
HAL Id: hal-02156842
https://laas.hal.science/hal-02156842v1

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Repeatable Decentralized Simulations for
Cyber-Physical Systems

Christophe Reymann, Mohammed Foughali, Simon Lacroix

To cite this version:
Christophe Reymann, Mohammed Foughali, Simon Lacroix. Repeatable Decentralized Simulations
for Cyber-Physical Systems. International Conference on Software Quality, Reliability and Security
(QRS), Jun 2019, Sofia, Bulgaria. �hal-02156842�

https://laas.hal.science/hal-02156842v1
https://hal.archives-ouvertes.fr


Repeatable Decentralized Simulations for
Cyber-Physical Systems

Christophe Reymann∗, Mohammed Foughali∗, and Simon Lacroix∗
∗LAAS-CNRS, Université de Toulouse, France
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Abstract—Simulation is very helpful for the development
of cyber-physical systems, as it enables testing functionalities
and their integration without full hardware deployment. For
complex systems, such as fleets of heterogeneous robots, multiple
simulators dedicated to particular physical processes must be
interconnected, so as to build a wholesome simulation and test
the overall system. A key property to ensure is that the overall
simulation is repeatable. We propose a lightweight distributed
architecture for time management, allowing to easily deploy
complex simulations while strictly ensuring repeatability. A
formal model of the architecture is provided, along with a proof
of progress. An open source implementation, with a binding to
the robotic ROS framework is made available.

I. INTRODUCTION

A. On repeatability

Repeatability (aka replicability) in simulation can be defined
as: the same initial conditions should always produce the same
simulation results. Repeatability is a cornerstone of scientific
simulation: it is a basic (although not sufficient [1]) require-
ment to obtain verifiable results. If the simulation depends on
the system load or the network latency, it may produce non-
realistic results that go unnoticed by the user.

Furthermore, repeatability plays a key role in cyber-physical
systems development, as it allows to reproduce bugs and
perform regression testing. It also enables launching batches
of simulations without worrying about the system load, results
being identical even in resource starvation scenarios where all
simulations cannot run concurrently.

B. Distributed simulations

Complex cyberphysical systems are built compositionally:
they integrate various software components ranging from close
to the hardware (e.g. controllers) to more abstract components
(e.g. reasoning and supervision tasks). Naturally, the simula-
tion in this context also relies on compositionality. Indeed,
numerous simulators dedicated to a given domain of physics
may be required, ranging from generic (e.g. graphics rendering
for vision simulation), to more specialized (e.g. terramechanic
simulators for wheels/soil interactions). To simulate a wholly
integrated software system, we need sound techniques to
connect and reuse these simulators.

The need for simulation in the integration of multiple actors
has led to the development of comprehensive international
standards such as HLA [2] and DIS [3], designed to integrate
a distributed series of simulators.

Fig. 1 shows a very simple abstraction of a distributed
simulation in layers.
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Time Management

Simulation Management Simulation Component
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High level

Fig. 1. Architecture of a distributed simulation

• At the core is the capability to exchange messages through
a middleware.

• The time management layer is used to synchronize the
simulators and enforce global consistency of the simulation.

• Simulation management refers to managing the whole life
process of the simulation, e.g. setup and monitoring.

• Simulation components are built on top of this software
stack.

Not shown here is the common object models (i.e. data
structures with appropriate semantics), necessary for the in-
tercommunication between components and usually described
using an interface description language.

In the following paragraphs, we briefly introduce the simu-
lation components and time management layers.

a) Simulation components: A simulation component fol-
lows one of the two main models in distributed simulation:
discrete event simulation (DES) and continuous simulation
(CS). Typically, physical components of the system, described
using differential equations, follow the CS model, while input
and output variables are updated and broadcasted periodically
using a fixed time step for integration, following a DES model.
The simulator interface could then also be described by a DES
model. Only a limited set of interactions between objects (e.g.
interactions with third-party systems in the environment) are
non-periodic discrete events.

b) Time management: There exists multiple time man-
agement modes, which can best be described by the relation
between simulated time and physical time.

• Real time: the simulated time flows exactly as physical time.
• Linear time: the simulated time flows linearly with respect

to real time, using a speedup coefficient.
• Non-linear time: the simulated time flows non-linearly, it

can pause for arbitrary periods before resuming, and in some
situations even go back in time (see IV-A).

Most simulators only support real and linear time, while HLA
and DIS both support non linear (monotonic) time. Real-time
simulation is best for validation of the software integration
within the tested system (in particular using Hardware-In-



The-Loop simulation). Non-linear time is necessary to perform
repeatable simulations, but calls for a time management layer.

C. Proposition
We focus on time management, a necessary step toward

repeatability in distributed simulations. Time management is
in charge of advancing simulation time in each of the involved
simulators. To yield repeatability, it must support the non-
linear-time mode, ensure that messages are processed and sent
in timestamp order, and prevent message losses.

Time management in non real-time mode is usually per-
formed in a centralized manner: all messages from individual
simulators are exchanged through a central node, which per-
forms the necessary computations to enforce time consistency.
This is the case for both HLA and DIS (Sect. IV). Centralized
time management induces an additional cost on resource
usage. Also, it goes against the spirit of popular decentralized
middlewares used in robotics, such as ROS [4], making it
difficult to adopt in this community.

We propose a fully decentralized approach of time manage-
ment, seamlessly bridged with heterogeneous cyber-physical
software, in which robots may take part. The approach is for-
mally founded and satisfies important properties in the context
of repeatable distributed simulations, mainly the progress of
involved simulators.

