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Abstract 

The IoT platforms must allow the communication between the Applications and Devices 

according to their non-functional requirements. One of the main non-functional requirements 

is the Quality of Service (QoS). In a previous work has been defined an Autonomic Internet 

of Things (IoT) platform for the QoS Management, based on the concept of autonomic cycle 

of data analysis tasks. In this platform have been defined two autonomic cycles, one based 

on a classification task that determines the current operational state to define the set of tasks 

to execute in the communication system to guarantee a given QoS. The other one is based on 

a clustering task that discovers the current operational state, and based on it, determines the 

set of tasks to be executed in the communication system. This paper analyzes the diagnostic 

capabilities of the system based on both approaches, using different metrics. For that, a real 

scenario has been considered, with simulations that have generated data to test both tasks. 

Each technique has different aspects to be considered for a correct QoS management in the 

context of IoT platforms. The classification technique can determine very well the learned 

operational states, but the clustering approach can carry out a more detailed description of 

the operational states. Additionally, due to the classification and clustering technique used, 

called LAMDA (Learning Algorithm for Multivariate Data Analysis), the paper analyzes the 

operational state profile determined by them, which is very useful in a diagnostic process. 

 

 

1 Introduction  

 

The classical components of an IoT ecosystem, according to the standards are [1][2]: 

Devices, Network, IoT platform, and Application. Devices are the responsible of the 

collection of the data, and in some case, the preprocessing of these data and the execution of 

specific tasks; the Applications exploit the advantage of a set of interconnected Devices in 

order to carry out actions in the environment; the Network allows the communication 

between the different components in the IoT platform, particularly, between the devices and 

applications; and finally, the IoT platform manages smart capabilities like the autonomy, 



security, among other things, and can support heterogeneous non-functional requirements of 

Applications and Devices. On the one hand, the IoT platforms are based on European 

Telecommunications Standards Institute (ETSI) SmartM2M and OneM2M [1][2] 

specifications, which define that an IoT platform consists mainly of two types of entities, IoT 

server(s) and gateway(s). These entities are implemented as Chain of Network Functions 

(NFs) that achieve a connection between applications and devices. Namely, NFs are 

processing functions, with defined functional behaviors and interfaces (e.g. a load balancing 

function applied on Internet protocol (IP) packets). On the other hand, these platforms are 

not able to sustain Quality of Service (QoS) to IoT missions critical Applications like remote 

surgery [34]. As per [34], QoS in IoT is one of the critical factors, which needs research for 

its management and optimization. Given the limited availability of resources (i.e. storage, 

bandwidth, etc.), and the processing capabilities of the IoT gateways and servers, the QoS 

must be adjusted to fulfill the requirements of IoT applications.  

    In previous works, an Autonomic IoT platform [3] based on the concept of autonomic 

cycle of data analysis tasks [4][5], has been proposed, to improve the QoS in IoT platforms, 

thanks to an adequate dynamic provisioning of the IoT platform resources (i.e. gateways and 

servers). The Analysis of Data (AD) is a science that allows converting the considered data 

in knowledge, with the final goal of improving some given properties (here QoS) [4]. AD 

has been used in multiple areas, due to their abilities discovering useful knowledge, which is 

used in decision-making processes. The concept of Autonomic Cycle of AD Tasks has been 

proposed in [4][5], which is a type of autonomous intelligent supervision that allows reaching 

strategic objectives around a given problem. The autonomic cycles in [3] integrate a set of 

AD tasks, which autonomously and collectively work to achieve the strategic objectives 

pursued by these cycles. Each task interacts with the others, and has a specific role in the 

cycle: observing the process, analyzing and interpreting what happens in it, and making 

decisions about the process that allow reaching the objective for which the cycle was 

designed. 

   More generally, regarding QoS management in IoT, several studies were performed at 

different levels, as presented by White et al [35]. In this study, out of 162 articles considered: 

129 deal with the QoS management issue in the IoT at the "physical layer", 128 at the "link 

layer", and 117 at the "network" level, compared to only 21 at the platform level. [35] 

concludes that the platform level is a main research objective. The two autonomous cycle 

presented in this paper are part of this level. The first autonomous cycle is based on the idea 

of detection of the current operational state in the IoT platform that describes its operability, 

and according to the detected operational state, it determines the set of tasks to guarantee a 

given QoS requirement. In this case, a classification model is required to learn the classes 

that represent the operational states; and additionally, a classification system that determines 

for each operational state the set of tasks to be executed to guarantee a given QoS. The second 

autonomous cycle is based on the discovery of the current operational state, and according to 

it, determine the set of tasks to be executed. In this case, it is required a clustering algorithm 

that in real time detects the current operational state, which can correspond to one known (an 

old cluster) or can be new. Then, this autonomous cycle uses the centroid of each cluster, to 

define in running time the set of tasks to reach the desired QoS requirements. These 

autonomous cycles are described in detail in [3]. 

     In this paper, the goal is to build an efficient pattern recognition model for the diagnosis 

of the current state, in a context of QoS management in IoT platforms. This paper considers 

the two main types of pattern recognition algorithms: classification for supervised learning 



and clustering for unsupervised learning. To determine the diagnostic capabilities of these 

two models, classification and clustering, for the QoS management in IoT context, in the 

paper are experimentally computed and analyzed the classical metrics of quality of both 

models. To evaluate the sensitivity and specificity of both models, in the paper, additionally 

is computed the ROC (Receiver Operating Characteristic) curve. Generally, a diagnostic 

method with high sensitivity is required, since each state (pattern) of the system must give a 

positive result during the diagnostic test when there is a degradation of the QoS performance. 

A diagnostic method with high specificity is also required because the interest is to detect 

negative results when an operational state is not included in the learned classes/labels.  

     This work focuses on the study of the performance of these pattern recognition models in 

an experimental real scenario, to determine the interest of each autonomic cycle in the context 

of the QoS management in an IoT platform. An evaluation of both models is done, identifying 

which of them represents a diagnostic method with more chances of discerning the 

operational states to detect the degradation of the QoS. The best model must be capable of 

supporting dynamically the correct diagnosis of the current situation in the IoT platform, to 

determine the set of tasks to deploy to guarantee a given QoS. Also, the paper analyses the 

profile generated by the classification and clustering models, to carry out a diagnosis of the 

problem. The paper uses mainly a recent extension of the LAMDA (Learning Algorithm 

Multivariable and Data Analysis), which allows building classification and clustering models 

[27], to complete this analysis. 

    This paper is organized as follows: the next section introduces the literature linked to this 

work; Section III introduces the LAMDA. Section IV presents the architecture of the IoT 

platform; Section V describes the experimental scenario; Section VI presents the experiments 

with the classification and clustering models, the analysis of the results, and particularly, how 

can be used the profiles given by the extension of the LAMDA technique, in diagnosis tasks. 
 

2. Literature review 

 

In IoT, pattern recognition algorithms have been used in several works. This paper is 

interested in the application of the two main types of pattern recognition algorithms: 

classification [6-15], and clustering [16-20] algorithms. The survey in this section makes 

possible, on the one hand, to clear the scope of the current use of these algorithms and, on 

the other hand, to motivate the application of these algorithms to sustain of non-functional 

requirements, such as QoS in IoT platforms. 

The first group of works is about how the classification techniques have been used in IoT. 

A first work is [6], where the authors propose a framework to generate context information 

from streams of raw IoT sensor data, using artificial neural network (ANN). In this way, they 

propose a context recognition model to be used by an intelligent IoT platform for data 

acquisition, preprocessing, classification, modeling, reasoning and inference. Before 

building the model, the raw sensor data were pre-processed using weighted average low-pass 

filtering and a sliding window algorithm. Mahalle et al. [7] develop a decision theory based 

on object classification to provide contextual information, and present the logical framework 

for object classification in a context aware IoT. The proposed object classification model is 

useful to improve network lifetime in terms of energy consumption. This paper also presents 



proof of the concept, for a context-aware access control solution for makes identity 

management of ubiquitous objects. 

