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Using Differential Flatness for solving the Minimum-Fuel Low-Thrust Geostationary Station-Keeping Problem

The minimum fuel station keeping of a geostationary satellite equipped with electric thrusters undergoing the Earth non-spherical disturbing gravitational potential up to degree and order 2 is first recast by transforming the linear time varying relative dynamics in a time invariant one with a Floquet-Lyapunov transformation. In a second step, the flatness property of the system is used to convert the genuine optimal control problem to a linear programming problem. This problem is solved for an ideal geostationary satellite with one thruster mounted on each face.

Introduction

Spacecraft orbiting the Earth on Geostationary Earth Orbits (GEO) undergo orbital disturbing forces, resulting in a natural drift. This drift pushes the spacecraft outside their operational station keeping (SK) windows (a rectangular box of a given geographical longitude and latitude range). It is therefore mandatory to design an accurate SK guidance strategy, in order not to let the spacecraft operating conditions deteriorate.

The usual spacecraft propulsion system is composed of chemical thrusters (see Soop 32 or Sidi [START_REF] Sidi | Spacecraft Dynamics and Control[END_REF] ). However, the idea of using electric propulsion has been proposed in the sixties (see for instance Barret 3 or Hunziker [START_REF] Hunziker | Low-Thrust Station Keeping Guidance for a 24-Hour Satellite[END_REF] ), followed by some theoretical developments in the eighties (as for example the development conducted by Anzel [START_REF] Anzel | Controlling a stationary orbit using electric propulsion[END_REF] ). This kind of propulsion system is a viable alternative to the commonly used chemical one thanks to its high specific impulse. Indeed, this particular feature naturally imply fuel consumption savings enabling to increase the spacecraft longevity, and has been successfuly used for the Eurostar 3000 platform (see Demairé 8 ).

A whole venue of works addresses the resolution of constrained optimal control problem. These works have been classified in two families: the direct and indirect methods (see Betts [START_REF] Betts | Survey of Numerical Methods for Trajectory Optimization[END_REF] or Hull [START_REF] Hull | Conversion of Optimal Control Problems into Parameter Optimization Problems[END_REF] for details on this classification). The indirect methods rely on the necessary optimality conditions of the Pontryagin Maximum Principle (PMP) and the resolution of the Two-point-boundary-value problem. The direct methods aim to transcribe the OCP into a constrained optimization program, the optimality conditions being ensured by the Karush-Kuhn-Tucker conditions. To obtain such a program, different techniques are available, the most popular being the discretisation-based collocation method where both dynamics and constraints are satisfied discretely.

An alternative direct method for solving OCP is based on the notion of differential flatness. This notion relates to a dynamic feedback of the system, see for instance Fliess [START_REF] Fliess | On differentially flat nonlinear systems[END_REF][START_REF] Fliess | A lie-bäcklund approach to equivalence and flatness of nonlinear systems[END_REF][START_REF] Fliess | Differential flatness and defect : an overview[END_REF] or more recently Lévine. [START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF] Roughly speaking, a controllable system admits flat outputs so that any state and input histories can be computed from these flat outputs (and its derivatives) without integration. Moreover, these new variables undergo a trivial dynamics, and consequently they are differentially independent from each others. As a consequence, the OCP expressed in terms of the system flat outputs is differential-constraint free since this constraint is trivially satisfied. Then, with a suitable parametrization of these flat outputs, the original OCP is recast to a nonlinear programming problem. In the case where the original dynamics is linear time invariant, algorithm exists for the computation of the flat outputs, see Sontag, [START_REF] Sontag | Mathematical control theory: deterministic finite dimensional systems[END_REF] Lévine [START_REF] Lévine | Flat output characterization for linear systems using polynomial matrices[END_REF] or Ford [START_REF] Ford | A simple algorithm for computing canonical forms[END_REF] for instance.