Note that sound time management is necessary for repeata-
bility, but not sufficient to ensure it. Indeed, time management
architectures are not designed to solve problems arising from
non-deterministic behaviors, induced by e.g. complex multi-
threaded interactions, which are classically considered by the
developer of the components.

II. DSAAM: A DECENTRALIZED TIME MANAGEMENT
ARCHITECTURE

a) Overview: Our architecture, named DSAAM for “De-
centralized Synchronization Architecture for Asynchronous
Middleware”, can be easily implemented on top of existing
cyberphysical systems components. It manages time in a com-
pletely decentralized manner, and satisfies the Time consis-
tency essential property: messages are emitted and processed
in a deterministic fashion, and components must wait for each
others messages in order to advance. This guarantees repeata-
bility of the simulation if other non-deterministic behaviors,
not related to time management, are correctly handled.

b) Characteristics of a DSAAM System: To enforce time
consistency, the following constraints are imposed to the
underlying simulation components:
• Time-stamped messages: all exchanged messages must be

time-stamped. The semantics of the timestamp is that each
message represents a piece of the world state at the simu-
lation time indicated by its timestamp.

• Periodicity: messages are sent with a timestamp period that
is known, which tells at which simulation time to expect the
next message – this period may vary.

The last constraint is a strong one. For example, it forbids
request-response mechanisms that may be triggered at arbi-
trary points in simulation time. In Sect. V-B, we see why this
constraint is necessary and discuss how it could be loosened.

A DSAAM system is made of a collection of simulators
encapsulated in nodes, that exchange messages through flows.
Flows have always one source, and any number of sinks,
as depicted in Fig. 2. Every exchanged message includes a
timestamp and a validity period. Timestamps and periods can
be any kind of variable that belong to a totally ordered set
endowed with addition (we use the natural integers N).

SF F
tF , δf (tF )

KF,m

...

KF,1

Fig. 2. A flow F with source node S and sinks KF,1...KF,m, with next
emitted message timestamp tF and period δf (tF ).

The period represents a contract between sources and sinks:
if a sink receives a message with timestamp t and period
δ, then the next message on this flow will have timestamp
t + δ. It is very similar in nature to the notion of lookahead
(Sect. IV-A2), but instead of providing a lower bound it
provides the exact timestamp of the next message. The period
δ may change between each message.

c) Properties of a DSAAM node: To satisfy the con-
straints above, and therefore ensure time consistency, the
following four rules on consumption and emission of messages
inside a node must be enforced:

1) Messages are consumed by increasing timestamp order,
no matter the source they are coming from.

2) Emitting a message with timestamp T forbids future
consumption of messages with timestamp T ′ < T .

3) Consuming a message with timestamp T forbids future
emission of messages with timestamp T ′ ≤ T

4) No incoming message can be lost or discarded before it
is consumed by the simulation.

III. FORMAL FOUNDATIONS AND GUARANTEES

We first present transition systems, the formalism on which
operational semantics of DSAAM are based. We give syn-
tactical definitions, and then derive operational semantics that
unambiguously specifies the behavior of DSAAM systems in
line with the requirements/properties/rules in Sect. II. Finally,
we rely on the model to prove important properties of DSAAM
systems.

A. Preliminaries
1) Transition System TS:

a) Syntax: A TS is a tuple 〈U,Q, q0,−→〉 where:
• U is a finite set of implicitly typed variables. We use dom(u)

to denote the domain of variable u ∈ U ,
• Q is a set of states. Each state is an interpretation of each
u ∈ U to a value q(u) ∈ dom(u),

• q0 ∈ Q is the initial state that maps each variable to its
initial value,

• −→ is a set of transitions. Each transition t ∈−→ is a binary
relation that defines for every state q ∈ Q a (possibly empty)
set of successors t(q) ⊆ Q. We write q

t−→ q ′ iff q ′ ∈ t(q).



b) Semantics: The evolution of a TS is subject to taking
enabled transitions. A transition t ∈−→ is enabled iff TS is at
state q and t(q) 6= ∅. After taking t, TS reaches a state q′ in
t(q). We may thus define the set of reachable states Qr ⊆ Q:
a state q is reachable, i.e. q ∈ Qr, iff there exists a (possibly
empty) sequence of transitions σ such that q0

σ−→ q.
2) Transition Diagram TD: We define a graphical notation

for a TS (called a Transition Diagram TD) and a composition
operation between TDs. The composition of multiple TDs
(viewed as components) results in a TS (viewed as the system).

a) Syntax: A TD C (component) is a finite directed graph
with V its set of vertices and E its set of edges. C operates on
a finite set of variables, X . The vertex v0 in V is the unique
initial vertex of C. If e connects vertex va to vertex vb, then we
may write va

e(ge ,ope)−−−−−−→ vb where (i) ge is a boolean expression
over X and (ii) ope an atomic sequence of operations over
variables in X (ope is said side-effect free on variable
x ∈ X iff ope(x ) = x ). In this paper, tautology guards and
side-effect-free operations are not represented.