     In [8] are defined the challenges of security in IoT. They present the state-of-the-art in 

IoT security and an approach to security detection using streaming data analytics to classify 

and detect security threats in their early stages. Additionally, they propose methodologies 

and show results about this new IoT cyber-security technique for threat detection. Hong et 

al. [9] propose a mechanism for the assignment of virtual networks based on the identification 

of the service contexts. They use statistical properties of the network traffic, such as mean 

packet length, mean inter-packet arrival time and standard deviation inter-packet arrival time, 

to identify service contexts (e.g. Video Streaming, Video Conference, File Transfer Service). 

They apply an incrementally add dimensions scheme to separate services until all services 

are identified. For example, Video Streaming and FTP shows identical statistical properties 

in two dimensions (MPL: Mean Packet Length, MIAT: Mean Inter-Arrival Time), however, 

with one more dimension (SDIAT: Standard Deviation of Inter-Arrival Time), the two 

services can be clearly separated. They used this approach to find out the QoS needs. 

     Currently, there is no a uniform way to represent, share, and understand IoT data, leading 

to information silos where the devices cannot work and learn together with minimal human 

intervention. [10] discusses the limitations of current storage and analytical solutions, points 

the advantages of semantic approaches for context organization, and proposes an 

unsupervised model to learn word categories automatically. The model was evaluated in the 

Miller-Charles dataset and an IoT semantic dataset extracted from an IoT platform. Siby et 

al. [11] proposes the idea of IoTScanner. The IoTScanner integrates a range of radios to allow 

local reconnaissance of existing wireless infrastructure and participating nodes. It enumerates 

the devices, identifies connection patterns, and provides information for technical support 

and home users alike. Using IoTScanner, they classify streaming IP cameras, and show that 

their classification approach achieves a high accuracy in an IoT setting consisting of many 

IoT devices. Also, they use their approach for the centralized management and control of the 

ubiquitous wireless communication in an IoT platform. In [12] is explored the categorization 

of IoT devices in terms of their functionality and capability. They show how the model can 

describe the context information about both IoT devices and humans, in a way that may help 

to the Human-IoT Ecosystem design using situation theory. That is very important, for the 

utilization of the augmenting reality in the context of IoT technology, to capture the real-

world context and to support decision making and actions in the real world via powerful 

smart objects in a human-IoT ecosystem.   

     In [13], the authors define a context-aware service framework for IoT based on ontologies, 

to regulate smooth traffic flow in smart cities by analyzing real-time traffic environment. The 

framework uses the sensors and IoT devices in the Smart Traffic System to capture the user's 

preferences and context information, which can be travel time, weather conditions or the 

driving patterns. Additionally, they use ontology to derive higher level descriptions of traffic 

conditions and vehicles, from the perceptive observation of traffic information. The ontology 

supports Dynamic Bayesian networks to deal with time-series data and uncertainties linked 

to context observations that fit the definition of an intelligent IoT system. The framework 

uses contextual information, to assess real-time congestion situation on roads. Once the 

congestion situation is predicted, alternate congestion free routes are suggested. Also, in [14] 

is applied machine learning algorithms on network traffic data for the identification of IoT 

devices connected to a network. To train and evaluate the classifier, they have collected and 



labeled network traffic data from nine distinct IoT devices. They used a supervised learning 

and trained a multi-stage meta classifier; the first stage classifies traffic as traffic generated 

by IoT and non-IoT devices, and in the second stage, each IoT device is associated with a 

specific IoT device class. In [15], they introduce a new classification model of attacks in 

compliance with the Open Systems Interconnection (OSI) layers. The model is used for 

ensuring security of data exchange in the IoT devices, with techniques to fight against these 

attacks. 

     The second group of works is about clustering techniques applied in the context of IoT. 

Kumar et al. [16] introduce an application-based two-layer architecture for IoT, which 

consists of a sensing layer and an IoT layer. Both layers are required for accomplishing IoT-

based applications. The success of any IoT-based application relies on efficient 

communication and utilization of the devices and data acquired by the devices at both layers. 

The grouping of the devices helps to achieve the same, which leads to formation of cluster 

of devices at various levels. They propose two clustering algorithms based on heuristic and 

graph, respectively, which are evaluated on an IoT platform using standard parameters and 

compared with different approaches reported in the literature. Also, [17] proposes a 

Hierarchical Clustering algorithm for Dynamic and Heterogeneous IoT, where the 

parameters like network coverage, communication cost and power consumption are 

considered. It is used to analyze the energy efficient connectivity and communication in the 

context of IoT. 

     The adoption of service-oriented paradigms in the IoT open them capabilities through 

service interfaces, which enable other functional entities to interact with them. For that, 

clustering services offline, according to their similarity and matchmaking, or discovering 

service online in limited clusters, are necessary. [18] proposes a multidimensional model-

based approach to measure the similarity between IoT services. Then, density-peaks-based 

clustering is employed to gather similar services together according to the result of similarity 

measurement. Based on the service clustering, the algorithms of dynamic service 

matchmaking, discovery, and replacement, are performed efficiently. Due to that the devices 

are going to perform tasks together for a certain scenario, collaborating between them, the 

semantic exchange in an energy efficient way, is a critical aspect. To address this issue, [19] 

proposes a clustering algorithm for collaborative processing in IoT network. The algorithm 

is evaluated on several IoT platforms. The parameters, like network coverage, 

communication cost and power consumption analysis, are evaluated. 

     In IoT, the objects usually generate large amounts of data, transferring the bottleneck of 

data processing from sensors to communication systems. Azevedo et al. [20] propose a grid-

based data summarization approach, to reduce the data transference commonly required in 

IoT networks, by the data clustering task. They use a single uniform grid to partition the 

space into cells and to summarize data. That ensures the reduction of the amounts of data 

transferred. [21] presents a Context-aware Clustering with Hierarchical Addressing (CCHA) 

scheme of the things. This algorithm can be used in the scalability issue in the IoT context, 

and makes Identity Management (IdM) of ubiquitous things. Forming an ad-hoc network, 

this algorithm can be used for the interaction between these nomadic devices, to provide 

seamless service extend without the need of new identities to the things, addressing and IdM 

in the IoT. Table 1 presents a comparison of our proposed approach with the previous ones.  

   To further the analysis of the works in the literature, in this paper are identified the 

following three evaluation criteria: 



 C1: Used for autonomous management 

 C2: Used for QoS management 

 C3: Used for managing an IoT platform 

In the table presented below:  

 In the Evaluation column, P is prototype, S is simulation, and x means no evaluation 

is conducted. 

 In the criteria columns, ✓ means the criterion is met and x is the criterion is not met. 

 

Table 1. Comparison with previous works 

Work 

M
L
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 Scope Data Sources 

E
v
a
lu

a
ti

o
n

 Criteria 

C1 C2 C3 

[6]  

C
la

ss
if
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at
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n

 

Context-aware IoT 

service 

streams of IoT sensor 

data 

P ✓ x x 

[7]  S ✓ x x 

[13] S x x ✓ 

[8]  
Security in IoT 

streaming of data 

analytics 

S x x ✓ 

[15] x x x ✓ 

[10] 
Represent, share, and 

understand IoT data 

IoT semantic data 

from IoT platforms 
P x x x 

[11]  

Model of IoT devices Streaming of IoT data 

P x x x 

[12] x x x ✓ 

[14] P x x x 

[16]  

C
lu

st
er

in
g

 Services for IoT-

based applications 
IoT platform data 

S x x ✓ 

[17]  S x x ✓ 

[18] P, S x (✓)* ✓ 

[19]  Manage the IoT 

network 
IoT network data 

S x x ✓ 

[20] S x x ✓ 

Our 

approach 

C
la

ss
if

ic
at

io
n

 

an
d

 

C
lu

st
er

in
g

 

Manage the QoS in 

IoT platforms 

IoT platform data and 

IoT application data 
P ✓ ✓ ✓ 

*User requirement at large including QoS 

 

     Previous works are focused on the utilization of the classification and clustering models, 

to solve specific problems (categorize or cluster devices, detect attacks, among other things). 

