (1) intervals [0, 0] are mapped into

;

edges, (2) each outgoing (resp. in-
coming) edge of a location associated with an invariant is guarded (resp. augmented)
with xA > 0 (resp. with xA := 0), then (3) guards (resp. operations) associated with
each edge result from the conjunction (resp. sequencing) of guards (resp. operations)
of its TTD counterpart and the guards (resp. resets) over clocks.

These rules allow clocks to evolve unboundedly at locations cpause (when the activity is
paused). Resuming the activity is then equivalent to taking the edge cpause → c with a
clock reset to count the WCET of c starting from 0, which we may see when applying
Definition 4 to activity B (Fig. 9).

Translation soundness: DUTA models must be faithful to the GenoM3 semantics. We
use weak timed bisimulation to prove that the translation is sound. Details on the proof
may be found in [11].

5 Automatic mapping
We see how the DUTA models are automatically mapped into UPPAAL and UPPAAL-
SMC. In order to do so, we first present the current implementation.

Implementation: In the actual implementation (either in ROS-Comm or PocoLibs mid-
dleware), the set of activities to execute (N) is substituted with an array run of size
n = |A| (the number of activities in the task) of records, starting at index 0. Each
record is composed of two fields: an activity “name” m and its “status” s, that may
be requested (r) or idle (d), equivalent, respectively, to A ∈ N and A /∈ N in the se-
mantics. The operation arand(t) initializes the status s fields of array t randomly. The
variable i, initially equal to 0, ranges from 0 to n . The function next(t , b) browses the
array t, starting from index b, and returns the index of the first element with s = r (|t |
if such an element is not found or b = |t |).

The implementation of a task is then derived from its semantics as follows. For any
activity A, each operation UP(A,N) is replaced by i := i + 1 , i := next(run, i). In
the manager, the guard N 6= ∅ (resp. N = ∅) is replaced by i 6= n (resp. i = n), the
operation Π := rand(N) by Π := run[i].m , and the operation rrand(N) by
arand(run), i := next(run, i) (in reality, the run array is updated by the control task,
not considered in our presentation). Finally, the edge manage → wait in the manager is
augmented with the operation i := 0 . Accordingly, the implementation model of task T
(Fig. 5, 4, 6) is given in Fig. 10. Trivially, the semantics (allowing random “scheduling”
of activities) is a superset of the implementation (where the order of execution of activ-
ities is predefined when initializing names fields (m) in run). The random scheduling
at the semantics level allows to derive different implementations if needed. For DUTA,
it is sufficient to apply the TTD-DUTA translation rules. Fig. 11 gives the DUTA im-
plementation of activity A (Fig. 10).

[0,0]

]0
,1

]

[0,0]

A B

π = A

 π =A ∧ ¬ r_startD
startA exec

etherA

r_startA = true

i:= i+1, i:= next(run,i),

 π := M, r_startA = false]0,1]

]0,1]

]0,2]

[0,0]
π = B

π = B

i:= i+1, i:= next(run,i),
 π := MstartB

mainB

etherB

startA π
=

 B

i:=
 i+

1,

i:=
 n

ex
t(r

un
,i)

,
π

:=
 M

i:=
 i+

1,
 i:

=
ne

xt
(ru

n,
i),

 π
 :=

 M
,

r_
st

ar
t A

=
fa

lse

wait [0,0]sig:= false,
arand(run),

i:= next(run,i)

sig
i ≠ n

π := run[i].m
[0, 0]

manage

[0,0]
i=n ∧ π = M

M

start

[Per, Per]
sig:= trueTim

]0
,2

]

Fig. 10: TTDs in task T (implementation).

startA

Ata

π = A

clock xA

xA ≤ 2

x
A := 0

startA exec

etherA

 π =A ∧ ¬ r_start D

r_start A =
 true,

x A:=
 0

i:= i+1, i:=
 next(run,i),

 π := M, r_start A =
 false

i:=
 i+

1,
 i:

=
ne

xt
(ru

n,
i),

π

 :=
 M

, r
_s

ta
rt A

 =
fa

ls
e

x A>
0

x A
>0

Fig. 11: DUTA (implementation)
of activity A.