Fig. 3 shows a simple TD example with two vertices, v0
(initial, denoted with a sourceless incoming edge) and v1,
and two edges e and e′. Guards (in green) and operations
(in red) are over the set of variables X = {x1 , x2} with
dom(x1 ) = dom(x2 ) = N.

v0
e’ v1

x2 > x1 

x1:=x1+2
e

x1 > x2 

x2:=x2+2

Fig. 3. A TD example

b) Semantics: Let q(g) denote the truth value of guard
g at state q, and q ′|Y = op(q|Y ) denote that the valuation of
each variable y ∈ Y at state q′ agrees with the result of op
over y from state q (q ′(y ′) = q(y ′) if op is side effect free
on some y′ ∈ Y ). We can then associate to any TD C a TS
〈U,Q, q0,−→〉 that gives its semantics (Sect. III-A1), where:

• U = X ∪ π where π denotes the current vertex of C
(dom(π) = V and the initial value of π is v0),

• Q is the set of states, each state is an interpretation of π
and each variable in X ,

• q0 is the mapping associating π to v0 and each variable in
X to its initial value,

• −→ is the set of transitions resulting from mapping each
edge e in E to a transition te in −→ as follows. If
va

e(ge ,ope)−−−−−−→ vb then q ′ ∈ te(q) iff:
(1 ) (q(π) = va ∧ q ′(π) = vb) ∧
(2 ) q(ge) ∧
(3 ) (q ′|X = ope(q|X ))

c) Properties: A TS satisfies the progress property iff
there is an enabled transition at each reachable state, that is:
∀q ∈ Qr ∃t ∈−→: t(q) 6= ∅. Progress is crucial in multi-node
simulation (Sect. III-C). For example, progress is satisfied by
the TS associated to the TD in Fig. 3 iff q0 (x2 )− q0 (x1 ) = 1 .

3) Composition of Transition Diagrams:

a) Through shared variables: Syntax:
The (asynchronous) parallel composition of a finite number

of TDs, C1, . . . , Cn, over a set of shared variables, Us, is

denoted {Init}
[
||

i∈1..n
Ci

]
where Init is the function that

defines for each u in Us its initial value in dom(u).
By means of compositionality, edges of different compo-

nents are always distinct: if e is an edge in Ci then it cannot be
an edge in Cm with i 6= m. Each TD Ci operates a set of local
variables, denoted Ui, besides the variables in Us (Ui∩Us = ∅
and Ui ∩ Um = ∅ for all indexes i,m ∈ 1..n with i 6= m).
Besides, each component Ci has a variable πi to store its
current vertex (Sect. III-A2). Therefore, the set of variables
declared in the TS is U = Us∪

(⋃
i∈1..n Ui

)
∪
(⋃

i∈1..n{πi}
)
.

Semantics: Given the parallel composition

{Init}
[
||

i∈1..n
Ci

]
, we can define a TS 〈U,Q, q0,−→〉

that will give the semantics of the system where U is the set
of variables defined above and:

• Q is the set of states, each state is an interpretation of each
variable in U ,

• q0 is the mapping associating (i) πi to vi0 (the initial vertex
of Ci) and each u in Ui to its initial value, for each Ci and
(ii) each u in Us to its initial value Init(u),

• −→ is the set of transitions resulting from mapping each
edge e in Ei for each component Ci to a transition te in
−→ as follows. If v i

a

e(ge ,ope)−−−−−−→ v i
b , then q ′ ∈ te(q) iff:

(1 ) (q(πi) = v i
a ∧ q ′(πi) = v i

b) ∧
(2 ) q(ge) ∧
(3 ) (q ′|Ui∪Us

= ope(q|Ui∪Us
)∧

∀u ∈ U \(Ui ∪Us ∪ {πi}) :q(u) = q ′(u))

b) Adding synchronizations: Let us consider the compo-

sition above: {Init}
[
||

i∈1..n
Ci

]
. Let E =

⋃
i∈1..nEi be the

set of all edges. We define a set of send edges ES and a set
of receive edges ER with ES ∪ ER ⊆ E and ES ∩ ER = ∅.
We denote EXi (X ∈ {S ,R}) the subset of edges in EX that
belong to component Ci, that is EX ∩Ei. We define then the
matching function M : ES 7→ P(ER) (P(s) denotes the pow-
erset of set s) such that, for all i ∈ 1..n, the following property
is always satisfied: ∀e ∈ ES

i ∀e ′ ∈ M (e) : e ′ /∈ ER
i . Using

these definitions and notations, we extend the composition
of TDs with a strong pairwise send/receive synchronization
paradigm (see semantics below).

Semantics: The meaning of {Init}
[
||

i∈1..n
Ci

]
, with

ES ∪ ER 6= ∅, is the TS 〈U,Q, q0,−→〉 where U , Q and q0
are the same as in Sect. III-A3a, and −→ is defined as follows:
−→ is the set of transitions −→e ∪ −→s such that:

(i) −→e results from mapping each e in E\(ES ∪ ER) to the
transition te in −→e, according to the same rules given for
−→ in Sect. III-A3a.
(ii) −→s maps each pair of edges {e, e ′} s.t. e ∈ ES and
e ′ ∈ M (e) to the transition te,e′ in −→s as follows. If



v i
a

e(ge ,ope)−−−−−−→ v i
b and v j

k

e′(ge′ ,ope′ )−−−−−−−→ v j
l , then q ′ ∈ te,e′(q) iff:

(1 ) (q(πi)=v i
a ∧q ′(πi)=v i

b∧q(πj )=v j
k ∧q ′(πj )=v j

l )∧
(2 ) (q(ge) ∧ q(ge′)) ∧
(3 ) (q ′|Ui∪Uj∪Us

= ope,e′(q|Ui∪Uj∪Us
)∧

∀u ∈ (
⋃

m∈1 ..n
m /∈{i,j}

Um) ∪ (
⋃

m∈1 ..n
m /∈{i,j}

{πm}) :q(u) = q ′(u))

where ope,e′ denotes performing ope then ope′ .