Additionally, none of them is in the context of QoS, to determine the degradation problems 

that could be occurring in an IoT platform. The main contribution of this paper is the 

determination of the diagnostic capability of these models (classification or clustering), to 

detect the current operational scenario in an IoT platform, but additionally, if they can 

provide useful information to diagnose the possible problems of degradation of QoS. This 



work is important because it defines what of the autonomic cycles defined in [3] has the best 

diagnostic capability. 

   Additionally, according to table 1, in the majority of IoT works (C3), explicitly the QoS 

for IoT platform has not been studied (C2), and the autonomous behavior is considered in 

some works (C1). At the level of IoT data, there are some works that use prototype to generate 

real data (like this work). Finally, the only work that defines like its main scope the 

management of QoS is our approach, which additionally, is the only that mix clustering and 

classification approaches in order to study this problem. 

 

 

3. Learning Algorithm Multivariable and Data Analysis (LAMDA) 

 

This machine learning method has been selected for several reasons: i) it can work as a 

clustering and classification approach, which allows evaluating the autonomous cycles with 

only one technique, ii) it gives information about the descriptors of the classes or cluster that 

it uses, which is very important in the context of the generation of corrective actions  (in this 

case, to improve the QoS provided by the platform), iii) we have developed improvement to 

this model recently, with very good performances in classification and clustering 

benchmarks. In this section is presented LAMDA, and its extensions, in the context of 

classification and clustering, that we have carried out. 

   LAMDA is based on fuzzy logic using the concept of the adequacy degree performing a 

similarity analysis among descriptors of the objects, to establish a relationship between each 

one and its respective class [32].  

   The adequacy degree of an object 𝑋 to a class/cluster 𝐶 =  {𝐶1;  𝐶2;  . . . ;  𝐶𝑘;  . . . ;  𝐶𝑚}  is 

computed non-iteratively. The vector of descriptors of an object 𝑋 is:  

𝑋 =  [𝑥1;  𝑥2;  . . . ;  𝑥𝑗  ;  . . . ;  𝑥𝑛]                                             (1) 

Where: 𝑥𝑗: descriptor 𝑗 of the object 𝑋 

    These descriptors must be normalized in a range between [0,1] using (2): 

�̅�𝑗 =
𝑥𝑗 − 𝑥𝑗𝑚𝑖𝑛

𝑥𝑗𝑚𝑎𝑥 − 𝑥𝑗𝑚𝑖𝑛
                                                                (2) 

Where: 𝑥𝑗𝑚𝑖𝑛: minimum value of 𝑥𝑗, 𝑥𝑗𝑚𝑎𝑥: maximum value 𝑥𝑗  and �̅�𝑗: normalized 

descriptor. 

   The main novelty of LAMDA with respect to other algorithms is that it can work for 

classification and clustering, added to the ability to create new classes/clusters if a new data 

X does not fit to any characteristic of a preexisting class/cluster 𝐶𝑘. The object X is sent to 

the Non-Informative Class (NIC), which is a class with the same type of distribution function 

than the other classes. Based on the above, LAMDA does not require having data of all the 

classes during the training stage, neither it requires the number of classes when working with 

unsupervised classification. 



   In the rest of this section, we present the main concepts of LAMDA (Marginal Adequacy 

Degree and Global Adequacy Degree), and the two LAMDA extensions used in this paper 

that improve its performance.  

3.1. Marginal Adequacy Degree (MAD) 

The MADs establish how similar a descriptor is with respect to the same descriptor in a given 

class [27]. For computing MAD, probability density functions are used, like fuzzy binomial 

function Eq (3).  

𝑀𝐴𝐷𝑘,𝑗(�̅�𝑗|𝜌𝑘,𝑗) = 𝜌𝑘,𝑗
�̅�𝑗(1 − 𝜌𝑘,𝑗)

(1−�̅�𝑗)
                                            (3) 

   Where: 𝜌𝑘,𝑗 is the average value of the descriptor 𝑗 that in class 𝑘, and it is calculated for 

the case of supervised learning using Eq. (4). 

 

𝜌𝑘,𝑗 =
1

𝑛𝑘,𝑗
∑ �̅�𝑗(𝑡)

𝑡=𝑛𝑘,𝑗

𝑡=1

                                                          (4) 

      Where: 𝑛𝑘,𝑗 is the number of data of the descriptor 𝑗 belonging to class 𝑘. 

 

       For unsupervised learning, 𝜌𝑘,𝑗 is calculated by Eq. (5). 

𝜌𝑘,𝑗(𝑡) = 𝜌𝑘,𝑗(𝑡 − 1) +
�̅�𝑗(𝑡) − 𝜌𝑘,𝑗(𝑡 − 1)

𝑛𝑘(𝑡 − 1) + 1
                                             (5) 

 

   𝜌𝑘,𝑗(𝑡) is the mean value of the descriptor 𝑗 in the previously created cluster 𝑘 and it is 

updated progressively each time a new element is added. 𝑛𝑘(𝑡 − 1) is the number of objects 

previously assigned to the cluster 𝑘. 

   It is considered 𝜌𝑁𝐼𝐶 = 0.5, because with this value in the probabilistic function (Eq. (3)), 

the 𝑀𝐴𝐷𝑁𝐼𝐶  =  0.5 for any value of the descriptor �̅�𝑗.  

3.2 Global Adequacy Degree (GAD) 

GADs establish the adequacy of the object to each class or cluster, which is computed mixing 

MADs using T-norms and S-Norms and the exigency parameter 𝛼 ∈ [0 , 1], for a strict or 

permissible classification. GAD calculation is performed by Eq (6). 

𝐺𝐴𝐷𝑘,�̅�(𝑀𝐴𝐷𝑘,1, … 𝑀𝐴𝐷𝑘,𝑛)

= 𝛼𝑇(𝑀𝐴𝐷𝑘,1, … , 𝑀𝐴𝐷𝑘,𝑛) + (1 − 𝛼)𝑆(𝑀𝐴𝐷𝑘,1, … , 𝑀𝐴𝐷𝑘,𝑛)          (6) 

   Where: �̅�: normalized object 𝑋, 𝑇: t-norm (intersection), and 𝑆: t-conorm (union). 

   The fuzzy aggregators with which the best results have been obtained in the 

experimentation carried out [27] is the Hammacher operator. 



𝑇(𝑎, 𝑏) =
𝑎𝑏

𝑝 + (1 − 𝑝)(𝑎 + 𝑏 − 𝑎𝑏)
                                      (7) 

𝑆(𝑎, 𝑏) =
𝑎 + 𝑏 − 𝑎𝑏 − (1 − 𝑝)𝑎𝑏

1 − (1 − 𝑝)𝑎𝑏
                                        (8) 

Finally, the normalized object �̅� is assigned to the class/cluster with the maximum GAD 

(Eq. (9)): 

𝑖𝑛𝑑𝑒𝑥 = max(𝐺𝐴𝐷1,�̅� , 𝐺𝐴𝐷𝑘,�̅� , … , 𝐺𝐴𝐷𝑚,�̅� , 𝐺𝐴𝐷𝑁𝐼𝐶,�̅�)                              (9) 

 

3.3. LAMDA-HAD algorithm  

LAMDA-HAD improves the performance of the original algorithm in classification tasks, 

avoiding in certain applications, to send incorrectly classified objects to the NIC, and 

improving the classification process when an object has high similarity to more than one 

class [27]. This approach proposes the calculation of the GAD of the NIC adaptable to each 

class, and the calculation of the Higher Adequacy Degree (HAD). 

   The average value of the GAD of the class p for each individual in a class k, is calculated 

according to Eq (10).  