1 process A (urgent chan &exe, int[M, size_run] &pi, int[0, size_run] &i,
CELL &run[size_run], bool &mut[size_mut]) {

2 clock x;
3 state ether, start, start_exec {x<=1}; init ether;
4 trans // behavior
5 // additional edges
6 ether -> start { guard pi = A ; sync exe!; };
7 start -> start_exec { guard pi = A && !mut[r_start_D]; sync exe!;

assign x:= 0, mut[r_start_A]:= true; };
8 // nominal edges
9 ...

Listing 3: Process A (UPPAAL)

5.1 Mapping to UPPAAL

We see how to model an activity. First, we deal with urgent edges (UPPAAL only allows
urgent channels, Sect. 2.2). We add a process urgency and synchronize its unique edge,
over an urgent channel exe , with each eager edge in the activity (and with all eager
edges in the system):

process Urgency(urgent chan &exe) {
state idle; init idle;
trans

idle -> idle { sync exe?; };
}

Now we can model e.g. activity A. Listing. 3 is a partial UPPAAL model of A (only
additional edges are shown). Constant M = 0 denotes the manager, so Π ranges over
[M , size run] (line 1) where activity names are encoded in turn as constant integers in
this range. CELL is the record type for run (line 1) and mut is an array that facilitates
implementing mutual exclusion variables (r c becomes mut [r c], line 1, 7).

5.2 Automatic synthesis

We generalize the approach for automatic synthesis using the template mechanism
(Sect. 2.1.2). We develop a template that generates automatically the UPPAAL model
for any GenoM3 specification (made of any number of components). We show an ex-
ample on how additional edges are generated for a given activity a (listing 4). The
interpreter outputs everything as is, except what is enclosed in <’ ’> that it evaluates
in Tcl, and in <” ”> that it evaluates and outputs the result.

In lines 3 to 7, we check each outgoing transitions of each codel (keyword yields),
and append the successor to the list p if such transition is a pause. We also append the
codel c to the list tu if its field mutex , which contains the codels c is in conflict with,
is not empty. Therefore, p contains all the codels targeted by a pause and tu all thread-
unsafe codels in a. At line 11, we generate the starting edge, then the mutual exclusion
edges from line 12 to 20, where, for each thread-unsafe codel c, we add the guard on
having the control through Π if c is also in p (applying Definition 4 and inductively
Definition 3). The task name is added to distinguish variables in different tasks.

Extending to UPPAAL-SMC: Implementation templates (Sect. 2.1.2) generate, for each
transition in each activity, a line with the number of its occurrences:

task_name/activity_name/source_codel_name/target_codel_name/<#occurrence>

1 <’set p [list]’>
2 <’set tu [list]’>
3 <’foreach c [$a codels] {’>
4 <’ foreach y [$c yields] {’>
5 <’ if {[$y kind] == "pause" && !($y in $p)} {lappend p $y}}’>
6 <’ if {[llength [$c mutex]]} {lappend tu $c}’>
7 <’} ’>
8 ...
9 trans //behavior

10 // additional edges
11 ether-> start {guard pi_<"[$t name]"> = <"[$a name]">; sync exe!; };
12 <’foreach c in $tu {’>
13 <"[$c name]"> -> <"[$c name]">_exec {guard
14 <’ if {$c in $p} {’>
15 pi_<"[$t name]"> = <"[$a name]"> &&
16 <’ }’>!(
17 <’ foreach m [$c mutex] {’>mut[r_<"[$m name]">]
18 <’ if {$m != [lindex [$c mutex] last]} {’> || <’ }’>
19 <’ }’>); sync exe!; assign x:=0, mut[r_<"[$c name]">]:= true;};
20 <’}’>
21 // nominal edges
22 ...