B. Formalizing DSAAM

1) Syntax:
a) Inputs: An input I is a triple I = 〈B ,T , IF 〉 where B

is a buffer, T a timestamp variable, and IF an input interface.
B is a (non-zero size) queue of messages, where each message
mi has a content ci, a timestamp ti ∈ N and a period δi ∈ N>0

(i denotes precedence, that is mi+1 is the message following
mi in time, and thus ti+1 = ti + δi ). Since ci is implemen-
tation dependent (does not intervene in the semantics), we
propose a simplified version of B, where each message mi

contains simply the timestamp of mi+1, i.e. ti+1 . We use the
following functions: empty(B) (resp. full(B)) returns true iff
B is empty (resp. full), enqueue(B,m) (with ¬full(B)) returns
B with message m inserted in a FIFO fashion, first(B) (resp.
dequeue(B)) with ¬empty(B), returns the first element of B
(resp. returns B deprived from its first element).
T stores the timestamp of the next message to consume on
input I , that is simply the last dequeued element from B (the
first element to arrive in B when the system starts).

b) Outputs: An output O is a double O = 〈S ,OF 〉
where S is the timestamp of the next message to emit on
O and OF the interface of O.

c) Nodes: A node N is a triple N = 〈I,O,UP〉 where:
• I = {I1 , ..., Ik} is a set of inputs (Sect. III-B1a),
• O = {O1 , ...,Ol} is a set of outputs (Sect. III-B1b),
• UP is a set of blackbox update operations.
Besides implementation-dependent operations (e.g. processing
message content), UP is in charge of output timestamp
updates which take part in the semantics (Sect. III-B2).

d) DSAAM System: In the remainder of this paper, we
use the superscript (i) to denote that an input/output belongs to
node Ni. Furthermore, the elements of an input (resp. output)
are uniquely defined through propagating the subscripts and
superscripts of the input (resp. output) they belong to. For
instance, 〈S i

j ,OF i
j 〉 are the timestamp and interface of Oij (the

j th output of node Ni). We omit the subscript/superscript when
it is unimportant (e.g. subscripts at the level of one node).
Similarly, the subscript is omitted if only the identity of the
node is important (e.g. Oi for any output of node Ni).
A DSAAM system S of x nodes is thus a double S = 〈N ,F〉
where N = {N1 , ...,Nx} is a set of nodes (Sect. III-B1c) and
F : OF 7→ P(IF) is the flow function such that:

• OF =
⋃

i∈1 ..x

( ⋃
j∈1 ..|Oi |

OF i
j

)
,

• IF =
⋃

i∈1 ..x

( ⋃
j∈1 ..|Ii |

IF i
j

)
.

Therefore, we give the syntax of a DSAAM system as a
reconfigurable network of reusable nodes (re-implementable
in different systems by simply redefining the flow function).

e) Syntactical restrictions: In this paper, we consider
only well-formed systems. A DSAAM system (Sect. III-B1d)
is said well formed if and only if:
(1) All inputs are connected, each to one and only one output:

(i) IF ⊆
⋃

i∈1 ..x

( ⋃
j∈1 ..|Oi |

F(OF i
j )

)
(ii) ∀{OF ,OF ′} ∈ P(OF) : F(OF ) ∩ F(OF ′) = ∅
(2) A node does not send messages to itself:
∀OF i ∈ OF : IF j ∈ F(OF i)⇒ i 6= j
(3) A DSAAM system forms a strongly connected component
SCC.

2) Operational Semantics:
a) Nodes: The operational semantics of a node N is

given over a TD (Sect. III-A2).
Vertices: V = {Wa,Co,Em} with Wa (initial) for waiting
and Co (resp. Em) for consuming (resp. emitting) a message.
Variables: The TD of N accesses the variables given by
the syntax of N (Sect. III-B1c), that is Bi and Ti (resp.
Si) for each input Ii in I (resp. each output Oi in O),
see Sect. III-B1a (resp. Sect. III-B1b). Additionally, a local
variable m is introduced (see below).
Edges: E = {be, ee, bc, ec} ∪ snd ∪ recv such that:

• Wa
be(gbe ,opbe)−−−−−−−→ Em (begin emitting),

• Em
ee(gee ,opee)−−−−−−−−→Wa (end emitting),

• Wa
bc(gbc ,opbc)−−−−−−−→ Co (begin consuming),

• Co
ec(gec ,opec)−−−−−−−→Wa (end consuming).

• snd =

( ⋃
i∈1 ..|O|

sndi

)
such that

Em
sndi (gsndi ,opsndi

)
−−−−−−−−−−−−→ Em (emit on output Oi) for

each i in 1..|O|. This permits emitting messages at Em ,

• recv =

( ⋃
i∈1 ..|I|

recvi

)
such that v

recvi (grecvi ,oprecvi
)

−−−−−−−−−−−−−→ v

for each v in V (receive on input Ii) for each i in 1..|I|.
This allows receiving messages at any vertex.
To define guards and operations, we use the functions

rand(s) (returns randomly one element of s) and min(s)
(returns the smallest element of s), with s being a non
empty set. We also introduce the function up, performed by
the blackbox UP (syntax, Sect. III-B1c), which updates the
timestamp of the next message to emit to a strictly larger value.

