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Abstract

This work presents a closed-loop guidance algorithm for six-degrees of free-
dom spacecraft rendezvous with a passive target flying in an eccentric orbit.
The main assumption is that the chaser vehicle has an attitude control system,
based on reaction wheels, providing the necessary torque to change its orien-
tation whereas the number of thrusters is arbitrary. The goal is to design fuel
optimal manoeuvres while satisfying operational constraints and rejecting dis-
turbances. The proposed method is as follows; first, the coupled translational
and angular dynamics are transformed to equivalent algebraic relations using the
relative translational states transition matrix and the attitude flatness property.
Then, a direct transcription method, based on B-splines parameterization and
discretization of time continuous constraints, is developed to obtain a tractable
static program. Finally, a Model Predictive Controller, based on linearization
around the previously computed solution, is considered to handle disturbances.
Numerical results are shown and discussed.

Keywords: Impulsive rendezvous, Attitude control, Model predictive control,
Flatness theory

Nomenclature

B Input matrix

e Rotation axis

H Angular momentum

Id Identity matrix
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I Chaser inertia matrix

R Rotation matrix

rt Target position with respect to Earth

u Velocity increment

w Thruster pointing vector

µ Earth gravitational parameter

ωωω Chaser angular velocity

ΦΦΦ Relative translational transition matrix

σσσ Modified Rodrigues parameter

ΘΘΘ Matrix full of zeros

θrot Rotation angle

B Chaser body frame

cy, cz LOS region parameters

e Target eccentricity

I Inertial geocentric frame

k Time interval index

L Local-vertical/local-horizontal frame

n Target orbit angular velocity

Ni Multivariate normal distribution of dimension i

nL LOS constraint grid size

nM Reaction wheels constraint grid size

Np Planning horizon

nT Number of thrusters

p Thruster index

r Current MPC step

s Standard deviation

T Interval duration

t Time

x, y, z Relative position

E Mathematical expectation
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1. Introduction

Autonomous spacecraft rendezvous and docking is becoming a more impor-
tant topic in the space industry as access to space continues increasing. From
the first rendezvous attempts (Gemini missions) to the Rosetta mission in 2014,
the rendezvous manoeuvre has played a key role in different kinds of space mis-
sions such as Apollo, ISS, Hubble, etc. After decades of development, many
approaches to achieve rendezvous for different mission profiles have been used,
see [1] for an historical review or [2] for the basics. Nowadays, an increasing
interest to demonstrate autonomous rendezvous and flight formation operations
for lightweight and low-power spacecraft is arising with CPOD, PRISMA and
PROBA-3 missions as examples, see [3, 4, 5].

Typically, the rendezvous problem has been widely studied just considering
orbit control making the assumption that translational and rotational motions
are decoupled. This problem has been usually tackled by means of direct tran-
scription methods which transform the optimal control problem into a discrete
optimization problem as in [6, 7, 8, 9, 10] among others. The main advantage
of these methods, against indirect ones, is that several kinds of constraints can
be easily added to the problem such as approach corridors through the docking
axis (V-bar or R-bar guidance), way-points, thrust direction inhibition, obstacle
avoidance or fault-tolerant trajectories.

However, orbit and attitude control subsystems are mutually coupled, which
is mainly due to the dependence of the thrusters orientation on the relative
attitude between target and pursuer (at least in the short-term). Spacecraft
attitude planning for direction reorientation manoeuvres, which are the ones
needed to point the thrusters in an adequate way, is a topic with a vast literature.
Reference [11] proposed two dimensional attitude profiles with time derivatives
saturation up to the jerk. Model Predictive Control (MPC) techniques based
on linearization around a set point have been used in the works of [12, 13].
A remarkable approach is the one followed by [14, 15] which is based on the
attitude dynamics flatness property (see [16] for more details about flatness
theory) that allowed them to transform the attitude dynamics into algebraic
relations avoiding the need of numerical integration.

Regarding previous works on six-degrees of freedom relative motion, adap-
tive tracking controllers based on feedback has been considered by [17] for ren-
dezvous and by [18, 19] for flight-formation while strategies based on backstep-
ping control have been employed by [20] for flight-formation and by [21, 22] for
rendezvous operations. Sliding mode control has also been explored by [23].
References [24, 25, 26, 27] proposed a two stages approach, first they used an
optimal control method for the translational motion, LQR in [24, 25, 26] or con-
vex optimization in [27], and then they designed an attitude controller to obtain
the orientations demanded by the translational plan. Reference [28] proposed
a covering map to convert the original differential equations into two coupled
equations evolving on a 3-D Lie group, this map is applicable to 6-DOF ren-
dezvous. These authors proposed in [29] a method based on the translational
state transition matrix and the attitude flatness property to solve the integrated
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optimal control rendezvous problem. Amongst the previous works, dual quater-
nions, which contain information of both translational and rotational states,
were used in [17, 19]. Concerning the number of thrusters, [17, 20, 19] assumed
a pair of them available on each direction, six in total, whereas [24] consid-
ered four thrusters and [25, 27, 26, 22, 29] studied the case of single-thruster
operations. The results of [28] are applied to both a classical six thrusters con-
figuration and a single thruster one. The previous works assumed that torque is
provided by an independent ACS system whereas [21] considered six thrusters in
a cuboid layout configuration providing both force and torque. Apart from ren-
dezvous and flight-formation operations, coupled motion has also been studied
for geostationary satellites station-keeping [30] and solar sails control [31].

In this paper, we consider a spacecraft equipped with reaction wheels and
an arbitrary number of thrusters which seeks to rendezvous with a target flying
in an eccentric orbit. The employed formulation allows to consider the coupled
problem in an optimal way without any assumptions on the number of available
thrusters which increase the applicability of the algorithm to different types
of missions. In a similar way as [32], a hybrid system is considered where
the propulsive action is modelled as impulses but the attitude control is time
continuous.

The proposed solution method transforms the time-continuous dynamics into
algebraic relations by means of the translational state transition matrix and the
attitude flatness property. Then, this equivalent optimal control problem is
parameterized and discretized to obtain a finite tractable static program. Once
an open-loop solution is obtained, a closed-loop MPC scheme, see [33], based
on linearization around the previously computed solution, is developed to reject
disturbances and cope with unmodelled dynamics.

The structure of this paper is as follows. Section 2 describes the coupled
translational and angular motion for spacecraft rendezvous. Next, Section 3
presents the time-continuous rendezvous problem and its conversion to an equiv-
alent problem. Section 4 describes the employed methodology to solve this
equivalent problem by means of parameterization and discretization. Section
5 presents the linearized close-loop MPC scheme. Section 6 shows results for
cases of interest. Finally, Section 7 closes this paper with some additional con-
siderations.

2. Model of Spacecraft Rendezvous

In this section, a six-degrees of freedom model for spacecraft rendezvous is
presented. Firstly, the translational relative motion between the two vehicles
is derived; secondly, the chaser angular motion model is described; and finally,
both translational and angular motions are coupled.