Listing 4: Generating additional edges (for an activity a in task t)

A .proba file is thus constructed, then passed as an argument to the UPPAAL-SMC
template, together with the GenoM3 specification. Listing 5 shows an excerpt of the
UPPAAL-SMC template . For simplicity, we only show the case where the source codel
is thread safe and none of its outgoing transitions is pause or termination. Line 3 condi-
tions adding probabilities by the existence of more than one successor. Line 5 connects
the edge to a branchpoint (as shown in Sect. 5.1). Lines 6-8 generate the outgoing edges
of the branchpoint and extract occurrences from the .proba file.

1 <’ foreach c [$a codels] {’>
2 ...
3 <’ if {[llength [$c yields]] > 1} {’>
4 <’ set pr [join [list [$t name] [$a name] [$c cname] [$y cname]] /]’>
5 <"[$c name]"> -> <"[$c name]">_b {guard x>0; },
6 <’ foreach y [$c yields] {’>
7 <"[$c name]">_b -> <"[$y name]"> {;probability <"[dict get $argv $pr]">;},
8 <’ }}’>
9 ...

Listing 5: Generating probabilistic transitions (for an activity a in task t)

6 Verification results
We use the automatically generated models (Sect. 5) to specify and verify important
real-time properties on the quadcopter case study (Sect. 2.1.3). Experiments are carried
out on a laptop (Intel Core i7; 16 GB of RAM). Tasks are assigned to independent cores
on the hardware. Experiments, with instructions on how to reproduce them, are freely
clonable from https://github.com/Mo-F/uppaal-smc-exp.

https://github.com/Mo-F/uppaal-smc-exp

Fig. 12: UPPAAL-SMC client (quadcopter navigation).

6.1 Model checking

With UPPAAL, we get the same results as with the Fiacre template in [8]: the stationary
flight application (excluding the component MANEUVER) scales, while the navigation
application (involving all components) does not. We use UPPAAL-SMC for the latter.

6.2 Statistical model checking

As seen in Sect. 2, components need to receive requests from clients to run. For that,
we add a client to ensure a navigation application (see below). The automatically gen-
erated UPPAAL-SMC model of the quadcopter plus the added client make 36 complex
processes overall, on which we carry out the statistical verification.

6.2.1 Client The client (Fig. 12) uses urgent channels rc X (X is a component) to
send activities requests to components, through rq X variables. Since UPPAAL-SMC
supports only broadcast channels, we guard each channel rc X with the Boolean s X ,
true only when X is ready to receive a request (which forces a rendezvous behavior).
Location hold is for waiting an amount t between sending servoing requests (NHFC and
MIKROKOPTER) and taking off (MANEUVER), as servoing must have already started be-
fore taking off (which is an important property to verify). Exponential rates are required
on invariant-free locations (high rates imply a high probability to leave the location at
smaller time values, but values are unimportant here because of the urgencies enforced
by rc X channels). The self-loop at location navigate enables, using the Boolean f ,
issuing a new goto request each time the last goto activity (to navigate) has ended (goal
invalid, reached, or unreachable). From the same location, a request wait then take off
can be sent (to land). The client covers thus all the possible scenarios of navigation.

6.2.2 Properties of interest The following properties are crucial such that accidents
may occur if they are not satisfied.
Readiness: When requests are sent to MANEUVER, the previously requested activities
from MIKROKOPTER and NHFC must have already started executing. Find the minimum
value of t to satisfy this property with the highest possible probability.
Schedulability: Estimate the probability of schedulability of periodic tasks in the critical
components POM, MIKROKOPTER and NHFC.

6.2.3 Verification with UPPAAL-SMC Statistical parameters are set to a high con-
fidence (0 .98) and precision (0 .005), and the runs are bounded to b =10 s.