Differential flatness has been applied for several kinds of systems. For instance, the reference Murray [START_REF] Murray | Differential flatness of mechanical control systems: A catalog of prototype systems[END_REF] exhibits the flat outputs for a wide range of mechanical systems. For spacecraft control, Louembet [START_REF] Louembet | Path planning for satellite slew manoeuvres: a combined flatness and collocation-based approach[END_REF] applies the differential flatness theory for attitude slew manoeuvres computation. For spacecraft trajectory optimisation, the work of Louembet [START_REF] Louembet | Collision avoidance in low thrust rendezvous guidance using flatness and positive b-splines[END_REF] solves a collision avoidance low-thrust rendez-vous with splines based parametrization of the flat outputs and the recent work of Farahani [START_REF] Farahani | Constrained autonomous satellite docking via differential flatness and model predictive control[END_REF] solves the path planning problem for autonomous docking. Regarding geostationary station keeping, the reference Losa [START_REF] Losa | High vs low thrust station keeping maneuver planning for geostationary satellites[END_REF] uses differential flatness in the case of simplified dynamic matrix with only two non-zero terms. In this paper, the GEO dynamics is enhanced to account for the disturbing part of the Earth potential up to degree and order 2. The novelty of the proposed paper is to compute the flat outputs for the considered time varying model. Our contribution consists in adapting existing algorithms for computing flat outputs and thus obtaining time varying flat outputs transformations (see for instance Sontag 31 ). After a parametrization by splines functions, the genuine SK optimal control is transformed into a linear programming problem. An illustration of the results is performed using an ideal GEO spacecraft with one thruster mounted on each face.

Geostationary Station-Keeping Problem

Geostationary Spacecraft Dynamics

The motion of a spacecraft orbiting the Earth on a GEO can be described with the equinoctial orbital elements as defined in Battin: [START_REF] Battin | An Introduction to the Mathematics and Methods of Astrodynamics[END_REF] x eoe = a e x e y i x i y

MΘ T , ( 1 
)
where a is the semi-major axis, (e x , e y ) the eccentricity vector, (i x , i y ) the inclination vector,

MΘ = ω + Ω + M -Θ(t)
is the mean longitude where Ω is the right ascension of the ascending node, ω is the perigee's argument, M is the mean anomaly and Θ(t) is the right ascension of the Greenwich meridian.

The non-linear dynamics of the GEO satellite is given by:

dx eoe dt = K(x eoe ) + L(x eoe ) ∂V dist (x eoe ) ∂x eoe + G(x eoe )v, (2) 
where K(x eoe ) is the Keplerian part of the dynamics, L(x eoe ) the Lagrangian matrix, V dist the disturbing potential, G(x eoe ) the Gauss matrix and v the disturbing external force. In such a description, the disturbing potential and the disturbing force are assumed to be small relatively to the Keplerian attraction. The expression of K(x eoe ), L(x eoe ) and G(x eoe ) can be found in Losa. [START_REF] Losa | High vs low thrust station keeping maneuver planning for geostationary satellites[END_REF] Spacecraft orbiting the Earth on a GEO orbit undergo three main orbital disturbances: the non-spherical Earth gravitational potential, the lunisolar attraction from the Sun and the Moon, and the Sun radiation pressure. This study focusses solely on the effects of Earth disturbing gravitationnal potential up to the degree and order 2. These disturbing terms expressed by means of the equinoctial orbital elements are given in Appendix A.

The satellite is equipped with an ideal electric propulsion system with a thruster mounted on each face. The control acceleration created by these thrusters v = v R v T v N T is expressed in the local orbital RT N frame (also written RS W) and defined by Soop [START_REF] Soop | Handbook of Geostationary Orbits[END_REF] as N being the unit vector along the kinetic momentum, R being the unit vector in the direction Earth's center -satellite and T completing the right-handed orthogonal basis.

The satellite has to remain near its Station Keeping (SK) state:

x sk = a sk 0 0 0 0 MΘ,sk T , (3) 
with a sk the SK semi-major axis (see Appendix C) and MΘ,sk the mean longitude. Therefore, the non linear equation of motion (2) can be linearized around this nominal state. Defining the relative SK state as:

x = a-a sk a sk e x e y i x i y MΘ -MΘ,sk , (4) 
the linearized dynamics reads:

dx dt = A(t)x + D(t) + µ a sk B(t)v, (5) 
with the expressions of the matrices A, B and D given in Appendix B.

For convenience, the control vector v is transformed to:

u = µ a sk v. (6) 
The nonlinear dynamics equation ( 5) is rewritten as:

dx dt = A(t)x + D(t) + B(t)u. (7) 

Floquet-Lyapunov Transformation of the Dynamics

As the dynamics matrix of the Linear Time Varying (LTV) system given by Equation ( 5) is periodic, it is possible to apply the Floquet-Lyapinov theory as in Brentari, 6 Deaconnu 7 and Sherill 29 so as to look for a periodic similarity transformation in order to transform the system (7) into a Linear Time Invariant (LTI) one. Denoting t → W(t) the Floquet-Lyapunov transformation, and ζ the new state vector such that ζ = W(t)x, the new dynamics is expressed as:

ζ(t) = Ẇ(t)W -1 (t) + W(t)A(t)W -1 (t) ζ(t) + W(t)D(t) + W(t)B(t)u(t), = Ãζ(t) + D + Bu(t), (8) 
where matrices Ã, B and D are time invariant.