2.1. Translational motion

There is a considerable number of translational dynamic models for space-
craft rendezvous; the one to be chosen depends on the objectives and constraints
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on the mission. For instance, if the target vehicle is orbiting in a closed Kep-
lerian orbit, the linearised equations of the relative position between an active
chaser spacecraft and a passive target vehicle can be expressed in a cartesian
reference frame as in [34], leading to the well known Tschauner-Hempel equa-
tions, or by means of its relative orbital elements as in [35]. In this work, a
cartesian reference frame is used

ẍ = ν̈z + 2ν̇ż + ν̇2x− µx

r3
t

+

nT∑
p=1

Fx,p
m

, (1)

ÿ = −µy
r3
t

+

nT∑
p=1

Fy,p
m

, (2)

z̈ = −ν̈x− 2ν̇ẋ+ ν̇2z +
2µz

r3
t

+

nT∑
p=1

Fz,p
m

, (3)

where x, y and z denote the position of the chaser in a local-vertical/local-
horizontal (LVLH) frame of reference fixed on the center of gravity of the target
vehicle (see Fig.1), in which z refers to the radial position (positive pointing
towards the centre of the Earth), y to the cross-tack position (opposite to the
orbit angular momentum) and x closes the right-handed system (note that x
is not necessarily aligned with the target velocity due to eccentricity). The
velocity of the chaser in the LVLH frame is given by ẋ, ẏ and ż; the variables
Fx,p, Fy,p and Fz,p are the projections on the LVLH frame of the thrust force
exerted by each one of the nT thrusters; and m is the spacecraft mass which,
for close enough rendezvous operations, is considered constant. The variables
rt and ν are the target radius and true anomaly along its orbit, which are a
function of time and its orbital elements (semi-major axis and eccentricity).
The gravitation parameter of the Earth is µ=398600.4 km3/s2.

The state space model, x(t)=[x, y, z, ẋ, ẏ, ż]T , is governed by the linear
time varying system (LTV) given by Eq.(1)-(3). The independent variable of this
LTV system can be changed from time to true anomaly leading to the simplified
Tschauner-Hempel equations, see [34]. A formal solution of the Tschauner-
Hempel model by means of its state transition matrix, known as the Yamanaka-
Ankersen matrix, was proposed by [36]. This transition matrix is computed
by means of its fundamental matrix and inverse without need of numerical
integration. In this work, following [10] (note that the axes are not the same as
in this work), the Yamanaka-Ankersen state transition matrix is expressed by
means of the eccentric anomaly E,

ΦΦΦ(t, t0) = YE(t)Y
−1
E(t0). (4)

Note that a one-to-one relation exist between time and eccentric anomaly through
the Kepler equation

n(t− tp) = E − e sinE, (5)

where tp is the time at periapsis and is used as a reference point to measure E.
The time tp is chosen such that it is equal or less than the starting manoeuvre
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Figure 1: LVLH frame

time denoted by t0 (substracting, if necessary, any number of orbital periods).
Kepler’s equation (5) is not analytically invertible, but its inverse can be found
numerically with any desired degree of precision (see any Orbital Mechanics
reference, such as [37]).

Using the aforementioned state transition matrix, Eq.(4), and considering, as
a simplification, an impulsive model, Eq.(7), the translational states transition
equation is given by

x(t) = ΦΦΦ(t, t0)x(t0) +

k∑
i=0

ΦΦΦ(t, ti)Bu(ti), tk ≤ t < tk+1, (6)

where the input matrix is B=[Θ3×3, Id]T , and the propulsive control signal u(t)
is modelled as impulses (i.e. instantaneous changes of velocity) which describe
with adequate accuracy a typical chemical thruster

u(t) =

nT∑
p=1

Np∑
k=0

lim
∆tk→0

∫ tk+∆tk

tk

Fp(t)

m
dt =

nT∑
p=1

Np∑
k=0

∆Vp(tk)δ(t− tk), (7)

being ∆Vp∈R3 the velocity increment given by the thruster p and Np+1∈N the
number of thruster firings during the manoeuvre.

2.2. Angular motion

In this section, the attitude representation parameter is chosen and some of
their properties are presented. Then, the angular dynamics of a spacecraft con-
sidering only internal torques, which are the ones produced by reaction wheels,
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is derived. Finally, the attitude flatness property of the resulting angular dy-
namics is introduced (this property will be then exploited in Section 3).

2.2.1. Attitude representation and angular dynamics

In this work, the modified Rodrigues parameters (MRP) representation (see
[38, 39] for more details about MRP) is chosen rather than the widely used
attitude quaternion. The modified Rodrigues parameters have the advantage of
being a minimal attitude representation and are easier to linearize than attitude
quaternions (incremental addition does not work for quaternions). Moreover,
the unit-norm constraint of attitude quaternions is avoided in the problem for-
mulation. The counterpart is that MRP suffer singularities when representing
3D rotations. The MRP are denoted as σσσ=[σ1, σ2, σ3]T and its relation with
the rotation angle, θrot, and axis, e, is

σσσ = etan(θrot/4), (8)

where singularities arise when θrot=±2π(2j-1)π with j∈N. However, they can
be avoided by constraining θrot∈(−2π, 2π). The rotation matrix to change a
vector from one reference frame to another is given by

R(σσσ) = Id +
8σσσ×σσσ× − 4(1− ‖σσσ‖22)σσσ×(

1 + ‖σσσ‖22
)2 , (9)

where σσσ×∈R3×3 is the cross product matrix, see [37]. The attitude evolution of
the chaser is defined by the kinematic and dynamic equations. The translational
equations are expressed on a local frame so it is of interest to work with the
attitude of the body frame with respect to the LVLH frame as in [37]. The
kinematics are given by

σ̇σσ(t) = C(σσσ(t))[ωωω(t)−R(σσσ(t))ωωωL/I(t)], (10)

being ωωω=[ω1, ω2, ω3]T the angular velocity of the chaser body frame with respect
to the inertial frame and ωωωL/I=[0, −ν̇, 0]T the angular velocity of the LVLH
frame with respect to the inertial frame expressed on the local frame. The
matrix C has the following expression

C(σσσ) =
1

4

1 + σ2
1 − σ2

2 − σ2
3 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ1σ2 + σ3) 1− σ2
1 + σ2

2 − σ2
3 2(σ2σ3 − σ1)

2(σ1σ3 − σ2) 2(σ2σ3 + σ1) 1− σ2
1 − σ2

2 + σ2
3

 . (11)

Additionally, the following equation describes the angular momentum varia-
tion, expressed on the chaser body frame, when the only considered torques are
internal to the system (the ACS consists of reaction wheels)

Iω̇ωω(t) + Ḣrw(t) +ωωω(t)×Htot = 0, (12)

where I∈R3×3 and Htot∈R3 are, respectively, the moment inertia matrix and the
angular momentum of the spacecraft whereas Hrw∈R3 is the angular momentum
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of the reaction wheels. Note that Eq.(10)-(12) give the attitude evolution of the
body frame, B, with respect to the inertial frame, I. From the fact that no
external torques are applied, the spacecraft angular momentum is constant

Htot = Hb(t) + Hrw(t) ≡ constant, (13)

where Hb(t)=Iωωω(t) is the angular momentum of the platform. The attitude
control signal is the exerted torque by the reaction wheels through its angular
momentum variation, Ḣrw(t).

2.2.2. Attitude flatness property

The angular motion given by Eq.(10) and Eq.(12) is non-linear, hence ac-
counting for them in the resolution of an optimal control problem usually require
numerical integration, see [40]. However, the considered angular dynamics has
the flatness property and it is called a flat system, see [14].

Remark 1: a flat system has a flat output which can be used to explicitly
express all states and inputs in terms of the flat output and a finite number of
its derivatives, see [16].