Readiness: Readiness is typically a bounded response property, not supported by
UPPAAL-SMC. We propose an alternative using the Until operator. An activity starts
once its codel start begins executing, which is equivalent to reaching the location
start exec (since none of the codels start in this context is thread safe). Therefore,
the client “cl” must not reach location start4 (from which it sends requests to MA-
NEUVER) before locations start exec of each previously requested activity (start and
servo (MIKROKOPTER) and servo in NHFC) is reached. Readiness boils down then to
the conjunction of the three Until properties in listing 6.

1 ap: cl.start or cl.start2 or client.start3 or cl.hold
2 p1: ap U start_mikrokopter.start_exec
3 p2: ap U servo_mikrokopter.start_exec
4 p3: ap U servo_nhfc.start_exec
5 rp: p1 and p2 and p3

Listing 6: Readiness property rp

Note that attempting to reduce these properties to only one using the conjunction of their
right terms would result in a stricter property (e.g. start exec of servo may be left before
start exec of servo nhfc is reached). We tune t starting from 1 ms. The highest possible
probability is returned by the verifier (≥ 99% considering the precision, 0.005±0.005)
for all of the three properties as soon as t is equal to 8 ms. Results for p3 for different
values of t are given in table 1. Therefore, in order to ensure a high probability of
satisfying Readiness, t may have any value larger than 8 ms. We fix it to 1 s.

t (ms) Results Runs Time
7 Pr ∈ [0 .98 , 0 .99] 3279 12

8 Pr ∈ [0 .99 , 1] 1595 6

100 Pr ∈ [0 .99 , 1] 390 3

Table 1: Analysis results for p3 (li-
sting 6) with the query Pr [<= b]p3 .

Task Query Results Runs Time
io Pr [<= b]vsio Pr ∈ [0 , 0 .01] 390 966

filter Pr [<= b]vsfilter Pr ∈ [0 , 0 .01] 390 962

Table 2: Analysis results for schedula-
bility (POM)

Schedulability: It is reduced to a reachability property. Indeed, it is sufficient to verify
that whenever the manager is executing activities (at location manage), no new period
signal is received (sig is false), see Fig. 7. The probability of violating this property is
the lowest possible for all tasks of the critical components POM, MIKROKOPTER and
NHFC (≤ 1%). Examples of results on POM tasks are given in table 2 with vsT being
the violation of schedulability of task T : <> manager T .manage and sig T .

6.2.4 Discussion While we cannot verify some properties in a precise way (due to
scalability issues with model checking), the results we get with UPPAAL-SMC are en-
couraging. We verify important properties up to a high probability, which is better than
classical scenario-based testing. The verification is cost effective: around 15 minutes in
the worst case, and a remarkably low memory consumption (less than 15 mb). Never-
theless, two main issues are encountered, besides non exhaustivity. First, though 99%
is fair for this application, we generally lack precise requirements expressed proba-
bilistically in the robotics domain. Second, the expressiveness of UPPAAL-SMC query
language is limited (e.g. bounded response properties are not supported). While we
often manage, with some artefacts, to verify closer alternatives, such artefacts need a
proficiency with formal languages that robotic practitioners do not possess.

7 Related work
Model checking: The synchronous language ESTEREL [3] is used in some model-
checking-based verification works such as [18, 30, 31], where the robotic specifications
are either translated by hand to, or hard-coded in ESTEREL. Efforts such as [24] rely
on automatic translation of RoboChart models into CSP [27] in order to verify real-
time properties. However, RoboChart is not a robotic framework (its models are not
executable on robotic platforms). That is, robotic applications, initially specified in a
robotic framework, need to be modeled first in RoboChart, then translated into CSP.
An attempt to formalize ROS components is developed in [13] where UPPAAL is used
to verify buffer-related properties (no overflow). Only the message passing part (pub-
lisher/subscriber) is modeled, manually, and crucial bounded response properties (e.g.
messages are delivered within a bounded amount of time), are not verified. Our work
distinguishes itself across three main aspects: (i) this is the first work that fully for-
malizes a robotic framework for functional-layer specifications, (ii) modeling is fully
automatized and (iii) only real-world applications are analyzed.