𝑀𝐺𝐴𝐷𝑘,𝑝 =
1

𝑛𝑘
∑ 𝐺𝐴𝐷𝑝,𝑡

𝑡=𝑛𝑘

𝑡=1

                                                    (10) 

   Where: 𝑛𝑘 is the number of objects belonging to class 𝑘 and 𝑝 = {1, . . , 𝑚}, 𝐺𝐴𝐷𝑝,𝑡 is the 

GAD of the individual 𝑡 for the class 𝑝, in the class 𝑘, 𝑀𝐺𝐴𝐷𝑘,𝑝 are used to compute the 

following parameters: 

Adaptable 𝐺𝐴𝐷𝑁𝐼𝐶: The GAD of the NIC of each class is computed by Eq. (11), and it is the 

mean value of the all GAD belonging to a class 𝑘.  

𝐺𝐴𝐷𝑁𝐼𝐶𝑘
=

1

𝑚
∑ 𝑀𝐺𝐴𝐷𝑘,𝑝

𝑝=𝑚

𝑝=1

                                                        (11) 

Adequacy Degree of the GAD (𝐴𝐷𝐺𝐴𝐷): it corresponds to calculate the adequacy degrees of 

the GAD of the object with respect to the 𝑀𝐺𝐴𝐷𝑘,𝑝 in all classes (Eq. (12)) 

𝐴𝐷𝐺𝐴𝐷𝑘,𝑝,�̅�
= 𝑀𝐺𝐴𝐷𝑘,𝑝

𝐺𝐴𝐷𝑝,�̅�(1 − 𝑀𝐺𝐴𝐷𝑘,𝑝)(1−𝐺𝐴𝐷𝑝,�̅�)                                 (12) 

   For �̅� evaluated in each class. 

Higher Adequacy Degree (HAD): it is calculated adding the 𝐴𝐷𝐺𝐴𝐷 in each class, resulting 

HAD: 

𝐻𝐴𝐷𝑘,�̅� = ∑ 𝐴𝐷𝐺𝐴𝐷𝑘,𝑝,�̅�

𝑝=𝑚

𝑝=1

                                                   (13) 



Selection of the Class: The maximum value of the HAD, (Eq. (14)) allows determining the 

index 𝐸𝐼 of the class to which the object has a greater probability of belonging. 

𝐸𝐼 = max (𝐻𝐴𝐷1,�̅� , … , 𝐻𝐴𝐷𝑘,�̅�, … , 𝐻𝐴𝐷𝑚,�̅�)                                   (14) 

   Finally, it is verified if the maximum GAD of the object in the estimated class  𝐸𝐼 is greater 

than the corresponding 𝐺𝐴𝐷𝑁𝐼𝐶 (Eq. (15)). If this condition is met, then the object is assigned 

to the class 𝐸𝐼, otherwise is assigned to the NIC class. 

𝑖𝑛𝑑𝑒𝑥 = max (𝐺𝐴𝐷𝐸𝐼,�̅� , 𝐺𝐴𝐷𝑁𝐼𝐶𝐸𝐼
)                                    (15)   

 

3.4. LAMDA-RD algorithm  

LAMDA-RD improves the performance of the original algorithm in clustering tasks, 

avoiding generating clusters that do not correspond with the number of desired groups [33]. 

This approach establishes a similarity measure to perform an automatic merging process 

between similar clusters through hybridization of the fuzzy logic and distance measurements. 

The split task is considered as an intrinsic characteristic of the capacities of LAMDA, since 

it can generate new groups based on the global adaptation of the individual to each pre-

existing cluster and the NIC. 

   This approach consists of simple mathematical operations that do not consume excessive 

machine time and is based on the following concepts:  

 

Cauchy Marginal Adequation Degree (CMAD). This parameter corresponds to the MAD 

calculated by the fuzzy Cauchy function presented in Eq. (16). 

 

𝐶𝑀𝐴𝐷𝑘,𝑗 =
1

1 + 𝑑𝑖𝑠𝑡(�̅�𝑗 , 𝜌𝑘,𝑗)
                                             (16) 

 

   For the NIC, is set 𝐶𝑀𝐴𝐷𝑁𝐼𝐶,𝑗(�̅�𝑗|𝜌𝑘,𝑗) = 0.5, to keep the MAD criterion of the original 

LAMDA method. 

 

Robust Marginal Adequation Degree (RMAD). This parameter corresponds to the product of 

the CMAD with a penalty parameter in each cluster 𝐾𝑘,�̅� (Eq. (17)).  

 

𝑅𝑀𝐴𝐷𝑘,𝑗(�̅�𝑗|𝜌𝑘,𝑗) = 𝐾𝑘,�̅� × 𝐶𝑀𝐴𝐷𝑘,𝑗                                       (17) 

   The penalty parameter 𝐾𝑘,�̅� (Eq. (18)), requires to set by the user the 𝑑𝑛𝑏 (average distance 

between neighbours)  and then to compute the average distance of the descriptors of the 

sample 𝑋 to the center of each cluster (𝑑𝑘,�̅�) using Eq. (19). 

 

𝐾𝑘,�̅� =
𝑑𝑛𝑏

𝑑𝑛𝑏 + 𝑑𝑖𝑠𝑡(𝑑𝑘,�̅�, 𝑑𝑛𝑏)
                                              (18) 

 



𝑑𝑘,�̅� = 𝑑𝑖𝑠𝑡(�̅�𝑗 , 𝜌𝑘,𝑗) =
1

𝑛
∑|�̅�𝑗 − 𝜌𝑘,𝑗|

𝑛

𝑗=1

                                   (19) 

   Once calculated RMAD, the process for the calculation of GAD is like the original 

LAMDA algorithm, see Eq. (6). 

   For more details of this algorithm, and particularly the merging process performed for 

LAMDA-RD, see [33]. 

 

 

4. Architecture 

 

In [3] has been proposed an autonomic QoS-oriented IoT platform with the architecture 

shown in the Figure 1. This architecture is composed of three components: the general 

controller, the managed entity (typically IoT gateways and server) and the 

applications/objects. 

 
Fig. 1: High-level architecture 

 

     The autonomic IoT platform is based on the general controller, which is responsible for 

choosing the adaptation actions in the managed entity, to avoid the degradation of the QoS 

and to meet the "end-to-end" QoS required by the applications. 

    The connected objects and applications provide/exchange data with the IoT platform, the 

connected objects are sensors that supply data to applications, and actuators that can be 

controlled by these applications; the applications are the software underlying business 

activities benefiting from IoT.  The managed entities are of two types (see Fig. 1): 1) those 

on which will be applied the adaptation actions, i.e. the entities involved in the 

implementation of the IoT platform, and those involved in the implementation of the network 

when this one is SDN-enabled (software defined networking), and 2) the entities in charge 

of the implementation of these adaptations, typically the ANFs (Applicative NFs) [22] or 

VNFs (Virtual NFs) orchestration entities and SDN networks control entities.  



     The distributed IoT platform considered in this work respects the OneM2M specifications 

[2]. It is composed of two types of entities: (i) IoT gateways (or MN-CSE for Middleware 

Node Common Services Entity): their primary role is to allow the connection of objects to 

the Internet through LAN (local area network) or PAN (personal area network) 

communication links, thus allowing the dynamic deployment of ANFs; (ii) IoT server (or IN-

CSE for Infrastructure Node CSE): its role is to establish the link between applications and 

IoT gateways. The IT infrastructure in which the middleware entities are located is assumed 

to have different types of virtualization environments: Cloud, Fog or Edge [31]. This IT 

infrastructure is also supposed to rely on one or more IP networks interconnecting the IoT 

platform and the Cloud/Fog/Edge entities. Finally, the IT infrastructure includes the entities 

in charge of: (i) xNF ORCH: deployment / parameterization / activation / deactivation/ 

migration of xNFs (VNF/ANF [22]); (ii) SDN Controller: implementation of SDN actions 

on routers via a protocol such as Openflow [23] (e.g. OpenDaylight[24], Floodlight[25]). 