Following [14], the attitude representation parameter σσσ(t) is chosen as the
flat output. The differential equations of the angular motion, Eq.(10) and
Eq.(12), can be transformed into algebraic relations, as a function of the flat
output and its derivatives. Solving the angular velocity in Eq.(10) and deriving
the obtained expression with respect to time

ωωω(t) = C−1(σσσ)σ̇σσ + R(σσσ)ωωωL/I , (14)

ω̇ωω(t) = C−1(σσσ)
(
σ̈σσ + Ċ(σσσ)R(σσσ)ωωωL/I

)
+ Ṙ(σσσ)ωωωL/I + R(σσσ)ω̇ωωL/I − Ċ(σσσ)ωωω, (15)

and introducing Eq.(14)-(15) into Eq.(12), the angular momentum variation of
the reaction wheels is explicitly obtained as

Ḣrw(t) = −I
[
C−1(σσσ)

(
σ̈σσ + Ċ(σσσ)R(σσσ)ωωωL/I

)
+ Ṙ(σσσ)ωωωL/I

+R(σσσ)ω̇ωωL/I − Ċ(σσσ)ωωω
]
−
(
C−1(σσσ)σ̇σσ + R(σσσ)ωωωL/I

)
×Htot.

(16)

Using the angular momentum conservation, Eq.(13), the reaction wheels angu-
lar momentum can also be expressed as a function of the flat output and its
derivatives

Hrw(t) = Htot − IC−1(σσσ)σ̇σσ, (17)

Note that time dependencies have been omitted at the right-hand side of Eq.(14)-
(17) for clarity.

2.3. Coupling between translational and angular motion

Now, the translational and angular motion coupling between the previous
models is presented. The velocity increment given by each thruster p on the
LVLH frame, denoted by L, is

∆Vp(tk) = RT (σσσ(tk))wpup(tk), up(tk) ≥ 0, (18)

8



where wp∈R3 is a unit-norm vector representing the p thruster orientation on
the pursuer body frame and up(tk)∈R is the impulse amplitude of the thruster
p at time tk and R(σσσ)∈R3×3 is the rotation matrix between the chaser body
frame and the LVLH frame. Introducing Eq.(18) into Eq.(7)

u(t) =

nT∑
p=1

Np∑
k=0

RT (σσσ(tk))wpup(tk)δ(t− tk). (19)

The coupling between translational and angular motion arises when the transla-
tional control input given by Eq.(19) is introduced into the translational states
transition equation given by Eq.(6) leading to

x(t) = ΦΦΦ(t, t0)x(t0) +

k∑
i=0

nT∑
p=1

ΦΦΦ(t, ti)BRT (σσσ(ti))wpup(ti), tk ≤ t < tk+1, (20)

Note that the propulsive action projected on the LVLH frame, u(t), depends
on the vehicle attitude in a non-linear way by means of the rotation matrix
between the pursuer body frame and the LVLH frame, see Eq.(9). The angular
motion is not affected by the translational motion (gravity-gradient effects are
neglected), hence Eq.(10) and Eq.(12) still hold for the coupled model.

3. Rendezvous planning problem

In this section, the objective function and constraints are presented. In a
generic form, the rendezvous optimal control problem states as follows

minimize
up(tk), Ḣrw(t)

J(up(tk), Ḣrw(t)),

subject to v̇(t) = −2ωωω × v − ω̇ωω × r−ωωω × (ωωω × r)

−
(
µ/‖rt‖32

) [
r− 3

(
rTt r/‖rt‖22

)
rt

]
,

ṙ(t) = v(t) +

Np∑
k=0

nT∑
p=1

RT (σσσ(t))wpup(tk)δ(t− tk),

ω̇ωω(t) = −I−1
[
Ḣrw(t) +ωωω(t)×Htot

]
,

σ̇σσ(t) = C(σσσ(t))[ωωω(t)−R(σσσ(t))ωωωL/I(t)],

g1(r(t)) ≤ 0, LOS region

g2(up(tk)) ≤ 0, ∆V bounds

g3(Hrw(t), Ḣrw(t)) ≤ 0, ACS bounds

g4(r(t0), v(t0), σσσ(t0), ωωω(t0)) = 0, t0 conditions

g5(r(tf ), v(tf ), σσσ(tf ), ωωω(tf )) = 0, tf conditions

(21)

where r(t)=[x(t), y(t), z(t)]T , v(t)=[ẋ(t), ẏ(t), ż(t)]T and rt(t)=[0, 0, −rt(t)]T .
Note that time dependencies have been omitted at the right hand side of the
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translational dynamics equation for clarity. The control inputs are the thrusters
impulses amplitudes at the firing times (which are known beforehand) and the
reaction wheels angular momentum variation. Next the objective function and
constraints appearing in (21) are detailed in (3.1) and (3.2) respectively.

3.1. Objective function

The chosen objective function seeks to minimize fuel consumption, which is
equivalent to minimize the L1-norm of the applied impulses

J =

Np∑
k=0

nT∑
p=1

up(tk). (22)

Note that the absolute value symbol is not needed since up(tk) are always pos-
itive because of Eq.(18). Moreover, reaction wheels use electrical power and
therefore their associated cost do not appear in Eq.(22).

3.2. Constraints of the problem

Three sets of constraints are considered in this paper. Firstly, path con-
straints on the relative translational states (g1); secondly, the control variables
(impulses amplitudes and reaction wheels angular momentum) are bounded (g2

and g3); and finally, initial and terminal states values are prescribed (g4 and
g5).

3.2.1. Path constraints

For sensing purposes (see [7]), it is required that the chaser vehicle remains
inside a line of sight (LOS) area from the docking port, thus guaranteeing that
the chaser spacecraft is at all time visible from the docking port. The LOS region
can be defined by the equations x≥cy(y − y0), x≥−cy(y + y0), x≥cz(z − z0),
x≥−cz(z + z0) and x≥0; these equations limit the relative translational state
space by five planes as shown in Fig.2. One can define the LOS constraint
algebraically, at any instant t, as ALx(t) ≤ bL, where

AL =


−1 cy 0 0 0 0
−1 −cy 0 0 0 0
−1 0 cz 0 0 0
−1 0 −cz 0 0 0
−1 0 0 0 0 0

 , bL =


cyy0

cyy0

czz0

czz0

0

 . (23)

3.2.2. Control bounds

Regarding the thrusters performance, it is assumed that the impulse ampli-
tude provided by each thruster is bounded above (and below by zero)

0 ≤ up(tk) ≤ up,max, p = 1 . . . nT . (24)

Note that up can take any value in the allowed interval (it is assumed that
thrusters opening times can be adjusted to produce the exact impulse amount).
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Figure 2: LOS region

On the other hand, each one of the reaction wheels saturates when it stores
a certain amount of angular momentum which is equivalent to consider that re-
action wheels velocities are limited. Moreover limits on the angular acceleration
exist for each wheel

−Hi,max ≤ Hi,rw(t) ≤ Hi,max, i = 1, 2, 3, (25)

−Ḣi,max ≤ Ḣi,rw(t) ≤ Ḣi,max, i = 1, 2, 3. (26)

3.2.3. Boundary constraints

The chaser is assumed to depart from a given point and velocity with a given
orientation and angular velocity

x(t0) = x0, σσσ(t0) = σσσ0, ωωω(t0) = ωωω0, (27)

and it has to met prescribed states at the end of the manoeuvre

x(tf ) = xf , σσσ(tf ) = σσσf , ωωω(tf ) = ωωωf , (28)

where the last three components of xf are null and ωωωf=R(σσσf )ωωωL/I(tf ) to have
no relative angular velocity between the body and LVLH frame.