In the context of the relative dynamics of a GEO spacecraft, the proposed transformation is adapted from the one given by Losa: 21

W(t) =                          0 -S κ C κ 0 0 -1 2 0 -S κ C κ 0 0 -3 4 -1 C κ S κ 0 0 0 0 0 0 -S κ C κ 0 0 0 0 C κ S κ 0 -1 S κ -C κ 0 0 0                          , (9) 
with C κ = cos κ sk (t), S κ = sin κ sk (t) and κ sk (t) = MΘ + Θ(t).

The matrix W(t) is bounded and non singular for every t with a determinant W(t) = 1 4 0. The inverse of the transformation is given by:

W -1 (t) =                          -3 2 0 0 0 -1 -3(C κ + S κ ) 2(C κ + S κ ) C κ 0 0 -C κ 3(C κ -S κ ) 2(-C κ + S κ ) S κ 0 0 -S κ 0 0 0 -S κ C κ 0 0 0 0 C κ S κ 0 4 -4 0 0 0 0                          , (10) 
and its derivative is:

Ẇ = ω e                          0 -C κ -S κ 0 0 0 0 -C κ -S κ 0 0 0 0 -S κ C κ 0 0 0 0 0 0 -C κ -S κ 0 0 0 0 -S κ C κ 0 0 C κ S κ 0 0 0                          , (11) 
with ω e the Earth mean rotation rate, whose value is given in Appendix C. With the proposed Floquet-Lyapunov transformation, the new dynamics matrices Ã, D and C are explicitely defined by: 

       Ã = Ẇ(t)
with :

Ẇ(t)W -1 (t) = ω e                          3 -2 -1 0 0 1 3 -2 -1 0 0 1 3 -2 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 -3 2 1 0 0 -1                          , (13) 
ÃK = WA K W -1 = γ K                          -3 2 -1 0 0 0 1 2 9 4
-3 2 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                         , (14) 
ÃC 20 = WA C 20 W -1 = α 20                          -3 8 
                         , (15) 
ÃC 21 = WA C 21 W -1 = α 21                              0 0 0 13 2 C 0 0 0 0 57 4 C 0 0 0 0 -4S 4C 0 -2C 2C 0 0 0 -3 4 C + 2S 1 2 C -2S -3 2 C 0 - 1 4 C 0 0 0 -6C -4S -4C 0                              , (16) 
ÃS 21 = WA S 21 W -1 = β 21                              0 0 0 1 2 S 0 0 0 0 -9 4 S 0 0 0 0 4C -4S 0 -2S 2S 0 0 0 -2C -3 4 S 2C + 1 2 S -3 2 S 0 - 1 4 C 0 0 0 -6C -4S -4C 0                              , (17) 
ÃC 22 = WA C 22 W -1 = α 22                          -9 4 C 2 -23S 2 3 2 C 2 -6S 2 -81 4 C 2 0 -3 4 C 2 -45 8 C 2 -55 2 C 2 15 4 C 2 -7S 2 -195 8 C 2 0 0 - 8 C 2 -56C 2 -36S 2 12C 2 + 24S 2 36S 2 0 -12S 2 0 0 0 0 2S 2 0 0 0 0 -2C 2 2S 2 0 -77 2 C 2 -16S 2 15C 2 + 24S 2 12C 2 + 20S 2 0 -3 2 C 2 -10S 2                          , (18) 
ÃS 22 = WA S 22 W -1 = β 22                              -9 4 S 2 + 23C 2 3 2 S 2 + 6C 2 -81 4 S 2 0 0 -3 4 S 2 -45 8 S 2 + 55 2 C 2 15 4 S 2 + 7C 2 -195 8 S 2 0 0 -15 S 2 36C 2 -45 8 S 2 12S 2 -24C 2 -36C 2 0 0 12C 2 0 0 0 0 0 0 0 0 0 -2S 2 2C 2 0 -77 2 S 2 + 16C 2 15S 2 -24C 2 12S 2 -20C 2 0 0 -3 2 S 2 + 10C 2                              , (19) 
DK = WD K = δ K -1 2 -3 4 0 0 0 0 T , (20) 
DC 20 = WD C 20 = α 20 1 5 4 0 0 0 -1 2 T , (21) 
DC 21 = WD C 21 = α 21 0 0 0 0 1 2 C 0 T , (22) 
DS 21 = WD S 21 = β 21 0 0 0 0 -1 2 S 0 T , (23) 
DC 22 = WD C 22 = α 22 -6C 2 -15 2 C 2 8S 2 0 0 3C 2 + 4S 2 T , (24) 
DS 22 = WD S 22 = β 22 -6S 2 -15 2 S 2 -8C 2 0 0 3S 2 -4C 2 T , (25) 
B = W B =                          0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 2 1 -2 0                          , (26) 
Putting together the matrices given by Equations ( 14)-( 25) and symplifying trigonometric expressions lead to the new dynamics system defined by: 