- Edge be gbe : ∃i ∈ 1 ..|O| | Si ≤ min

( ⋃
j∈1 ..|I|

Tj

)
,

opbe : m := rand({i ∈ 1 ..|O| | Si = min

( ⋃
j∈1 ..|O|

Sj

)
}).

- Edge ee opee : Sm := up(Sm).

- Edge bc gbc : ∃i ∈ 1 ..|I| | Ti < min

( ⋃
j∈1 ..|O|

Sj

)
,

opbc : m := rand({i ∈ 1 ..|I| | Ti = min

( ⋃
j∈1 ..|I|

Tj

)
}).



- Edge ec gec : ¬empty(Bm),
opec : Tm := first(Bm); Bm := dequeue(Bm), which updates
Tm and Bm (as explained in Sect. III-B1a).
- Edges snd gsndi

: m = i .
- Edges recv grecvi : ¬full(Bi).
This TD enforces the rules given in Sect. II at a node level. For
instance, gbe ensures no emission begins unless the smallest
timestamp is of an output (rule 2), and the variable m stores the
subscript of an input/output that may consume/emit a message,
that is having the smallest timestamp (rule 1).
Example: Fig. 4 shows the TD of a node with one in-

Wa EmCo

T1 <min{S1,S2} 
m:=1

S1≤ T1 ∨ S2≤ T1

m:=rand {i | Si = min{S1, S2};

Sm := up(Sm)
ee

bebc

ec¬empty(B1) 

T1 := first(B1); B1 := dequeue(B1) 

recv1recv1

recv1

snd1

snd2

m=1

m=2

¬full(B1) 

¬full(B1) 

¬full(B1) 

Fig. 4. A node TD example (one input and two outputs)

put and two outputs (resulting from applying the rules in
Sect. III-B2a). Guards and operations are simplified when
possible (e.g. since there is only one input, opbc reduces to
m := 1 ). Notice how no message sending/receiving actually
happens since we are, so far, only at a “component” level (no
flow defined). In the following, we develop compositionally
the operational semantics of a DSAAM system, where multiple
nodes exchange messages, by constraining the composition of
nodes TDs with synchronizations and shared variables, derived
exclusively from the syntactical definition of the flow.

b) System: A DSAAM system is the parallel composition

{Init}
[
||

i∈1..x
Ni

]
of x node components Ni over shared

variables (Sect. III-A3a), constrained with synchronizations
(Sect. III-A3b). We define the synchronizations, then the set
of shared variables and how the guards and operations are
augmented in nodes accordingly.
Synchronizations: We derive the synchronizations from the
syntax of the system (Sect. III-B1d) as follows. The set of
send edges ES (Sect. III-A3b) is the set of all snd edges
in all nodes, that is ES =

⋃
i∈1 ..x

ES
i with ES

i =
⋃

j∈1 ..|Oi |
snd i

j .

Similarly, ER =
⋃

i∈1 ..x
ER
i with ER

i =
⋃

j∈1 ..|Ii |
recv i

j . Now, the

matching function M (Sect. III-A3b) is simply derived from
the flow function F : an edge recv l

k belongs to the set of the
matching edges of an edge snd i

j iff IF l
k ∈ F(OF i

j ).
Shared variables: Us = {Msg} ∪ {α1 , ..., αi , ..., αx} is the
set of shared variables (Sect. III-A3a) where Msg is the mes-
sage passing variable and each αi is used to store and update
the inputs on which Ni is currently emitting. Accordingly, we
enrich some edges in the nodes (Sect. III-B2a).
- On each edge bei (edge be in each Ni), the operation
αi := F(OF im) is added to opbei ,
- On each edge snd i , the guard is conjuncted with the
expression αi 6= ∅ and the operation Msg := up(Sm) is added,
- On each edge recvk

l , the guard is conjuncted with the expres-
sion IF k

l ∈ αi where i is the node identity of the only output

that serves Ikl (the only output Oij such that IF k
l ∈ F(OF i

j ),
Sect. III-B1d and Sect. III-B1e). Each recvk

l edge is aug-
mented with the operations Bk

l := enqueue(Bk
l ,Msg),

- Edge eei is guarded with the expression αi = ∅.
Timestamps: To start the system in a time-consistent state, we
require the following in the TS of the DSAAM system: if q0
is the initial state , then q0 (T

i
j ) = q0 (S

k
l ) iff IF i

j ∈ F(OF k
l ).

Only synchronizations, and guards and operations over
shared variables, imply knowledge of the system, which
preserves compositionality when mapping syntactical entities
to their operational meanings. This “glue” between nodes
enforces the rules given in Sect. II at the system level. For
instance, guards on α and synchronizations between snd and
recv edges ensure no messages are lost or discarded (rule 4).
Example: Let us illustrate with an example. We consider the
DSAAM system S = 〈N ,F〉 such that
- N = {N1, N2, N3} with:

• Outputs: |O1 | = 2 and |O2 | = |O3 | = 1 ,
• Inputs: |I3 | = 3 and |I2 | = |I1 | = 1 .