3.3. Equivalent rendezvous planning problem

The aim of the optimal control problem (21) is to guarantee rendezvous with
the target along a prescribed approach region (LOS) while respecting control
bounds and minimizing fuel consumption. Using the coupled transition equation
for the translational states, see Eq.(20), and the algebraic relations derived from
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the attitude flatness property, developed through Eq.(14)-(17), we formulate
an equivalent planning problem, where differential equations are replaced by
algebraic ones (as a function of the flat output and its derivatives), without
losing any information,

minimize
up(tk), σσσ(t)

Np∑
k=0

nT∑
p=1

up(tk),

subject to x(t) = ΦΦΦ(t, t0)x(t0) +

k∑
i=0

nT∑
p=1

ΦΦΦ(t, ti)BRT (σσσ(ti))wpup(ti),

tk ≤ t < tk+1,

ALx(t) ≤ bL,

0 ≤ up(t) ≤ up,max, p = 1 . . . nT ,

−Hi,max ≤ Hi,rw(σσσ(t), σ̇σσ(t)) ≤ Hi,max, i = 1, 2, 3,

− Ḣi,max ≤ Ḣi,rw(σσσ(t), σ̇σσ(t), σ̈σσ(t)) ≤ Ḣi,max, i = 1, 2, 3,

x(t0) = x0, σσσ(t0) = σσσ0, ωωω(t0) = ωωω0,

x(tf ) = xf , σσσ(tf ) = σσσf , ωωω(tf ) = ωωωf .

(29)

Beside the fact that the equivalent planning problem (29) is integration free, it
is still infinite dimensional. In the next section, it is shown how to make this
problem tractable by means of parameterization and discretization.

4. Optimal control computation

In this section, the resolution method to the equivalent optimal control prob-
lem (29) is presented. The proposed methodology is based on a B-spline pa-
rameterization of the flat output (MRP) and the discretization of the infinite
dimensional constraints. The result is a tractable NLP problem which needs an
initial guess to be solved.

4.1. Non-linear programming description

First of all, it is considered that the Np+1 impulses application times are
equally spaced through the manoeuvre time, t∈[t0, tf ], with timespan T=(tf −
t0)/Np, hence tk=t0+kT for k=0 . . . Np. These firing times will be denoted as
nodes.

4.1.1. B-splines parameterization of the flat output

The attitude flatness property allows any kind of MRP time evolution pa-
rameterization. In this work, following [14], B-splines, see [41] for more details
about them, are chosen to parameterize the flat output since they define flex-
ible trajectories with a high degree of differentiability using a low number of
parameters

σσσ(t) =

nc∑
j=1

ajBj,q(t), (30)
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where the Bj,q(t) are qth order B-splines built on the knots sequence, tknots ∈
Rnknots , and the aj∈R3 coefficients are called control points.

Remark 2: The B-splines intrinsically assure continuity up to Cq. Given
the order q and the number of coefficients nc, the number of knots must satisfy
nknots=nc+q+1.

The attitude profile has to be continuous up to its second derivative, hence,
q≥2. On the other hand, it is chosen to have at least one control point to
represent the attitude at each node plus four additional control points to impose
σ̇σσ and σ̈σσ at the beginning and end of the manoeuvre. The previous consideration
leads to nc=Np+5, therefore nknots=Np+q+6. The knots are selected as the
nodes tk, augmented at left and right by repeating t0 and tf

tknots = [t0, . . . , t0, t1, . . . , tNp−1, tf , . . . , tf ]T . (31)

4.1.2. Discretization of time continuous constraints

The time continuous constraints are the path constraint related to the LOS
region, see Eq.(23), and the bounds on the reaction wheels angular momentum
and its variation, Eq.(25)-(26). Each one of these constraints is discretized with
a time grid within each interval, k. The LOS constraint is gridded with nL
equally spaced subintervals of duration TL=T/nL at which the constraint is
imposed

ALx(tk,l) ≤ bL, tk,l = t0 + (k− 1)T + lTL, k = 1 . . . Np, l = 1 . . . nL, (32)

whereas the reaction wheels constraints are gridded with nM equally spaced
subintervals of duration TM=T/nM

−Hi,max ≤ Hi(tk,m,aj) ≤ Hi,max, i = 1, 2, 3,

−Ḣi,max ≤ Ḣi(tk,m,aj) ≤ Ḣi,max, i = 1, 2, 3,

tk,m = t0 + (k − 1)T +mTM , m = 0 . . . nM .

(33)

4.1.3. Discrete optimization problem

To ease the notation, following [9], a compact formulation of the discrete
problem is developed. Defining the following stack vectors xS∈R6nLNp , uSp ∈
RNp+1 and aS∈R3nc as

xS = [xT1,1, . . . , xT1,nL
, xT2,1, . . . , xT2,nL

, xT3,1, . . . . . . , xTNp,nL
]T , (34)

uSp = [up,0, up,1, . . . , up,Np
]T , (35)

aS = [aT1 , aT2 , . . . , aTnc
]T , (36)

and the stack matrices F∈R6nLNp×6 and Gp∈R6nLNp×(Np+1)

F = [ΦΦΦT (t1,1, t0), . . . ,ΦΦΦT (t1,nL
, t0),ΦΦΦT (t2,1, t0), . . . . . . ,ΦΦΦT (tNp,nL

, t0)]T , (37)
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Gp =

ΦΦΦ(t1,1, t0)BRT (σσσ0)wB
p Θ6×1 . . . Θ6×1

...
...

. . .
...

ΦΦΦ(t1,nL
, t0)BRT (σσσ0)wB

p Θ6×1 . . . Θ6×1

ΦΦΦ(t2,1, t0)BRT (σσσ0)wp ΦΦΦ(t2,1, t1)BRT (σσσ1)wp . . . Θ6×1

...
...

. . .
...

ΦΦΦ(t2,nL
, t0)BRT (σσσ0)wp ΦΦΦ(t2,nL

, t1)BRT (σσσ1)wp . . . Θ6×1

ΦΦΦ(t3,1, t0)BRT (σσσ0)wp ΦΦΦ(t3,nL
, t1)BRT (σσσ1)wp . . . Θ6×1

...
...

. . .
...

...
...

. . .
...