à =                          -9 4 η C 22 + 92 4 η S 22 + 3 2 γ K + 3 8 α 20 + 3ω e 3 2 η C 22 + 6η S 22 -γ K -1 4 α 20 -
11C α 21 + 1 2 η C 21 0 -3 4 η C 22 + 1 2 γ K -1 8 α 20 + ω e -9 4 η C 21 + 33 2 C α 21 0 -15 8 η C 22 + 3 4 γ K -1 16 α 20 + ω e 4η S 21 -4η C 21 12η S 22 0 -ω e 0 -2η C 22 + α 20 + ω e 2η S 22 -1 4 η C 21 -6η C 21 + 4η S 21 -4η C 21 -3 2 η C 22 + 10η S 22 + 1 4 α 20 -ω e                          , ( 27a 
) D =                          1 2 δ K + α 20 -6η C 22 -3 4 δ K + 5 4 α 20 -15 2 η C 22 -8η S 22 0 1 2 ηC 21 -1 2 α 20 + 3η C 22 -4η S 22                          , (27b) 
with:

                         η C 21 = α 21 C + β 21 S , ηC 21 = α 21 C -β 21 S , η S 21 = β 21 C -α 21 S , η C 22 = α 22 C 2 + β 22 S 2 , η S 22 = β 22 C 2 -α 22 S 2 . (28) 
The constants γ K , δ K , α 20 , α 21 , β 21 , α 22 , β 22 , C , S , C 2 and S 2 are defined in Appendix B.

As stated in Losa, [START_REF] Losa | High vs low thrust station keeping maneuver planning for geostationary satellites[END_REF] the transformation given by Equation ( 9) has been built in order to make the control matrix B(t) time invariant. The novelty of our approach is to consider as dynamic matrix A(t) the true expression of the Earth disturbing potential, and not the simplified one used by Losa [START_REF] Losa | High vs low thrust station keeping maneuver planning for geostationary satellites[END_REF] for which only the (6, 1) and (1, 6) terms are non-zero.

As the new dynamical system defined by the Equation ( 8) is LTI, it is possible to compute its state transition matrix as defined by Antsaklis. [START_REF] Antsaklis | Linear Systems[END_REF] This matrix is the matrix Φ(t, t 0 ) such that:

dΦ(t, t 0 ) dt = Ã(t)Φ(t, t 0 ) and Φ(t 0 , t 0 ) = I 6 , (29) 
with I 6 the identity matrix of dimension 6. The state vector ζ(t) is thus given by:

ζ(t) = e Ã(t-t 0 ) ζ(t 0 ), (30) 
and converting back to the relative equinoxial elements thanks to the Floquet-Lyapunov transformation leads to:

x(t) = W -1 (t)e Ã(t-t 0 ) W(t 0 )x(t 0 ). ( 31 
)

Fuel Optimal Geostationary Station-Keeping Problem

The geographical coordinates of the satellite:

y eoe = T (x eoe , t)x eoe , (32) 
have to be computed as the SK strategy consists in finding the control for maintaining the satellite in the vicinity of the SK position y sk = r sk 0 λ sk T

, where r sk is the synchronous radius and λ sk is the station keeping geographical longitude. Equation ( 32) can be linearized about y sk , which leads to the following relative geographical coordinates:

y = y eoe -y sk = T (x sk , t)x = C(t)x, (33) 
with the expression of C(t) being given in Appendix B.