   For example, let consider an IoT application like automatic wildfire surveillance and 

monitoring system that enables early fire spotting by: (i) monitoring temperature over the 

forest using temperature sensors and (ii) detecting suspicious smoke with surveillance 

cameras. In case of fire, alerts with live streaming over the fire zone are delivered to wildfire 

management authorities. The proposed prototype enables maintaining operative QoS 

(including latency), thanks to the use of NFV (Network Function Virtualization), SDN and 

edge resources. 

     On the other hand, the autonomic IoT platform is based on the Autonomic Computing 

model initially defined by IBM [28] [29] [30], which is based on 4 major functional elements 

defined in the following way (see Fig. 2): 

 
Fig. 2: General Controller - Autonomic Cycle for QoS provisioning. 

 



● The Monitor (M): it catches the data from the context. Eventually, based on the 

information acquired from the managed entities, it generates, in case of difficulty, 

alarms that it sends to the analysis component. For the for QoS provisioning, it carries 

out the next tasks: 

o Retrieval/Inference of Context Variables; 

o Retrieval/Inference of Application Variables; 

o Resources Discovery. 

● The Analyzer (A): it prepares a diagnosis based on the information recovered from 

the Monitor, to determine if there is a degradation of QoS in the system and its causes. 

For the QoS provisioning, it carries out the next tasks: 

o Prediction of the workload of the managed entities by the IoT platform; 
o Prediction of the QoS that can offer the IoT platform to the application; 
o Identification and Diagnosis of the platform operational state: this task can be 

carried out by a classification or a clustering model that will be tested in this 

paper. 

● The Planning (P): it determines the adaptation actions that have to be performed with 

the aim to maintain the targeted end-to-end QoS, according to the diagnosis carried 

out in the previous step and transmits this choice to the execution component.  

o If the analyzer is based on the classification model, then the planning is based 

on a classification system that determines the set of actions to execute for each 

operational state. 

o If the analyzer is based on the clustering model, then the planning is based on 

a graph mining model that discover in real-time the set of actions to be 

executed in the current operational state. 

● The Executor (E): based on the actions defined for the planning component, it 

schedules and executes the planned actions via the xNF orchestration and SDN 

control entities API. 

Back to the example: 

 The Monitor collects and processes the following data: Latency (the amount of time that 

takes a message to reach the source since a given destination), Resources consumption in 

every IoT platform node (CPU/MEM), etc. 

 The Analyzer, based on the monitoring data, collected and calculated above: 

o Detects the abnormal situations from the data collected by the sensors deployed 

in the forest; 

o Diagnoses the future state of the environment (IoT platform).  

 The Scheduler determines the appropriate plans to be implemented according to the 

diagnosed states, like the QoS mechanisms or the fault tolerance mechanisms to be used. 

 The Executor implements the generated plans. In the example, this implementation 

results in the deployment of QoS mechanisms and redundancy gateways    

Our approach presents the next novelties: 

 It has an autonomous behavior in order to self-management 

 It can consider any situation in the IoT context, and particularly, new functionalities like 

for example, the time slicing to consider the QoE. 



 It is based on machine learning techniques, in order to use the real-time data in the context 

to build knowledge models. 
  

 

5. Experimental Scenario 

This section analyzes the main functionality of our approach, which is about its capability 

for detecting operational scenarios, and according to that, it adapts the IoT platform. The 

detection of the operational scenario can be carried out according to two approaches: i) If the 

operational scenario (state) are known, then the system can use classification approaches in 

order to determine the current state (class) in the IoT platform; ii) If the operational scenarios 

are not known, then the system must discover them. In the first case can be used classification 

models, and for the second, clustering models. In both cases, it is very important to know the 

quality of the models before to be used in a real context. This is the goal of this section, but 

additionally, carry out the comparison between both models, in order to determine which one 

is better in the context of diagnosis in one autonomic IoT platform. 

To have data to evaluate the classification and clustering models, in this paper is 

considered the following IoT case study. This case study has been presented in [3] and 

consists in the monitoring of a forest fire based on a connected IoT-based system. It enables 

early fire spotting by: (i) monitoring temperature over the forest using temperature sensors 

and (ii) detecting suspicious smoke with surveillance cameras. In case of fire, alerts with live 

streaming over the fire zone are delivered to wildfire management authorities. The proposed 

prototype must maintain the QoS (including latency) thanks to the use of software 

modularity, NFV, SDN and edge resources. In general, it has been have collected data from 

this infrastructure to analyze the behavior of our autonomic cycles based on classification or 

clustering models. 

The Figure 3 describes the experimental scenario. In the cloud is the server where are 

executed the applications. The variables/descriptors that characterize the behavior of the 

applications at this level are: (i) RTT (Round-Trip Time): the time between a service request 

and the response (in msec.); (ii) LOSS: indicates the success/failure of the requested service 

(expressed as true/false). The variables that characterize the server are: (i) CPU: the 

percentage of consumption of the computing resources of the server (expressed as a 

percentage of the available resource); (ii) MEM: the percentage of consumption of the 

memory of the server (ii) MEM-AVR: the simple moving average (SMA(x)) of the memory 

consumption percentage during an interval of time (in this case, x requests), due to a 

particular memory operation related to the typical garbage collector mechanism of IoT 

entities; (iii) Pt: the processing time of the request on the server (in msec.); iv) Qs: the queue 

size on the server; and v) Ar: the arrival rate of requests to the server (represented as integers).  

     In the fog level is the GI entity, which is the intermediate gateway; the variables that 

characterize its behavior are the same as those of the server: MEM, MEM-AVR, CPU, Pt, 

Qs and Ar. In the edge level is the GF1 entities, which are the final gateways directly 

connected to the objects, and the variables that characterize its behavior are the same as those 

of the server: MEM, MEM-AVR, CPU, Pt, Qs and Ar. The IoT platform entities (server and 

gateways) are real entities whose specifications are provided in Table 2. 

 

 

 



Table 2. Description of the entities of the MW 

Element Description 
Specifications 

RAM CPU Disk 

App Wildfire Surveillance and Monitoring System [3] - - - 

Server 
Entity that represents the set of instances of the infrastructure node 

specified in the oneM2M standard (i.e. IN-CSE) 
4Gb 2×i7-7500U 10Gb 

Gateway 

{I/F1} 

Entity that represents an intermediate node as specified in the 

oneM2M standard (i.e. MN-CSE) 
1Gb 4×ARMv7 8Gb 

 

     The applications are emulated through stochastic HTTP traffic injectors, where requests 

are sent to the server and to the gateways {I, F1}. 

 

 

Fig. 3: Experimental Scenario 

 

    In this context, there are 8 operational scenarios for an application, which are defined in 

Table 3. The first one is where the three managed entities of the IoT platform are not loaded, 

and the last one is where they are loaded. The other ones are combinations of them and 

determine the operational scenarios to be detected by the machine learning models 

(classification or clustering). To generate artificially these scenarios has been injected load 

in each component of each computational level (e.g., on the server in the cloud level, at the 

gateway GI in the fog level, and so for the rest). For example, for the first scenario has not 

been injected load in the entities. 

 

Table 3. Operational state of the IoT platform 

N Cloud Fog Edge 
Injectors 

S GI GF1 

1 

Not loaded 

Not loaded 
Not loaded 

OFF 

OFF 
OFF 

2 Loaded ON 

3 
Loaded 

Not loaded 
ON 

OFF 

4 Loaded ON 

5 

Loaded 

Not loaded 
Not loaded 

ON 

OFF 
OFF 

6 Loaded ON 

7 
Loaded 

Not loaded 
ON 

OFF 

8 Loaded ON 



 

6. Experiments and Result Analysis 

In general, this paper uses the classical metrics used in the literature to evaluate the 

performance of the knowledge models. Particularly, the goal of this section is to know if it is 

possible to build good models with the data from the IoT platform (If this data is useful), and 

also, evaluate the quality and usefulness of the models built with the LAMDA technique in 

the context of our approach. 