ΦΦΦ(tNp,nL
, t0)BRT (σσσ0)wp ΦΦΦ(tNp,nL

, t1)BRT (σσσ1)wp . . . BRT (σσσNp
)wp



,

(38)
where σσσk=σσσ(tk,aS) represents the attitude at each node. The relation between
the stack vectors and matrices defined in Eq.(34)-(38) is given by

xS = Fx0 +

nT∑
p=1

Gp(aS)uSp. (39)

Now, the infinite dimensional problem (29) boils down to NLP, expressed with
the compact formulation, by means of the above parameterization and contin-
uous constraints discretization

minimize
uSp, aS

nT∑
p=1

‖uSp‖1,

subject to ALS

nT∑
p=1

Gp(aS)uSp ≤ bLS −ALSFx0,

0 ≤ uSp ≤ uSp,max, p = 1 . . . nT ,

−Hi,max ≤ Hi(tk,m, aS) ≤ Hi,max, i = 1, 2, 3,

− Ḣi,max ≤ Ḣi(tk,m, aS) ≤ Ḣi,max, i = 1, 2, 3,

Arend

nT∑
p=1

Gp(aS)uSp = xf −ArendFx0,

σσσ(t0, aS) = σσσ0, σ̇σσ(t0, aS) = 0, σ̈σσ(t0, aS) = 0,

σσσ(tf , aS) = σσσf , σ̇σσ(tf , aS) = 0, σ̈σσ(tf , aS) = 0,

(40)

where ALS∈R5nLNp×6nLNp and bLS∈R5nLNp stack the LOS matrix (diago-
nally) and vector, see Eq.(23), respectively. The parameters uSp,max∈RNp+1 are
stack vectors whose components are all equal to up,max. The matrix Arend =
[Θ6×6(nLNp−1), Id6×6] is employed to impose the rendezvous condition. It has
been considered that reaction wheels kinetic momentum variation at initial and
final time shall be zero which constrains σ̈σσ. A NLP solver is required to obtain
a solution of the static program (40).
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4.2. Initial guess computation (hotstart)

Any NLP solver needs an initial guess to compute the optimal solution of
problem (40). In this case, the process is composed of two steps; first, a tradi-
tional six-thrusters spacecraft model with three-degrees of freedom is employed
to formulate and solve a linear programming (LP) problem; and then, this ob-
tained LP solution is converted to NLP decision variables, uSp and aS.

4.2.1. Six-thrusters problem formulation

Considering a pair of thrusters available for each LVLH axis, the control can
be expressed at each node as uk=[∆Vx,k, ∆Vy,k, ∆Vz,k]T , hence, the transla-
tional states transition equation is linear

x(t) = ΦΦΦ(t, t0)x0 +

k∑
i=0

ΦΦΦ(t, ti)Bui, tk ≤ t < tk+1, (41)

and the LP problem is posed as

minimize
uk

Np∑
k=0

‖uk‖1,

subject to ALx(tk,l) ≤ bL,

−max(up,max)/
√

3 ≤ uk ≤ max(up,max)/
√

3,

xNp
= xf ,

Au0
u0 = 0,

AuNp
uNp

= 0,

(42)

where the bounds on the impulse amplitude for each direction have been con-
servatively chosen to not overpass the upper bound of the thruster with more
available impulse amplitude when all thrusters saturate (thus the use of

√
3).

The purpose of the last linear constraints, expressed by means of the matrices
Au0

and AuNp
, is to make the initial and final orientations compatibles with

the initial, σσσ0, and desired final attitude, σσσf , respectively. It should be noted
that the L1-norm term in the objective function is non-linear because uk can
take both positive or negative values. However, this issue is avoided by adding
optimization slack variables only allowed to take positive values.

4.2.2. Six-thrusters solution transformation to a NLP solution

Once the LP problem (42) is solved, the impulses amplitudes on each thruster
are chosen as u1,k=‖uk‖2 and up 6=1,k=0. The thruster labelled with p=1 is the
one with higher up,max.

The B-spline control points, aS, are obtained matching the Np+1 demanded
orientations at the nodes by the LP solution. The MRP at the nodes can be
obtained with the aid of the rotation angle and axis. First, denote by k∗i , where
the subscript i refers to the number of required thruster firings (‖uk∗i ‖2 >0), the
nodes at which a non-null impulse amplitude is demanded or an attitude has to

15



be reached (instant tNp) and then compute the unitary vector zk∗i representing
the velocity increment orientation, expressed on the inertial frame since attitude
is defined between the chaser body frame and the inertial frame, at these nodes

zk∗i = [ux,k, uy,k, uz,k]T /‖uk‖2, k∗i = k, if ‖uk‖2 > 0. (43)

Using zk∗i , it is possible to obtain the rotation MRP, σσσrot, between consecutive
orientations. For the nodes without thruster firings (‖uk‖2=0), the attitude at
this node k is chosen as the value of the interpolated MRP, between the nodes
k∗i−1 and k∗i , evaluated at the instant tk. The rotation MRP between tk−1 and
tk is

σσσrotk/k−1
= ek∗i tan(skθk∗i /4), sk =

k − k∗i−1

k∗i − k∗i−1

, tk−1, tk ∈ [tk∗i−1
, tk∗i ]. (44)

where the rotation angle and axis of Eq.(44) are obtained using the previously
computed orientations, see Eq.(43)

θk∗i = acos(zk∗i · zk∗i−1
), (45)

ek∗i =
zk∗i × zk∗i−1

‖zk∗i × zk∗i−1
‖2
. (46)

This way, smooth attitude transitions are obtained when some nodes do not have
burnings. Since θmi

∈[−π, π], no singularities arise when computing σσσrot. Once
the rotation MRP is obtained, it is possible to compute the MRP at each node
tk. The MRP at the nodes are determined applying the attitude composition
rule given by

σσσk =

(1− ‖σσσrotk/k−1
‖22)σσσk−1 + (1− ‖σσσk−1‖22)σσσrotk/k−1

+ 2σσσk−1 × σσσrotk/k−1

1 + (‖σσσrotk/k−1
‖2‖σσσk−1‖2)2 − 2σσσrotk/k−1

· σσσk−1
.

(47)

The last step is to compute the control points for this nodes sequence. Imposing
null σ̇σσ and σ̈σσ at t0 and tf a linear system of 3nc equations with 3nc unknowns
(remember that nc=Np+5) can be easily solved to obtain the initial guess B-
splines control points aS as it is proposed in [41].

5. MPC scheme

Once the NLP problem (40) is solved, an open-loop solution for the ren-
dezvous manoeuvre is available. However, disturbances, unmodelled dynamics,
etc., will perturb the planned path while the spacecraft is manoeuvring, hence
a MPC scheme, based on linearization around this previously computed solu-
tion, is developed in this section. The trajectory is recomputed on-line, in a
sliding horizon framework, by solving a quadratic programming problem after
each sampling interval which eases the computational burden (compared to the
NLP) and does not need an initial guess. The terminal constraints are relaxed,
considering them as terminal costs instead of constraints, to prevent feasibility
issues and augment stability.
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5.1. Linearized model

Allowing small increments of the decision variables, ∆up,k and ∆aj , the
translational transition Eq.(20) states as follows

x(t) =ΦΦΦ(t, tr)xr +

r+k∑
i=r

nT∑
p=1

ΦΦΦ(t, ti)B

(
RT (σσσ(ti))wp(up,i + ∆up,i)

+

r+nc∑
j=r+1

∆Rp,aj (σσσ(ti))up,i∆aj

)
, t ∈ [tr+k, tr+k+1),

(48)

where r=1 . . . Np is the current MPC step and the matrix ∆Rp,aj∈R3×3 has the
following expression

∆R(p,aj),αβ =

3∑
β=1

∂
(
RTαβwp,β

)
∂σβ

∂σβ
∂aj,β

∣∣∣∣∣∣
σσσi,aj

, α = 1, 2, 3, β = 1, 2, 3. (49)

Following with the compact formulation developed through Eq.(34)-(39), one
can define the following stack vectors ∆uSp(r)∈RNp+1, ∆aS(r)∈R3nc

∆uSp(r) = [∆up,r, ∆up,r+1, . . . , ∆up,r+Np
]T , (50)

∆aS(r) = [∆aTr+1, ∆aTr+2, . . . , ∆aTr+nc
]T , (51)

and the stack matrix Hp(r)∈R6nLNp×3nc

Hp(r) =

ΦΦΦ(tr+1,1, tr)B∆Rp,ar+1
up,r . . . ΦΦΦ(tr+1,1, tr)B∆Rp,ar+nc

up,r
...