- The flow function F : F(OF 1
1 ) = {IF 2

1 , IF 3
1 },

F(OF 1
2 ) = {IF 3

3 }, F(OF 2
1 ) = {IF 3

2 }, F(OF 3
1 ) = {IF 1

1 }.
Using the rules given in Sect. III-B2a and Sect. III-B2b,

we derive the operational semantics of S as the composition
of TDs shown in Fig. 5. Some guards and operations are
simplified on an example-dependent basis (e.g. the operation
of be in N2), and superscripts are removed for local variables,
edges and locations (e.g. buffer B1 in op1 is B1

1 ).
Let us now explain how this works through an emission
scenario, by taking the transition tbe1 (see mapping edges to
transitions in Sect. III-A3b), and assuming the chosen output
is O1

1 (m = 1 after taking tbe1 ). In this case, the message
should be sent to both inputs I21 and I31 (α1 = {IF 2

1 , IF 3
1 }).

Now, the enabled transitions in the system involving N1

depend on the status of buffers B2
1 and B3

1 . If none of
them is full, one of the transition tsnd1

1 ,recv
2
1

or tsnd1
1 ,recv

3
1

is taken. In the former (resp. latter) case, Msg is emitted
on input I21 (resp. I31 ) and IF 2

1 (resp. IF 3
1 ) is removed

from α1. Subsequently, tsnd1
1 ,recv

2
1

(resp. tsnd1
1 ,recv

3
1

) is no
longer enabled and the only possible transition involving N1

is tsnd1
1 ,recv

3
1

(resp. tsnd1
1 ,recv

2
1

) because all other transitions
involving N1 are disabled (transitions involving snd1

2 are
disabled because m 6= 2 and tee1 is disabled because α1 6= ∅).
Consequently, the remaining input to serve is delivered Msg by
taking tsnd1

1 ,recv
3
1

(resp. tsnd1
1 ,recv

2
1

) and α1 becomes empty,
which enables ending the emission by taking tee1 .

C. Proof of progress

DSAAM is a complex distributed system where progress
(Sect. III-A2c) is a crucial property. We prove progress for all
nodes in the system, which is a stricter property than progress
of the system (i.e. absence of deadlocks). We start by proving
the latter, then show how the former is subsequently derived.

1) Progress (system): As seen in Sect. III-A2c, a TS
satisfies the progress property iff:

∀q ∈ Qr ∃t ∈−→: t(q) 6= ∅ (1)



Wa EmCo

T1 < S1
m:=1

S1≤ T1

m:=1;
α2 := F(OF2

1) 

ee

bebc

ec¬empty(B1) 
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g31: IF3
1 ∈ α1 ∧ ¬full(B1) 

op31: α1 := α1\{IF3
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B1:= enqueue(B1,Msg) 

g32: IF3
2 ∈ α2 ∧ ¬full(B2) 

op32: α2 := α2\{IF3
2};

B2:= enqueue(B2,Msg) 

g33: IF3
3 ∈ α1 ∧ ¬full(B3) 

op33: α1 := α1\{IF3
3};

B3:= enqueue(B3,Msg) 

Key

α3 = ∅

α3 ≠ ∅ ∧ m=1
Msg:= up(Sm)

   α2 ≠ ∅ ∧ m=1
Msg:= up(Sm)

α2 = ∅

Sm := up(Sm); 

Sm := up(Sm); 

Sm := up(Sm); 

Fig. 5. Operational semantics of the DSAAM system S. Matching send and
receive edges are represented using matching colors.

Theorem 1. Progress (DSAAM system).
Let Sys be a DSAAM system and TSSys the TS describing its
operational semantics, with Qr ⊆ Q the set of its reachable
states. TSSys satisfies the progress property (eq. 1).

Proof. We will prove Theorem 1 by contradiction: we assume
that it is false, that is a deadlock state qd exists:

∃qd ∈ Qr : ∀t ∈−→: t(qd) = ∅ (2)

Let Si (resp. S) be the set of output timestamp variables
in node Ni (resp. in Sys), that is S i =

⋃
j∈1 ..|Oi |

S i
j (resp.

S =
⋃

i∈1 ..x
S i ). Similarly, T i =

⋃
j∈1 ..|Ii |

T i
j and T =

⋃
i∈1 ..x

T i

(for input timestamps).
Let Nk be a node with an output timestamp Skp that has the

smallest value in S at state qd of Qr (in TSSys ), that is at qd:

Skp = min(S) (3)

Now, we know that, at qd, the current vertex πk of the Nk TD
is either Wak , Cok or Emk (dom(πk ) = {Wak ,Cok ,Emk},
Sect. III-B2a). It follows that qd(πk ) ∈ {Wak ,Cok ,Emk}.

We will prove the following:

(a) qd(πk ) 6= Wak (b) qd(πk ) 6= Cok (c) qd(πk ) 6= Emk

which results in a contradiction and thus the falseness of
hypothesis 2, i.e. the truth of Theorem 1.

(a) πk 6= Wak : Let us assume qd(πk ) = Wak . We see
that q(gbek ) ∨ q(gbck ) is a tautology (N is a well-ordered set)
and thus either tbek or tbck is enabled. It follows that qd is not
a deadlock state, which contradicts hypothesis 2. Therefore,
qd(πk ) 6= Wak .

(b) qd(πk) 6= Cok : Let us assume qd(πk ) = Cok .
Since qd is a deadlock state, then qd(geck ) is false, that is:

empty(Bk
m) (4)

Let Oli be the output connected to Ikm, that is
IF k

m ∈ F(OF l
i ). Since Bkm is empty, the valuation of T km,

holding the timestamp of the next message to consume on
Ikm, is lower-bounded by Sli (it is possible to dequeue up(S l

i )
(opeck ) before updating Sli (opee l ) and up(S l

i ) > S l
i ).