   Thus, in this work are computed the classical metrics of the classification and clustering 

domains to determine the quality of the proposed models, and additionally, the receiver 

operating characteristic (ROC) analysis. The ROC analysis provides a statistical method for 

the assessment of the diagnostic accuracy of a model, being used for three specific purposes: 

determine the cutoff value with the highest sensitivity and specificity, evaluate the 

discriminating capacity of a diagnostic model, and compare the discriminating capacity of 

different diagnostic models. In this way, the ROC curves are very useful in our context, in 

order to give us information about the quality of the classification and clustering models to 

diagnose the current operational state. Particularly, there are two metrics of the ROC analysis 

that are interesting (see Table 4): the proportion of true positives over the total of loaded 

operational states (that is the sensitivity), and the proportion of false positives on the total of 

normal operational state (it is known as the 1-specificity metric). With these values is built 

the ROC curve. 

Table 3. ROC metrics 

 Sensitivity  =  𝑇𝑃/(𝑇𝑃 +  𝐹𝑁)  =  𝑃𝑉𝑃 (proportion of true positives) 

Specificity 
=  𝑇𝑁/(𝑇𝑁 +  𝐹𝑃)  =  𝑃𝑇𝑁 (proportion of true negatives) 

=  1 −  𝑃𝐹𝑃 (proportion of false positives) 

     Where: TP: true positives, FN: false negatives, TN: true negatives and FP: false positives 

     

   The metrics of classification computed in this work are: i) Accuracy: it is the ratio of the 

number of correct predictions with respect to the total number of input samples (a high 

accuracy is very important in the diagnosis context to determine a current bad operational 

state in the system, and consequently, to be able to act); ii) Precision: it is the ratio of correct 

predictions among the total of predictions, which must be high in the context of bad 

operational states; iii) Recall: it is the ratio of predictions that have been detected over the 

total amount of correct predictions, which must be maximal to detect all the instances that 

correspond to a bad state; and iv) F-measure: it is the ratio between precision and recall. 

     The metrics of clustering calculated are: i) Cohesion: it is a measure of how similar an 

object is to its own cluster, and it is important a high value in diagnosis to have robust groups 

of operational states; ii) Separation: it is a measure of how similar an object is to other 

clusters, and it is important a high value in diagnosis for the same reason of previous metrics; 

iii) Silhouette: is the ratio between cohesion and separation; iv) Calinski-Harabasz 

coefficient: it evaluates the cluster validity based on the average between clusters and within 



cluster sum of squares, and it is important a high value in diagnosis to have robust groups of 

operational states. 

     For the construction of the models, LAMDA-HAD and LAMDA-RD techniques have 

been used, which are fuzzy classification/clustering algorithms based on the LAMDA 

paradigm that combines the concepts of neural network architectures and fuzzy clustering 

[26][27][33]. One of the main advantages of LAMDA over other classifiers, such as the well-

known K-means and GK-means techniques, is that LAMDA is capable of generating new 

classes after the training stage in a non-iterative way, so it can be used online. In this paper, 

the two improvements described above are tested in the QoS Management in an Autonomic 

IoT Platform, and the results with these models are presented.   

      Before for starting, data sciences techniques have been applied to the dataset in order to 

prepare it before performing the testing stage. These techniques eliminate atypical data, 

values with null data, and data with noise, always trying to keep the classes as balanced as 

possible. The final class distribution is presented in Figure 4. 

 
Fig. 4: Number of individuals by class 

     Also, the descriptors have been analyzed to determine their relationships and their 

discriminant powers. In this way, during this phase has been deleted the next descriptors:  

LOSS and Qs. 

6.1. Test of the classification model 

The results of the LAMDA-HAD classifier have been obtained through a training carried out 

with 80% and a test with 20% of the database (around 450 individuals), with a total of 2206 

instances and 16 descriptors (see section 4, where are described these variables/descriptors). 

The scheme of the test (hold-out method) is shown in Figure 5. 

 



Automatic IoT Platform 
Dataset

LAMDA HAD

80% training data 20% test data

Model 3
LAMDA HAD

Validation

Performance 
Metrics

16 descriptors
8 classes

 

Fig. 5: Hold-out method used for validating LAMDA-HAD in classification  

    Figure 6 shows the typical LAMDA results graph (when the algorithm is tested in 

classification mode), in which is presented the distribution of GADs for each individual 

considered in the test stage. With these results it is possible to observe the behavior of the 

GADs calculated for each individual, and which of them is incorrectly assigned. 

     With the aim of improving the classification model, and based on the results presented in 

Figure 6, it has been considered to eliminate the descriptors that are observed to have an 

abnormal behavior and could decrease the performance of the algorithm. However, after 

several tests performed, It has been concluded that the best results, which are presented 

below, are obtained with 16 descriptors, concluding that each one has relevant information 

regarding the characterization of the classes. 

 
 

Fig. 6: Obtained GADs in each class 

     Figure 7a shows the actual distribution of the objects in each class, and Figure 7b shows 

the assignment of the objects made by the LAMDA-HAD algorithm. According to Figure 7, 

in each class there are errors in the classification. In other hand, although according to the 

graph it seems that an individual has been assigned to more than one class, this really is not 

true, each individual has been assigned to one and only one class at a time. 

     Most of the objects have been correctly assigned to their respective class; however, there 

are certain mis-assigned individuals that decrease the performance of the algorithm. This is 



evident for class 3, which is particularly the one that fewer individuals have when performing 

the data analysis, because there were a large number of atypical values that were identified 

and eliminated, as well as data with noise. Despite having performed this procedure in this 

class, it can be observed that almost 40% of its objects are poorly classified and have 

characteristics more similar to class 7, which is considerably affecting the metrics of the 

model obtained by LAMDA-HAD. According to the Figure 8, which corresponds to the ROC 

graphics for each class, the above is verified, since the classes that present a better 

classification are those that go through the vertices (0,0), (0,1), and finally (1,1), which shows 

that the class 3 is the one that has more problems, since its metric of true positives is low 

(due to the confusion it presents with class 7). Also, the class 4 in certain objects tends to be 

confused with class 8. The remaining classes are well modeled, and only one object was sent 

to the NIC (class 0), which corresponds to an atypical data due to noise in the descriptors. 

 
(a) 

 
(b) 

Fig. 7: (a) Real distribution of the objects in each class, (b) objects assigned by the 

LAMDA-HAD algorithm 



 

 

Fig. 8: ROC metric of the classification model 

   A comparative analysis of LAMDA-HAD results and other classification algorithms, such 

as: Linear Discriminant Analysis LDA, Random Forest, Support Vector Machines SVM and 

Feedforward Neural Networks FNN, are shown in Table 4. 

Table 4. Performance metrics for the classifier 

Algorithm Accuracy Precision Recall F-meas. Sens. Spec. AUC 

LAMDA-HAD 0,8740 0,8507 0,8678 0,8574 0,8678 0,9746 0,9212 

LDA 0,9410 0,9426 0,9391 0,9390 0,9391 0,9915 0,9653 

RF 0,9864 0,9864 0,9871 0,9863 0,9871 0,9980 0,9925 

NN 0,7357 0,7339 0,7302 0,7281 0,7302 0,9615 0,8458 

SVM 0,1817 0,1444 0,1508 0,0762 0,1508 0,8795 0,5151 

 

   In general, based on these metrics, it can be determined that: 

 In all the metrics, the algorithm with the best performance is RF, which has a 10% higher 

yield than LAMDA-HAD, except in the metrics of specificity and sensitivity, where the 

results have a lower range of difference (2% and 7% respectively) which makes it 

possible to show that the performance of LAMDA-HAD is quite acceptable. 

 It is also important to emphasize that RF and LDA are not clustering techniques. 



 LAMDA-HAD has better performance than SVM and FNN with the advantage of being 

a non-iterative method. 

   In particular, the results obtained with LAMDA-HAD show that: 

 Even though there is a small imbalance in class 3 with respect to the other classes, 

the accuracy and F-measure metrics are very similar (around 86%), which shows a 

good trained model. 