. . .
...

ΦΦΦ(tr+1,nL
, tr)B∆Rp,ar+1

up,r . . . ΦΦΦ(tr+1,nL
, tr)B∆Rp,ar+nc

up,r
...

. . .
...

...
. . .

...
r+Np∑
i=r

ΦΦΦ(tr+Np,nL
, ti)B∆Rp,ar+1

up,i . . .
r+Np∑
i=r

ΦΦΦ(tr+Np,nL
, ti)B∆Rp,ar+nc

up,i


,

where one should note that many of the matrices ∆Rp,a=Θ3×3 because by
definition the interval between two consecutive B-spline knots has at most q+1
non-null coefficients, see [41]. Using the stack vectors and matrices, the following
linearized translational states transition equation is obtained in compact form

xS(r) = Fxr +

nT∑
p=1

[
Gp(aS)(uSp + ∆uSp) + Hp(uSp,aS)∆aS

]
, (52)

where the dependence with r has been omitted at the right-hand side of Eq.(52)
for clarity.
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5.2. Linearized planning problem

The linearized planning problem seeks the same objectives as the NLP prob-
lem (40) but now the terminal constraints are included in the cost function as
in [9] to encode a prescribed arrival time. This improves feasibility when con-
sidering disturbances, see [42], and can improve asymptotic stability properties
without needing terminal constraints, see [43]. At each MPC step, r, the lin-
earized optimization problem to solve is

minimize
∆uSp,∆aS

nT∑
p=1

r+Np∑
i=r

∆up,i + γx

r∑
k=k0

(xNp+k − xf )TQx(xNp+k − xf )

+ γv

r∑
k=k0

xTNp+kQvxNp+k + γσ

r∑
k=k0

(σσσNp+k − σσσf )T Id(σσσNp+k − σσσf )

+ γωT
2

r∑
k=k0

σ̇σσTNp+kIdσ̇σσNp+k, k0 = max(0, r −Np),

subject to ALS

nT∑
p=1

Gp(r)(uSp(r) + ∆uSp(r)) + ALSH(r)∆aS(r) ≤

bLS −ALSF(r)xr,

0 ≤ uSp(r) + ∆uSp(r) ≤ uSp,max,

|Hi,rw(tr+k,m,aS(r)) + ∆Hi,rw(tr+k,m,aS(r),∆aS(r))| ≤ Hi,max,

|Ḣi,rw(tr+k,m,aS(r)) + ∆Ḣi,rw(tr+k,m,aS(r),∆aS(r))| ≤ Ḣi,max,

∆σσσ(tr,∆aS(r)) = σ̂σσr − σσσ(tr,aS(r)),

∆σ̇σσ(tr,∆aS(r)) = ˙̂σσσr − σ̇σσ(tr,aS(r)),

∆σ̈σσ(tr,∆aS(r)) = ¨̂σσσr − σ̈σσ(tr,aS(r)),

−∆uSp,max ≤ ∆uSp ≤ ∆uSp,max,

−∆aS,max ≤ ∆aS ≤ ∆aS,max,
(53)

where the variables σ̂σσr, ˙̂σσσr and ¨̂σσσr are the measured attitude and its derivatives
at the end of each sampling interval. These values are necessary because the
desired attitude path could suffer some deviations caused by reaction wheels
saturation since the employed local reduction technique only guarantees time
continuous constraint satisfaction at some discrete times. The increment on the
reaction wheels kinetic momentum and its variation are

∆Hi,rw(tr+k,m,aS(r),∆aS(r)) =

r+nc∑
j=r+1

3∑
α=1

∂Hi,rw

∂σα

∂σα
∂aj,α

∣∣∣∣
σσσr+k,aj

∆aj,α, (54)

∆Ḣi,rw(tr+k,m,aS(r),∆aS(r)) =

r+nc∑
j=r+1

3∑
α=1

∂Ḣi,rw

∂σα

∂σα
∂aj,α

∣∣∣∣∣
σσσr+k.aj

∆aj,α, (55)
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The matrices associated with the terminal translational states costs terms are

Qx =

[
Id3×3 Θ3×3

Θ3×3 Θ3×3

]
, Qv =

[
Θ3×3 Θ3×3

Θ3×3 Id3×3

]
, (56)

and γx, γv, γσ and γω are positive scalars that weight the relative cost of each
one of the terminal conditions with respect to fuel consumption. Since both
the translational states propagation, see Eq.(52), and the flat output and its
derivatives relation with the B-spline control points is linear, see Eq.(30), the
proposed objective function is quadratic, hence the optimization problem (53)
is a QP problem.

5.3. MPC scheme

Summarizing the development of previous sections, the MPC scheme ex-
pressed as pseudocode is as follows

Algorithm 1: MPC scheme

1 begin
2 Obtain a solution of the LP problem (42);
3 Transform the LP solution to NLP decision variables using Eq.

(43)-(47);
4 Obtain a solution of the NLP problem (40), uSp and aS;

5 Apply up,0 and Ḣrw(t) for t∈[t0, t1);
6 Initialize the current MPC step r=1;
7 while r ≤ Np do
8 Prescribe reference controls at Np + r:
9 up,Np+r=0,

10 σσσ(tNp+r,aS(r))=σσσf , σ̇σσ(tNp+r,aS(r))=0, σ̈σσ(tNp+r,aS(r))=0 −→
aS(r);

11 Obtain the solution of the QP linearized rendezvous problem 53,
∆uSp(r) and ∆aS(r) ;

12 Update the decision variables uSp(r)=uSp(r)+∆uSp(r),
aS(r)=aS(r)+∆aS(r);

13 Apply ∆Vp,r and Ḣrw(t) for t∈[tr, tr+1);
14 Update the current MPC step, r=r+1;

15 end

16 end

The steps 2-4 are computed off-line while the vehicle is performing station-
keeping around the departure point waiting the command to start the manoeu-
vre so no hard real-time requirements appear when computing this solution.
However, the steps 8-14 within the while loop are performed on-line during the
manoeuvre which require a fast computation. That is the main reason why a
QP problem based on linearization around a previously computed solution has
been developed instead of solving the NLP problem at each step.
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6. Simulation results

Since the employed formulation does not make any assumptions on the chaser
number of thrusters, two different scenarios will be considered. The first one
will correspond to a heavy rendezvous satellite equipped with 10 thrusters while
the other one corresponds to a low-power spacecraft equipped with 2 thrusters.
The simulations of this sections have been obtained using MATLAB routines
with Gurobi optimization package, see [44], as LP and QP solver whereas the
IPOPT optimization package, see [45], is used as NLP solver.