T k
m ≥ S l

i (5)

From inequality 5 and inequality 3 we deduce:

S k
p ≤ T k

m (6)

Now, qd(πk ) = Cok which means that since the last ac-
tivation of tbck , the value of T k

m has not changed (because
the only transition that modifies T k

m is teck , disabled at qd).
Therefore gbck remains true at qd, that is:

T k
m < min(S k ) (7)

The conjuction of 7, 6 and 3 is a fallacy, and thus 4 is false
which means that qd is not a deadlock state. This contradicts
hypothesis 2 and therefore qd(πk) 6= Cok .

(c) qd(πk) 6= Emk : Let us assume qd(πk) = Emk . We
deduce that S k

m = min(S k ) and thus from 3:

S k
m = S k

p (8)

From hypothesis 2, we deduce that
teck (qd) = tsndk

1
(qd) = ... = tsndk

|Ok |
(qd) = ∅. After

developing on these transitions, we conclude that qd is
a deadlock state at this vertex iff there is at least one receiver
that Nk cannot serve because of a full buffer. That is:

αk 6= ∅ ∧ (∃i , j ∈ 1 ..x | IF i
j ∈ F(OF k

m) ∧ full(B i
j )) (9)

Therefore, there is at least one message in Bij , which means
that Skm is still not consumed. Also, the elements of Bij
are inserted in a strictly monotonic order and T ij is the last
dequeued element of Bij . We conclude thus that T ij contains
a value that is strictly smaller than that of Skm:

T ij < Skm (10)

Let us now explore the possible values of the current vertex
of Ni, that is qd(πi). In the following, we use m′ to denote
the index of the selected input in Ni (when qd(πi) = Coi ), to
distinguish it from m, the index of the selected output in Nk.

(a’) qd(πi) 6= Wai (see (a))
(b’) We assume qd(πi) = Emi . There exists then s ∈ Si satis-

fying s ≤ T ij . This is a contradiction because T ij < Skp (10



and 8) and Skp = min(S) ( 3). Therefore qd(πi) 6= Emi

(c’) We assume qd(πi) = Coi . From hypothesis 2 we deduce:

empty(Bim′) (11)

From 9 and 11 we deduce m′ 6= j, that is node Ni is
blocked consuming a message on an input different than
the one Nk is trying to serve. Now, let Oz

y be the only
output connected to the input I i

m′ with buffer Bim′ :

IF i
m′ ∈ F(OF z

y) (12)

Because the buffer Bim′ is empty we have, following the
same logic as to obtain 5:

T im′ ≥ Szy (13)

And following the same logic as to obtain 7 we have:

T i
m′ ≤ T i

j (14)

Now, Combining 14, 13, 10:

Szy ≤ T im′ ≤ T ij < Skm (15)

Conjuncting 3, 8 and 15 is a fallacy, thus qd(πi) 6= Coi .
Conjuncting (a’), (b’) and (c’) is a fallacy with
dom(πi) = {Coi ,Wai ,Emi}. It follows that 9 is false
which means that qd is not a deadlock state. This con-
tradicts hypothesis 2 and therefore qd(πk) 6= Emk .

Finally, conjuncting (a), (b) and (c) is a fallacy with
dom(πk ) = {Cok ,Wak ,Emk}. It follows that hypothesis 2
is false and therefore theorem 1 holds.

2) Progress (node): We have proven the progress of the
DSAAM System as a whole, therefore there are no deadlock
states in TSys . We give now a high-level succinct pseudo-
proof (for the sake of readability) on how the progress of
TSys implies the progress of each TD Ni involved in it.

Let Nd be a dead node, that is a node that violates the
progress property. The system Sys is well formed, which
means that each input of each node N is connected to a node
different from N (Sect. III-B1e). It follows that there is at least
an input of Nd connected to a different node Ni. Now, since
Nd is dead, and knowing that timestamp variables in S and
T increase in a strictly monotonic way, Ni will be eventually
deadlocked at vertex Emi trying to serve Nd, deadlocked.
Which implies that Ni is also dead. Inductively, we reiterate
the same reasoning for Ni, then for Nj such that Nj sends
messages to Ni etc. Combined with the fact that a DSAAM
system forms an SCC, we arrive at the conclusion that all TDs
in TSys are deadlocked, which contradicts Theorem 1 that we
already proved valid in Sect. III-C1.

IV. RELATED WORK

The two widely used international standards HLA and
DIS that allow to set up large-scale distributed simulations
are monolithic in nature: they define everything from com-
munication to time and simulation management, as well as
domain specific models for objects (planes, ships, etc...) and
algorithms (e.g. dead reckoning). A key difference lies in how

messages are dispatched in the system. Other standards like
the Functional Mockup Interface FMI [5] rise the interest of
the formal community [6] for their cosimulation capacities.

Compared to these standards, our approach ensures full
decentralization. Indeed, in HLA all simulators messages are
exchanged through the central Run Time Infrastructure process
(chapter 8 of [2]). DIS is decentralized only in the real-time
mode. When switching to non real-time simulations, it needs
a central process for time management. FMI comes with no
dedicated time-management capabilities, and has been only
linked to centralized ones [7].

A. Time management in PDES

Parallel discrete event simulations (PDES) address the
problem of the simulation execution on high performance
computing platforms. Time management is much researched
in this domain (e.g. [8], [9]), and two main approaches are
considered: optimistic and conservative.