Statistical & probabilistic model checking: Real-time statistical/probabilistic model
checking has been used to verify systems in various domains such as communication
protocols [21], railway systems [6] and decisional robotics [29]. At the functional layer
of robotic systems, statistical and probabilistic model checkers are seldom used. The
work presented in [14] is a notable exception. ROS graphs are formalized in an ad-hoc
fashion (no operational semantics given), then, on an autonomous vehicle case study,
PRISM [20] estimates the probability of finding an object in a bounded amount of time.
To the best of our knowledge, our work presented here is the first that applies real-
time statistical model checking to complex, concurrent functional layer, where formal
models are sound and automatic. The choice of UPPAAL-SMC is motivated by the
fact that the automatic translation gives us the opportunity to use regular UPPAAL and
resort to UPPAAL-SMC when models do not scale.

Comparison to our previous work: In our previous efforts to verify the quadcopter,
model checking scaled only for the stationary flight, excluding the MANEUVER com-
ponent [8,9]. This is the first work that verifies the navigation application, involving all
the components, through sound and automatic bridging with UPPAAL-SMC.

8 Conclusion
We propose in this paper automatic and sound generation of formal models from robotic
specifications, and obtain encouraging results on a real application. Our contributions
advance the state of the art toward a correct and practical verification of robotic systems.

However, it is difficult to set the probabilities for properties because we lack this
kind of requirements in robotics. We need to investigate further this problem. Moreover,
the restricted query language of UPPAAL-SMC forced us to reason on alternatives us-
ing the supported operators only. For a robotic programmer, this could be discouraging
since it requires a good knowledge of the tool, the query language and the underlying
logic. A possible future work consists therefore in developing query-to-query transfor-
mations that are transparent to the practitioner. Finally, we are interested in verifying
some hardware-related properties using SMC such as energy consumption (as in [28]).

References
1. The PocoLibs middleware https://git.openrobots.org/projects/pocolibs.
2. G. Behrmann, A. David, and K.G. Larsen. A tutorial on UPPAAL. In Formal Methods for

the Design of Real-Time Systems, pages 200–236. 2004.
3. G. Berry. The Esterel v5 language primer: version v5 91. Centre de mathématiques ap-

pliquées, Ecole des mines and INRIA, 2000.
4. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In International

Symposium on Compositionality (ISC): the significant difference, pages 103–129. 1998.
5. P. Bulychev, A. David, K-G. Larsen, A. Legay, G. Li, D. B. Poulsen, and A. Stainer. Monitor-

based statistical model checking for weighted metric temporal logic. In International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning (LPAR), pages 168–
182. Springer, 2012.

6. Q. Cappart, C. Limbrée, P. Schaus, J. Quilbeuf, L-M. Traonouez, and Axel Legay. Verifi-
cation of interlocking systems using statistical model checking. In 2017 IEEE 18th Inter-
national Symposium on High Assurance Systems Engineering (HASE), pages 61–68. IEEE,
2017.

7. A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via symbolic model checking
and heuristic search. Artificial Intelligence, 159(1-2):127–206, 2004.

8. M. Foughali. Toward a Correct-and-Scalable Verification of Concurrent Robotic Systems:
Insights on Formalisms and Tools. In International Conference on Application of Concur-
rency to System Design (ACSD), pages 29–38, 2017.

9. M. Foughali, B. Berthomieu, S. Dal Zilio, P.-E. Hladik, F. Ingrand, and A. Mallet. Formal
verification of complex robotic systems on resource-constrained platforms. In International
Conference on Formal Methods in Software Engineering (FormaliSE), pages 2–9, 2018.

10. M. Foughali, B. Berthomieu, S. Dal Zilio, F. Ingrand, and A. Mallet. Model checking real-
time properties on the functional layer of autonomous robots. In International Conference
on Formal Engineering Methods (ICFEM), pages 383–399. Springer, 2016.