6.1. Rendezvous model

It is important to remark that although a linear model, see Eq.(1)-(3), is
used to compute the control sequence, the plant is considered to be dominated
by the following non-linear relative motion dynamics, see [37],

ẍ = ν̈z + 2ν̇ż + ν̇2x− µ x

[x2 + y2 + (rt − z)2]3/2
, (57)

ÿ = −µ y

[x2 + y2 + (rt − z)2]3/2
, (58)

z̈ = −ν̈x− 2ν̇ẋ+ ν̇2z − µ z − rt
[x2 + y2 + (z − rt)2]3/2

− µ

r2
t

. (59)

6.2. Disturbances model

In a similar way as [9] (note that there the disturbance is considered in an
additive way), a disturbance on each of the thrusters performance is added to
test the capabilities of the MPC scheme developed in Section 5. This disturbance
is modelled in the chaser body axes as

uBp (tk) = ΩΩΩ(δθδθδθ(tk))wpup(tk)(1 + δup(tk)), p = 1 . . . nT , k = 1 . . . Np, (60)

where up is the commanded output computed by the control laws, δθδθδθ ∼ N3(E[δθδθδθ],
ΣΣΣδ) is a vector of random small angles and δup∼ N(E[δup], s[δup]) is a random
scalar. These disturbances model several physical aspects. First, the attitude
control of the chaser will not be perfect, so one can expect some alignment er-
rors, modelled by Ω(δθδθδθ) in a simplified way. On the other hand, with δup one
can model thrust level disturbances.

6.3. Simulation scenarios

To test the capabilities of the proposed algorithm, two scenarios for different
pursuer architectures are considered. For the first scenario, a heavy space-
craft equipped with 10 thrusters is considered while for the second scenario a
lightweight satellite with a limited propulsion plant, with only 2 thrusters is
simulated.
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p wp up,max [m/s] p wp up,max [m/s]
1 [1, 0, 0]T 1 6 [0, 0, -1]T 1

2 [-1, 0, 0]T 1 7 [
√

2,
√

2, 0]T /2 1

3 [0, 1, 0]T 1 8 [
√

2, -
√

2, 0]T /2 1

4 [0, -1, 0]T 1 9 [-
√

2,
√

2, 0]T /2 1

5 [0, 0, 1]T 1 10 [-
√

2, -
√

2, 0]T /2 1

Table 1: Thrusters configuration for scenario 1

Boundary conditions (intrinsic Euler angles sequence 3→1→3)
t0 0 s tf 900 s
r0 [400, -250, -200]T m rf [2, 0, 0]T m
v0 [1, 1, -1]T m/s vf [0, 0, 0]T m/s
θθθ0 [0◦, 0◦, 0◦]T θθθf [90◦, 90◦, 90◦]T

ωωωB/L,0 [0◦, 0◦, 0◦]T s−1 ωωωB/L,f [0◦, 0◦, 0◦]T s−1

Table 2: Scenario 1 boundary conditions

6.3.1. Controller parameters

Regarding controller parameters, for both cases, the B-splines order is chosen
to be quintic which is equivalent to take q=5 in Eq.(30). The discrete grids sizes,
to evaluate the time continuous constraints, are chosen as nL=2 and nM=12,
while The objective function weights are taken as γx=10, γv=5, γσ=2 and γω=1.
The LOS parameters for both cases are cy=cz=1/tan(π/4) and y0=z0=2.5 m.

6.3.2. Satellite with 10 thrusters

In this scenario, a conventional cargo satellite with 10 thrusters has to ren-
dezvous with a target flying in an eccentric low Earth orbit with e=0.1, hp=600
km and ν(t0)=π/4. Table 1 shows the characteristics of the considered propul-
sive layout. On the other hand, the chaser inertia matrix is chosen to be similar
to the russian Progress cargo spacecraft, see [2],

I =

31 0 0
0 31 0
0 0 5

 · 103 kg ·m2, (61)

whereas the bounds of the reaction wheels angular momentum and its variation
are taken as Hi,max=500 N·m·s and Ḣi,max=20 N·m, respectively. At the begin-
ning, the angular momentum of the system is considered to be null Htot=0. The
manoeuvre boundary conditions are given by Table 2. The considered distur-
bance parameters for this simulation are δ̄δδ=0.0175, Σδ,ij=0.0175δij , δūp=0.02
and σδup=0.05.

6.3.3. Satellite with 2 thrusters

In this scenario, a lightweight satellite with only 2 available thrusters has
to rendezvous with a target flying in an eccentric low Earth orbit with e=0.5,
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p wp up,max [m/s] p wp up,max [m/s]
1 [0, 0, -1]T 0.5 2 [-1, 0, 0]T 0.5

Table 3: Thrusters configuration for scenario 2

Boundary conditions (intrinsic Euler angles sequence 3→1→3)
t0 0 s tf 900 s
r0 [350, 200, 200]T m rf [2, 0, 0]T m
v0 [1, 1, -1]T m/s vf [0, 0, 0]T m/s
θθθ0 [0◦ ,0◦, 0◦]T θθθf [90◦, 90◦, 90◦]T ◦

ωωωB/L,0 [0◦, 0◦, 0◦]T s−1 ωωωB/L,f [0◦, 0◦, 0◦]T s−1

Table 4: Scenario 2 boundary conditions

hp=400 km and ν(t0)=π. The thrusters are mounted in an orthogonal config-
uration as shown by Table 3.

For this case, the chaser inertia matrix is chosen to be the one corresponding
to the CNES small satellite MYRIADE, see [14]

I =

 40 −3 −0.5
−3 28 −1
−0.5 −1 45

 kg ·m2, (62)

whereas the bounds of the reaction wheels angular momentum and its variation
are taken as Hi,max=1 N·m·s and Ḣi,max=0.05 N·m. At the beginning the
angular momentum of the system is considered to be null, Htot=0. In this
case, the manoeuvre boundary conditions are shown in Table 4 The considered
disturbance parameters for this simulation are δ̄δδ=0, Σδ,ij=0.0175δij , δūp=0 and
σδup=0.01.

6.4. Simulation results

For each scenario, 100 realizations for the chosen disturbance parameters are
simulated. Then, the obtained results are shown and discussed.

6.4.1. Scenario with 10 thrusters

First, analyse the scenario with 10 thrusters. For all the realizations, the
linear QP program is feasible and the chaser reaches the proximity of the target
without trespassing the LOS region, see Fig.4. A typical 3D path of a realisation
is shown in Fig.3 while the attitude profile is shown in Fig.5. For the shown
realization the desired orientation is met at the end while the angular velocity
is driven to a quasi-null value due to the considered uncertainties. More details
on the terminal accuracy for this scenario are given in Table 5 where δ measures
the mismatch between the obtained and the desired terminal value. Regard-
ing the planned impulses, for the plotted realisation, see Fig.10, the thrusters
{1,2,6,9} have relevant firings while thrusters {3,4,5,7,8,10} are not operated
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Figure 3: Chaser 3D path of scenario 1 for the first random realization

Results (intrinsic Euler angles sequence 3→1→3)
JLP=4.08 m/s, JNLP=3.15 m/s

E[JMPC ]=3.24 m/s, s[JMPC ]=0.09 m/s
E[‖δr(tf )‖2] 1.30 m s[‖δr(tf )‖2] 0.61 m
E[‖δv(tf )‖2] 2.80 cm/s s[‖δv(tf )‖2] 1.07 cm/s

E[θθθ(tf )] [90.03◦, 93.97◦, 92.88◦] s[θθθ(tf )] [1.04◦, 1.45◦, 0.65◦]
E[‖ωωω(tf )‖2] 0.31 ◦/s s[‖ωωω(tf )‖2] 0.02 ◦/s

Table 5: Scenario 1 terminal results

significantly along the manoeuvre. Regarding the cost, the NLP program re-
duces fuel consumption in a 21.054% compared to the converted solution from
the LP problem, see Table 5. Finally, in Fig.7 it is shown that the reaction
wheels have saturations (both on angular velocity and acceleration) at the ini-
tial and final instants of the manoeuvre, but then desaturate immediately and
keep providing torque.