1) Optimistic methods: Pioneered by the “Time Warp”
algorithm [10], optimistic methods assume that all messages
arrive and are processed in order. If an event is processed
out of order, the entire simulation rolls back to a previous
state. Therefore, optimistic methods are substantially costly in
terms of resources. Also, it is difficult to handle rollbacks by
ordinary OS, which led to the emergence of operating systems
dedicated to these methods, such as Time Warp OS [11].

2) Conservative methods: Time management enforces pro-
cessing all messages between simulators in the order of their
timestamps, in a deterministic fashion. Conservative methods
can lead to deadlocks if the topology contains circuits.

To address this problem, some techniques make use of null
messages, messages containing only a synchronization data
but no payload, to avoid deadlocks. The Chandy-Misra-Bryant
(CMB) algorithm [12], [13] is based on the declaration of a
lookahead value L for each node, which acts as a promise
regarding the timestamp of the next message. If the node’s last
message was at time T , then it promises through the sending
of null messages not to send any messages to any other node
before T + L. This method can suffer from (local) deadlocks
in some topologies, and from small lookahead values leading
to a large amount of null messages exchanged. To tackle these
drawbacks, the authors of [14] use “conditional events”: each
node sends with each message the probable timestamp of its
next message, which is valid only provided no more incoming
events with smaller timestamps will arrive in the future on
the node’s inputs. This helps reducing the number of null
messages, but still requires the nodes to periodically broadcast
some synchronization messages to all other nodes.

Our approach is close to the conditional event, but additional
constraints allow to simplify the algorithms and lower the
communication between nodes by getting rid of the broad-
casting step. Note though that the concerns in PDES are
quite different from those in distributed simulations of cyber-
physical systems. Indeed, a single simulation in PDES is usu-
ally distributed on a computer or a cluster to reduce execution
time, whereas our primary objective is the interconnection of
heterogeneous simulators, compositionality, and repeatability.



B. In robotics

Robotic simulators (e.g. Gazebo [15]) have not been de-
signed to run in a distributed fashion. As a notable exception,
Morse [16] supports HLA [17]. However, in a typical usage,
multiple simulators communicate with each other through
Morse, while a middleware links the functional components to
the simulation. Furthermore, it is difficult to conciliate HLA
with most of robotic middlewares (e.g. ROS and YARP [18])
since the former is centralized and the latter are decentralized.

Instead of relying on external simulation frameworks, our
solution consists in adding a thin simulation layer on top
of the robotic one. This offers a flexible time management
for robotic simulations, decentralized and lightweight, which
makes it easily bindable to robotic middleware. Furthermore,
it would draw the developers’ attention to potential problems
coming from the time flow of the simulation, by allowing all
components to be aware of their taking part of a simulation.
All these advantages ease building repeatable simulations for
cyberphysical systems made of possibly heterogenous robots.

V. CONCLUSION

A. Contributions

We propose DSAAM, a decentralized approach for time
management to perform distributed simulations. Based on a set
of rules and constraints, it is easy to implement on top of any
middleware. The proof of concept of DSAAM, implemented
and tested on a UAV simulation scenario (freely accessible
at https://redmine.laas.fr/projects/dsaam), shows a very limited
computational overhead as opposed to centralized approaches.
Relying on the fact that most simulators are step-based, it only
requires each simulator to know precisely, when emitting a
message, the timestamp of the next message it will emit. This
constraint allows to minimize the number of synchronization
messages, while guaranteeing the progress of each simulator,
but prevents the integration of event-based simulators.

We advocate the need of repeatable simulations, even for
complex, distributed simulation infrastructures. Repeatability
is beneficial to validate algorithms, perform regression testing,
to speed up the development process, and to ensure the validity
of simulation results no matter the computing platform used.

A formal model is proposed, which allows to prove the
progress of involved simulators. It also defines a clear speci-
fication of the behavior of the system, and can thus be used
to check the conformity of a specific implementation, even
across programming languages.

The proposed implementation is easy to use and generic
with respect to middleware, keeping it very lightweight. It
is built upon the ROS middleware, but it can very easily be
adapted to any other middleware. It respects a clear separation
of concerns, which allows to integrate directly simulation
layers in an existing ecosystem and lowers the developper
efforts when switching from simulation to deployment.
B. Future work

One limitation of our approach is the strong periodicity
constraint. It could be loosened to enhance the expressiveness
of the framework in the following ways:

a) Addition of an “observation” flow type: an output
of this type must wait for messages up to and including
timestamp T being consumed before emitting a message
with timestamp T . DSAAM flows describe variables that are
computed from the past state of the world, which maps well
with the simulation of actuators. However, most sensors can
be modeled as instantaneous: e.g. a camera takes a snapshot
of the current state of the world. Using “observation” flows,
sensors could be modeled in a more natural way in DSAAM.

b) Event-based support: the main disadvantage of the
approach over other time-management solutions is the lack
of support for event based simulators, for which there is no
guarantee of the time at which the next event will be generated.
Support for event-based simulation could however be added
through e.g. a new event flow type, which will have δ = 0 and
a request-response mechanism akin to the one in HLA.

Relaxing this constraint comes at a cost: direct circuits
of event or observation flow types may introduce deadlocks.
Future work includes an extended version of the DSAAM
formal model with multiple flow types, and with automatic
detection of such circuits.
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