 The AUC curve is a value that must vary between 0 and 1, and must never be less 

than 0.5, which would be the worst case and, corresponds to the gray line in Figure 

7. In this case, the average value of the ROC in each class is 0.9212, very close to 1, 

which implies that the model is good at predicting true positives, and in turn, it has a 

low percentage of false positive predictions, that is, it has a good performance in this 

case study. 

 Regarding the values of sensitivity and specificity of the model, they are good. The 

high sensitivity means that 86% of the objects assigned as positive in a class were 

correctly identified, while the high specificity indicates that 97% of the objects 

classified as belonging to a class, then did belong to that class, being able to conclude 

that the model is quite adequate in this application. 

 

     In Figure 6, an abnormal behavior of GAD1 can also be noticed, specifically in classes 2, 

4, 6 and 8, in which it is seen that it is well below the other GADs, being almost continuous 

in certain sections. Through experimentation, it has been concluded that the descriptor Ar of 

GF1 is the one that causes this behavior, reason why it has been proceeded to eliminate it 

with the purpose of evaluating the obtained results and finding possible improvements. The 

new GADs, without this descriptor, are presented in Figure 9, and their corresponding metrics 

in Table 5. 

 
 

Fig. 9: GADs in each class, eliminating the Ar-GF1 descriptor 

 



 

Table 5. Performance metrics for LAMDA-HAD, eliminating the Ar-GF1 descriptor 

Accuracy Precision Recall F-meas. Sens. Spec. AUC 

0,8436 0,7977 0,8429 0,8153 0,8429 0,9601 0,9015 

 

     As is shown in Figure 9, the GADs now have a similar behavior in all classes; however, 

analyzing the Table 5, it is evident that the performance of the LAMDA-HAD model has 

decreased in all metrics, especially F-measure is the most affected, since it went from 85% 

to 81%. It is due because for simple inspection, now all the GADs have a more homogenous 

behavior in each class (see Figure 9), with respect to those shown in Figure 6. However, these 

results show a lower performance in the classification model (see Table 4), specifically in 

Precision, and therefore in F-measure, which means that by eliminating the aforementioned 

descriptor, relevant information for the algorithm has been lost. This implies that the ratio of 

correct predictions among the total of predictions has been affected, and the characteristic of 

a good detection of the operational states is being lost. The other metrics decrease in an 

interval of 2-3%, which is not considerable. However, since none of their values improve, it 

is another sign that the best model is the one that considers all the information 

    Finally, with this experiment, it has been possible to conclude that although this descriptor 

generates an abnormal behavior in the GAD1, this is a characteristic of the model that must 

be considered with the goal of obtaining better results. 

6.2. Test of the clustering model 

The clustering tests, in this case study, have been carried out with all the individuals, i.e. 

2206, through the LAMDA-RD algorithm that works by taking the individuals as data 

streams to perform the grouping operations. The algorithm has been calibrated based on 

different experiments, presenting in this paper the best results, comparing them with well-

known clustering techniques. Basically, it consists in:  first, evaluating how good is the model 

obtained with respect to other clustering algorithms; second, analyzing the quality of the 

clusters found, and finally, comparing it with the results obtained when it is considered 

labeled clusters (real classes). 

     Table 6 shows the metrics (silhouette "SC", cohesion "SSW", separation "SSW", 

SSW/SSB, and Calinsky-Harabarz Coefficient "CHC") calculated for the different clustering 

algorithms. A good clustering algorithm must generate clusters with high intra-cluster 

homogeneity, a good inter-cluster separation and high connectivity between neighboring 

individuals. The results show that with an adequate calibration, LAMDA-RD presents results 

as good as the DBSCAN algorithm. The other methods, such as Kmeans, Kmedoids and 

Agglomerative Hierarchical Tree (AHT), require as an input parameter the number of clusters 

to build, choosing the value of 8 (corresponding to the real groups of the data). In these three 

algorithms, it is shown that the metrics are not the best, and that the formed clusters by 

LAMDA-RD are denser (lower cohesion value) and more separated from each other (higher 

value of SSB). 



     LAMDA-RD finds 15 clusters, consisting of the elements shown in Figure 9, in which it 

can be seen that up to cluster 6 there is a considerable amount of elements, especially in 

cluster 1 and 3, and from cluster 7 to 15 are scattered elements; this corresponds to data that, 

as is seen when constructing the classification model, may correspond to atypical data 

(outliers) that were not eliminated, and for that reason, they are not assigned to a cluster; this 

decreases the performance of the clustering algorithm. 

     It is important to clarify as in the previous case, that each object has been assigned to a 

single cluster, however, due to the amount of data, Figure 10 does not show that. 

 
Fig. 10: Assigned objects to clusters using LAMDA-RD 

Table 6. Performance metrics of clustering algorithms 

Algorithm SC SSW SSB SSW/SSB CHC # CLUST. 

LAMDA RD -0,0261 0,6848 0,3672 1,8649 293,7209 15 

KMEANS 0,0097 0,7308 0,2927 2,4971 786,5929 8 

KMEDOIDS 0,0010 0,7301 0,2921 2,4990 787,1934 8 

AHT 0,0104 0,7879 0,0268 29,4440 9274,8540 8 

DBSCAN 0,0184 0,5301 0,4055 1,3072 262,0866 13 

 

     According to the Table 6, several aspects can be determined: 

● Regarding the silhouette coefficient, all values are close to zero, which implies that 

there are objects near the edge of two clusters. In the case of LAMDA-RD, being 

close to zero and negative implies that some of these data may be incorrectly assigned 

to a cluster. 

● Regarding the SSW coefficient, LAMDA-RD has the second lowest value, which 

shows good intra-cluster homogeneity, that is, a high similarity between the objects 

of the same cluster. 



● Regarding the SSB coefficient, LAMDA-RD has the second highest value, which 

shows a good inter-cluster separation, close to that presented by the DBSCAN, with 

an important difference with respect to the rest. 

● The good results presented by the Kmeans, Kmedoids and Agglomerative 

Hierarchical Tree algorithms are attributed to the fact that in this case study, it is 

initially known the number of clusters to build, and it is given as information to these 

algorithms. LAMDA-RD does not know this value, and builds clusters based on the 

similarity of objects in line, which is an additional advantage of this algorithm. 

● Also, the metrics SSW/SSB and CHC, allow determining the quality of the clustering 

algorithm. Likewise, LAMDA-RD has the second lowest index, which allows us to 

determine that the algorithm has a quite acceptable performance. 

     In Table 7, the obtained results are presented when it is considered as clusters the classes 

formed by the 2206 labeled objects (real classes). 

  Table 7. Performance comparison between the Real Classes (Labeled Clusters) and the 

obtained by LAMDA-RD 

  SC SSW SSB SSW/SSB CHC #CLUST. 

REAL CLUSTERS -0.1497 0,6120 0,4979 1,5128 387.1738 8 

LAMDA RD -0,0261 0,6848 0,3672 1,8649 293,7209 15 

 

     The results show that: 

● From the point of view of the Silhouette metric in the real classes, it is negative 

moving away from zero, which indicates that there is a small number of objects 

misassigned to those clusters. LAMDA-RD has a better value since it is closer to 

zero, that is, it has fewer objects misassigned to clusters; however, in both cases the 

ideal would be to obtain values greater than zero and close to 1, which is not fulfilled. 

● Observing the SSW values, it is determined that the labels placed on the clusters (real 

classes) are better than those obtained by LAMDA-RD. 

● The SSB metric shows that there is a greater separation distance between the clusters 

of the real classes, not so in the case of LAMDA-RD. 

● The SSW/SSB and CHC indices also show that in the case of clustering by LAMDA-

RD the results are not satisfactory with respect to the labeled clusters. 

    Based on everything analyzed above, it can be concluded that: although the LAMDA-RD 

algorithm presents quite good results in the clustering process compared to other classical 

techniques (results of Table 6), this grouping is not as adequate as the one which is obtained 

by the real classes, or by applying classifying models, such as the case of LAMDA-HAD 

(see Table 4 and 7). This is due to the great variability of the descriptors that, in turn, present 

complex behaviors as those observed in class 3, and additionally, sometimes with the 

presence of atypical data, which in this work have been eliminated almost in their entirety. 