6.4.2. Scenario with 2 thrusters

Analysing the second scenario with 2 thrusters, similar conclusions with the
first scenario still holds, see Fig.8. Note that the spacecraft in this case is
underactuated in translational control. Moreover, the desired final orientation
is not favourable at all to brake the spacecraft since the thruster 1 nozzle will
end pointing to the +x axis and the thruster 2 nozzle to the -z axis. The
terminal accuracy is shown in Table 6 (it shows higher accuracy than the 10
thrusters scenario due to the lighter perturbations). For the plotted realization
of Fig.10, it is shown that the final braking impulse has to be advanced one
interval due to the non favourable last orientation. In this case, there is not an
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Figure 4: Chaser trajectory on the target orbital plane of scenario 1 for all random realizations
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Figure 5: Chaser attitude of scenario 1 for the first random realization
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Figure 6: Computed impulses of scenario 1 for the first random realization
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Figure 8: Chaser trajectory on the target orbital plane of scenario 2 for all random realizations

Results (intrinsic Euler angles sequence 3→1→3)
JLP=3.49 m/s, JNLP=3.40 m/s

E[JMPC ]=3.43 m/s, s[JMPC ]=0.029 m/s
E[‖δr(tf )‖2] 0.82 m s[‖δr(tf )‖2] 0.36 m
E[‖δv(tf )‖2] 1.34 cm/s s[δv(tf )] 0.64 cm/s

E[θθθ(tf )] [97.39◦, 93.73◦, 89.10◦] s[θθθ(tf )] [4.57◦, 2.86◦, 2.51◦]
E[‖ωωω(tf )‖2] 0.31 ◦/s s[‖ωωω(tf )‖2] 0.13 ◦/s

Table 6: Scenario 2 terminal results

improvement in fuel consumption when compared to the obtained LP solution
but the reaction wheels saturation peak has been lowered from 5.5608 N·m·s
(LP solution converted to NLP solution) to 1 N·m·s, see Table 6.

7. Concluding remarks

This paper has presented a predictive guidance and control algorithm for six-
degrees of freedom spacecraft rendezvous based on the translational state tran-
sition matrix, the attitude flatness property, discretization and a MPC scheme
based on linearization. One of the main contributions of the proposed algo-
rithm is its ability to consider several chaser spacecraft configurations which
not only reduces fuel consumption but also allows to consider propulsive and
ACS constraints in an integrated framework.

The numerical experiments shown in Section 6 have validated the method
for two different spacecraft configurations. Additionally, the simulations have
demonstrated convergence of the proposed MPC to the desired final state even
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Figure 9: Chaser attitude of scenario 2 for the first random realization
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Figure 10: Computed impulses of scenario 2 for the first random realization
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Ḣrw1
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Figure 11: Reaction wheels angular momentum and its variation of scenario 2 for the first
random realization

in the presence of disturbances. However, a formal proof of stability has not
been addressed and is left as future work.

Possible future research lines include the following. First, it will be of great
interest to consider on/off thrusters as it is done in [10]. This will cause contin-
uous coupling between translational and rotational motion since the vehicle will
be spinning when the thrusters are fired. Second, to improve the robustness of
the underactuated case, robust MPC techniques in the spirit of [9] could be con-
sidered. Finally, another possible line is to consider more advanced techniques,
that does not rely on discretization, to handle the time continuous constraints
of the problem.
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[16] M. Fliess, J. Lévine, P. Martin, P. Rouchon, Flatness and defect of non
linear systems: introductory theory and examples, International Journal
of Control 61 (1995) 13–27.

[17] N. Filipe, P. Tsiotras, Adaptive Position and Attitude-Tracking Controller
for Satellite Proximity Operations Using Dual Quaternions, Journal of
Guidance, Control and Dynamics 38 (2015) 566–577.

[18] H. Wong, H. Pan, V. Kapila, Output Feedback Control for Spacecraft For-
mation Flying with Coupled Translation and Attitude Dynamics, in: Pro-
ceedings of American Control Conference, IEEE, Portland, Oregon, United
States of America, 2005, pp. 2419–2426.

[19] J. Wang, Z. Sun, 6-DOF robust adaptive terminal sliding mode control for
spacecraft formation flying, Acta Astronautica 73 (2012) 76–87.

[20] R. Kristiansen, P. J. Nicklasson, J. T. Gravdahl, Spacecraft coordination
control in 6DOF: Integrator backstepping vs passivity-based control, Au-
tomatica 44 (2008) 2896–2901.

[21] F. Zhang, G. Duan, M. Hou, Integrated relative position and attitude con-
trol of spacecraft in proximity operation missions with control saturation,
International Journal of Innovative Computing, Information and Control 8
(2012) 3537–3551.

[22] H. Yan, S. Yan, Y. Xie, Integrated Translational and Rotational Control
for Rendezvous and Docking on Ellipse Orbits, in: Intelligent Control and
Automation (WCICA), 12th World Congress, Guilin, China, 2016.

[23] F. Terui, Position and Attitude Control of a Spacecraft by Sliding Mode
Control, in: Proceedings of the American Control Conference, Philadel-
phia, Pennsylvnia, United States of America, 1998.

[24] B. J. Naasz, M. M. Berry, H. Kim, C. D. Hall, Integrated Orbit and Atti-
tude Control for a Nanosatellite with Power Constraints, in: Proceedings
AAS/AIAA Space Flight Mechanics Conference, Ponce, Puerto Rico, 2003.

[25] M. S. Siva, R. Padiyan, D. Ghose, M. S. Bhat, M. P. Ramachandran, Co-
ordinated 6-dof control of dual spacecraft formation, in: 5th International
Conference on Spacecraft Formation Flying Missions and Technologies, Mu-
nich, Germany, 2013.

[26] G. Moon, B. Lee, M. Tahk, D. H. Shim, Quaternion Based Attitude Control
and Suboptimal Rendezvous Guidance on Satellite Proximity Operation,
in: European Control Conference (ECC), Aalborg, Denmark, 2016.

[27] Y. Wu, X. Cao, Y. Xing, P. Zheng, S. Zhang, Relative Motion Decoupled
Control for Spacecraft Formation Translational and Rotational Dynamics,
in: Proceedings of the International Conference on Computer Modeling
and Simulation, Macau, China, 2009, pp. 63–68.

30



[28] J. D. Biggs, H. Henninger, Motion planning on a class of 6-D Lie groups
via a covering map, IEEE Transactions on Automatic Control (2018) 1–12.

[29] J. C. Sanchez, F. Gavilan, R. Vazquez, C. Louembet, A Flatness-Based
Trajectory Planning Algorithm for Rendezvous of Single-Thruster Space-
craft, in: Networked and Autonomous Air and Space Systems, Santa Fe,
New Mexico, USA, 2018.

[30] A. Weiss, M. Baldwin, R. S. Erwin, I. Kolmanovsky, Model Predictive
Control for Spacecraft Rendezvous and Docking Strategies for Handling
Constraints and Case Studies, IEEE Transactions on Control Systems
Technology 23 (2015) 1638–1647.

[31] S. Gong, H. Baoyin, J. Li, Coupled attitude-orbit dynamics and control
for displaced solar orbits, Acta Astronautica 65 (2009) 730–737.

[32] L. S. Urbina, Guidance and robust control methods for the approach phase
between two orbital vehicles with coupling between translational and rota-
tional motions, PhD Thesis, LAAS-CNRS, Université de Toulouse, 2017.
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