11. M. Foughali, S. Dal Zilio, and F. Ingrand. On the Semantics of the GenoM3 Framework.
Technical report, LAAS-CNRS, 2019.

12. D. Hähnel, W. Burgard, and G. Lakemeyer. GOLEX —- bridging the gap between logic
(GOLOG) and a real robot. In Annual Conference on Artificial Intelligence, pages 165–176.
Springer, 1998.

13. R. Halder, J. Proença, N. Macedo, and A. Santos. Formal verification of ROS-based robotic
applications using timed-automata. In International Conference on Formal Methods in Soft-
ware Engineering (FormaliSE), pages 44–50. IEEE/ACM, 2017.

14. M. Hazim, H. Qu, and S. Veres. Testing, verification and improvements of timeliness in ROS
processes. In Annual Conference Towards Autonomous Robotic Systems (TAROS), pages
146–157, 2016.

15. T. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In Research and Education
in Concurrent Systems, pages 226–251, 1991.

16. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Information and computation, 111(2):193–244, 1994.

17. F. Ingrand and M. Ghallab. Deliberation for autonomous robots: A survey. Artificial Intelli-
gence, 247:10–44, 2017.

18. M. Kim and K. Kang. Formal construction and verification of home service robots: A case
study. In International Symposium on Automated Technology for Verification and Analysis
(ATVA), pages 429–443. Springer, 2005.

19. H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive, high-level robot control.
IEEE Robotics & Automation Magazine, 18(3):65–74, 2011.

https://git.openrobots.org/projects/pocolibs

20. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-
time systems. In International Conference on Computer-Aided Verification (CAV), pages
585–591. Springer, 2011.

21. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of deadline
properties in the IEEE 1394 FireWire root contention protocol. Formal Aspects of Comput-
ing, 14:295–318, 2003.

22. A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview. In
International Conference on Runtime Verification (RV), pages 122–135. Springer, 2010.

23. A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand. GenoM3: Building
middleware-independent robotic components. In International Conference on Robotics and
Automation (ICRA), pages 4627–4632. IEEE, 2010.

24. A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, and J. Timmis. Automatic property check-
ing of robotic applications. In International Conference on Intelligent Robots and Systems
(IROS), pages 3869–3876. IEEE, 2017.

25. C. Pecheur. Verification and validation of autonomy software at NASA. Technical report,
NASA Ames Research Center, 2000.

26. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and
A. Ng. ROS: an open-source Robot Operating System. In ICRA workshop on open source
software, page 5, 2009.

27. A. Roscoe. Understanding concurrent systems. Springer Science & Business Media, 2010.
28. C. Seceleanu, A. Vulgarakis, and P. Pettersson. REMES: A resource model for embed-

ded systems. In International Conference on Engineering of Complex Computer Systems
(ICECCS), pages 84–94, 2009.

29. T. Sekizawa, F. Otsuki, K. Ito, and K. Okano. Behavior verification of autonomous robot
vehicle in consideration of errors and sisturbances. In International Computer Software and
Applications Conference (COMPSAC), pages 550–555, 2015.

30. D. Simon, R. Pissard-Gibollet, and S. Arias. Orccad, a framework for safe robot control de-
sign and implementation. In National workshop on control architectures of robots: software
approaches and issues (CAR), 2006.

31. A. Sowmya, D. Tsz-Wang So, and W. Hung Tang. Design of a mobile robot controller using
Esterel tools. Electronic Notes in Theoretical Computer Science, 65(5):3–10, 2002.

32. N. Tomatis, G. Terrien, R. Piguet, D. Burnier, S. Bouabdallah, K. Arras, and R. Siegwart.
Designing a secure and robust mobile interacting robot for the long term. In International
Conference on Robotics and Automation (ICRA), pages 4246–4251. IEEE, 2003.

33. R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. The CLARAty architecture
for robotic autonomy. In Aerospace Conference, pages 1–121, 2001.

	Statistical Model Checking of Complex Robotic Systems