     However, the behavior of the clustering algorithms is interesting, because they may be 

indicating sub-states that fail to be determined in the classification models, that is, that the 

experts who have labeled the data have not determined. Those extra subgroups (7 in the case 



of LAMDA-RD and 5 in the case of DBSCAN) can be interesting to analyze, to determine 

if specific tasks of configuration are required in the context of the IoT platforms. 

6.3 Profile of each cluster 

One of the advantages of LAMDA is that can be built the profile of each cluster/class, which 

is interesting in order to define the set of tasks in the planning phase. Each descriptor has a 

specific behavior in each cluster, which is very useful in order to diagnose the current 

situation, and determine the tasks over the IoT platform to guarantee a given QoS. A profile 

determines the average value of each descriptor, which is very useful in order to determine 

the set of tasks to be executed to solve the degradation situation in the autonomic cycle.  

Some of the profiles that can be determined are: 

● General profile of the IoT Platform 

● Profile by entity 

● Profile with specific descriptors (e.g. CPU and/or MEM by entities) 

 

The profile can be used to eliminate the descriptors not discriminating, to determine 

specific problems in the IoT platform, etc. A first example is the Figure 11, where is shown 

the profile of each state (class) of the IoT platform. For example, the class one represents a 

state without a high load in the different components of the IoT platform.   

 

Fig. 11: General Profile of the IoT platform with 16 descriptors 

In the Figure 11 are shown some descriptors that are not discriminating. These descriptors 

can be deleted to improve the profile (pattern) of each class (see Figure 12). In the Figure 12, 

the MEM descriptor of the all entities has been eliminated, as well as the RTT descriptor, 

because they have not an important difference in each class. 



With the new set of descriptors, it is possible to build best patterns for each class (see 

Figure 12), in order to differentiate them well for defining the specific set of tasks for the 

QoS problem describes by in each class. 

  

Fig. 12: General Profile of the IoT platform after the elimination of 4 descriptors  

Additionally, it is possible profiles by entity (see Figure 13) or by descriptor (see Figure 

14), in order to analyze specific aspects. For example, the Figure 13 shows the behavior of 

the server on the IoT platform, and the Figure 14 the workload of the different entities in the 

IoT platform.  

 

Fig. 13: Profile of the server on the IoT platform  



 

 
Fig. 14: Profile of the CPU descriptor on the IoT platform 

That is very interesting in the context of the diagnostic tasks, mainly when it is not known 

the operational state of the platform (in the clustering context). This information can 

determine the specific problem (e.g. a CPU overloaded), the specific entity with the problem 

(e.g. server), which is very useful in order to determine the set of actions in the planning 

phase. For the autonomic cycle based on the clustering strategy, it is very important, because 

this set of studies means a deep analysis of the different aspects of the IoT platform for a 

more precise diagnosis, in order to determine the set of specific tasks to carry out.   

As well, as it has been said before, these profiles give us as second very interesting 

information, the interest of the different features. For example, by entity some descriptors are 

more sensitive to variation and more discriminating than others, as the S-AR with respect to 

S-MEM-AVR that gives more information about the different operational states of the server 

(see Figure 13). However, to conclude about under what conditions a descriptor can be 

preferable to the other, in future works will be analyzed the deployment cost of the features, 

in order to determine the optimum number of descriptors (the most relevant and less 

expensive), which allow a good diagnosis of the state of the IoT platform with an acceptable 

margin of error. 

 

6.4. Discussion about the results  

According to the previous experimental results, it is possible to conclude that our approach 

gives useful information, in order to make decisions about the specific aspects to consider 

guiding the processes of provisioning of resources, in order to improve the QoS. For example, 

if it is known the current state in the platform, then can be established the specific transport 

functions to reach QoS goals; or if it is analyzed the cluster of the current state, then the 

profile can be used to determine the specific problems (e.g. the lack of gateway memory), 

and act over these specific components or with the specific transport functions that improve 

the platform performance. 



Particularly, in the autonomous cycle based on the idea of detection of the current 

operational state in the IoT platform, if the classes that represent the operational states are 

very well known, then a classification system work very well to guarantee a given QoS. In 

the second autonomous cycle based on the discovery of the current operational state, it can 

determine very interesting things, due to the profile built with the LAMDA technique. 

Specifically, it defines the behavior of the components of the platform, which can be used to 

make better decisions. In addition, it can discover subclasses inside the classes, something 

that cannot be carried out with the other autonomic cycle. In the literature, there are not this 

type of study, where the behavior of machine learning techniques is studied, in order to 

determine their diagnosis capabilities in the context of the QoS management in an IoT 

platform. 

In a management context, these results can be used to determine the new inversions in the 

IoT platform, in order to customize it to the applications used in its context, among other 

things; and in academic context, these types of analysis must be carried out to design the new 

transport functions, the suitable methods of the components of an IoT platform to the QoS 

requirements, etc. 

Finally, about mathematical modelling of the QoS parameters in IoT platform, [36] 

presents the factors necessaries to consider while designing any IoT-enabled system. It also 

proposes the mathematical models for QoS parameters like reliability, communication 

complexities, latency, and aggregation of data for IoT. Our approach can use these 

mathematical models about QoS parameters in IoT platforms, in order to measure the 

degradation of performance, or any other aspect, which is one of the advantages of this 

proposal. 

 

7. Conclusions 

In this article is analyzed the behavior of the two autonomous cycles that allow avoiding 

the degradation of the QoS in IoT platforms. Each of them depends on models of machine 

learning, in one case of a classification algorithm and on the other case of a clustering 

algorithm. This article has been dedicated to analyze the behavior of both models in a real 

IoT context. 

In this regard, the results indicate that the classification model is quite robust, because it 

is capable of determining the operations states in the system, but it is up to the expert to label 

the information to be used by the model. For the clustering algorithms, they are affected by 

the characteristics of the descriptors, giving good results, but not better than those obtained 

with the classification. 

One aspect to highlight is that the clustering algorithms give more clusters than the number 

of operational states, which is important to analyze, because they can be sub-states within 

states, which the experts do not know. That could improve the QoS results, due to the 

capability of giving more precise answers to the needs of the adequacy of the IoT platforms 

before the degradation of QoS. That will imply further analysis in that context. 

    Also, in this work is evaluated the phase of analysis of both cycles, which allows them to 

diagnose what may be happening in the IoT platform. In general, in the case of the cycle 



based on the classification model, the dependence of experts is greater, both to label the 

operational states (data) and to determine the tasks aimed at improving the platform. In the 

case of the cycle based on the clustering model, although the results are not so good, not 

depending on the expert gives more robustness to the process, but it requires to develop more 

complex models, which must permanently evaluate their robustness. 

    Finally, this paper has shown the interest of the utilization of a technique like LAMDA, in 

order to carry out an exhaustive diagnosis process, to determine the QoS problems in an IoT 

platform. LAMDA can be used to build both classification and clustering models, in order to 

compare their qualities in a diagnostic process. Additionally, LAMDA generates a set of 

profiles that provide useful information to diagnose the problem, in order to carry out a deep 

analysis about the current QoS degradation situation in an IoT platform, and its possible 

solution. 

   One of the main problems with this type of approach is the necessity of good data, which 

can imply a very good preprocessing data phase that in real-time applications can be a 

problem. The other limitation is that the data-driven models have a useful life, which require 

every certain time the retraining the models in order to follow the current context. 

   With respect to future works, the rest of data driven models of the autonomic cycles will 

be developed, in order to test the autonomic cycles in real contexts. Also, the design of new 

autonomous cycles will be carried out, in order to solve other types of problems in IoT 

platforms using our approach, like the providing of resources to guarantee the QoE of real-

time applications, one of the main challengers in 5G networks. 
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