Thanks to the expression of the relative geographical position given by Equation ( 33) and the proposed Floquet-Lyapunov transformation presented in Section 2.2, the SK requirement of maintaining the satellite in its SK window is given by the following constraints:

         0 1 0 C(t)W -1 (t)ζ(t) δ, 0 0 1 C(t)W -1 (t)ζ(t) δ, ∀t ∈ [t 0 , t 1 ], ( 34 
)
where δ is the half-width of the SK window and [t 0 , t 1 ] the horizon on which the SK problem has to be solved. These constraints are summarized as:

C ϕλ (t)W -1 (t)ζ(t) δ 2 , with C ϕλ (t) = 0 1 0 0 0 1 and δ 2 = δ δ . (35) 
As the propulsion system is a low thrust one, the force created by the thrusters is bounded by F max . The control vector ū must fulfill the following constraint:

∀t ∈ [t 0 , t 1 ], |u i (t)| µ a sk F max m = U max , with i = R, T, N, (36) 
with m the satellite mass. Designing a miniminum fuel SK strategy requires to define the following performance index:

J(u) = t 1 t 0 |u(t)|dt (37) 
The minimum fuel optimal SK problem reads thus:

Problem 1 min u J(u) s.t.                          ζ(t) = Ãζ(t) + D + Bu(t), ζ(t 0 ) fixed, ζ(t 1 ) free, ∀t ∈ [t 0 , t 1 ], C ϕλ (t)W -1 (t)ζ(t) δ 2 , ∀t ∈ [t 0 , t 1 ], |u i (t)| U max , i = R, T, N. (38) 
•

Solving the Optimal Control Problem using Differential Flatness

The previous section introduces the optimal control problem that formalizes the station keeping problem on a fixed time horizon. A methodology is proposed here to solve problem (1) based on the flatness property of the dynamical model (8).

Differential Flatness

The differential flatness theory has been introduced by M. Fliess and co-workers at the beginning of the nineties (see Fliess [START_REF] Fliess | Differential flatness and defect : an overview[END_REF][START_REF] Fliess | International Journal of Control[END_REF] ). This theory has been succesfully applied for solving the optimal control problem once the dynamic system shows the flatness property (see Martin [START_REF] Martin | Flat Systems, Equivalence and Trajectory Generation[END_REF] ). Let us consider a very general finite dimensional non linear system of the form:

ẋ(t) = f (x(t), u(t)), ( 39 
)
where f is a sufficiently smooth vector field, u ∈ R m is the control vector, x ∈ R n is the state vector.

Definition 1 (Differentially flat system) System (39) is said to be a flat system if there exists a vector z ∈ R m :

z = h(x, u, u, . . . , u (r) )
such that the state vector x and the control vector u can be parametrized as:

x = φ(z, ż, . . . , z (q) ),

u = ψ(z, ż, . . . , z (q+1) ),
where h, φ and ψ are smooth vector fields, and r and q are integers.

The variable y is called a flat output for the system (39) (also called linearizing output) and is of dimension m, exactly the numbers of inputs. Notice that according to the definition of a flat system, the state x and the control u should satisfy the differential equation ẋ(t) = f (x(t), u(t)) and therefore, one have also the following relationship:

φ(t) = f (φ(t), ψ(t)).

Flat Output Computation

In Fliess, [START_REF] Fliess | Differential flatness and defect : an overview[END_REF] it has been shown that the controllability of a linear model is equivalent to its flatness property and ensures the existence of flat outputs. The results state the flat outputs are the Brunovskii output of a any given controllable linear time invariant system, ẋ = Ax(t) + Bu(t).

(40)

The Brunovskii canonical form of a controllable linear system takes the form of a block diagonal controllable system:

ẋ(t) = Ā x + Bū(t). (41) 
Matrices ( Ā, B) are given by: Ā

= diag(∆ 1 , . . . , ∆ ν ), B =                     b 1 0 . . . 0 0 . . . 0 0 b 2 . . . 0 0 . . . 0 . . . . . . . . . . . . . . . . . . 0 0 . . . b ν 0 . . . 0                     , ( 42 
)
where ∆ i ∈ R κ i ×κ i and b i ∈ R κ i are expressed by:

∆ i =                  0 1 . . . 0 . . . . . . . . . . . . 0 0 0 1 0 0 0 0                  , b i =                  0 . . . 0 1                  , (43) 
with κ i , for i = 1, . . . , ν = rank(B) are the controllability indices of the system as defined by Rosenbrock [START_REF] Rosenbrock | State-space and multivariable theory[END_REF] and Sontag. [START_REF] Sontag | Mathematical control theory: deterministic finite dimensional systems[END_REF] These controllability indices must verify: ν i=1 κ i = n. This state space is obtained thanks to the feedback transformation:

x = Mx, ū = K x + Lu (44)
The flat output z = [z 1 . . . z ν ] T of the linear system (40) are its Brunovskii output that is described by:

z = C x, where C = diag(Λ 1 , . . . , Λ ν ), (45) 
with Λ i ∈ R 1×κ i such that:

Λ i = 1 0 . . . 0 . ( 46 
)
Noting that:

x =                                         z 1 . . . z (κ 1 ) 1 . . . z ν . . . z (κ ν ) ν                                         , ū =              z (κ 1 +1) 1 . . . z (κ ν +1) ν              , and z = x ū , (47) 
the original state vector x and the input vector u are computed in terms of the flat output z and its derivatives by inverting (44):

x = M -1 x = M -1 0 z, u = L -1 K x + L -1 ū = L -1 K L -1 z. ( 48 
)
In the case of the dynamics (8) this procedure is applied to obtain a Brunovskii form such that the pair ( Ã, B) is controllable. In that case, ν = rank(B) = 3 and the controllability indices are κ 1 = κ 2 = κ 3 = 2. It comes that the matrices M, K and L can be computed such that the state vector ζ verifies:

ζ = Ā ζ + D + Bū (49) 
Matrices Ā and B satisfy the Brunovskii characteristics:

Ā =                         
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

                         , B =                          0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1                          , D =                          d1 d2 d3 d4 d5 d6                          and C =          
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

          (50) 
As opposed to the system under Brunovskii form (41), the system given by Equation (49) has a drift term. This term is removed by means of the following time varying transformation:

z 1 = ζ1 -d1 (t -t 0 ) - 1 2 d2 (t -t 0 ) 2 , ż1 = ζ2 -d2 (t -t 0 ), z1 = ū1 , z 2 = ζ3 -d3 (t -t 0 ) - 1 2 d4 (t -t 0 ) 2 , ż2 = ζ4 -d4 (t -t 0 ), z2 = ū2 , z 3 = ζ5 -d5 (t -t 0 ) - 1 2 d6 (t -t 0 ) 2 , ż3 = ζ3 -d6 (t -t 0 ), z2 = ū3 . (51) 
Doing so, the vector z = [z 1 z 2 z 3 ] T is the flat output of the system (8). With the vector z defined as:

z = z 1 ż1 z 2 ż2 z 3 ż3 z1 z2 z3 T , (52) 
the transformation (51) is rewritten in matrix form as:

z = ζ -ζD (t) ū (53)
The state ζ and the input ū are recovered the flat output and its successives derivatives by inverting Equation (51) defining the flat outputs:

ζ1 = z 1 + d1 (t -t 0 ) + 1 2 d2 (t -t 0 ) 2 , ζ2 = ż1 + d2 (t -t 0 ), ζ3 = z 2 + d3 (t -t 0 ) + 1 2 d4 (t -t 0 ) 2 , ζ4 = ż2 + d4 (t -t 0 ), ζ5 = z 3 + d5 (t -t 0 ) + 1 2 d6 (t -t 0 ) 2 , ζ6 = ż3 + d6 (t -t 0 ), ū1 = z1 , ū2 = z2 , ū3 = z3 . (54) 
Applying then (48) leads to the original state and control vectors ζ and u.

Flat optimal control problem

In this section, the optimal control problem ( 1) is transformed into a linear program. This transformation is executed by means of three step:

i set the genuine optimal control problem (1) in terms of flat outputs;

ii parametrize the flat outputs using B-splines basis;

iii discretize the constraints.

The interest of expressing the Problem (1) in terms of the flat output comes from a twofold fact. First, the differential flatness ensures a Lie-Backlünd equivalence between the original system (8) and its Brunovskii form (49). Moreover, for any flat system, any sufficiently smooth function t → z(t) leads to time state trajectories t → (ζ(t), u(t)) that satisfy the dynamic equation ( 8) and consequently (5). With these two arguments, the OCP (1) can be recast using the z coordinates instead of (ζ, u). Doing so, the dynamic constraint is removed since it is always satisfied by any given trajectory t → z(t). Consequently, the optimal control problem boils down to a geometric problem of finding a time-parametrized curve in the z-space that links two points (initial and final conditions) while belonging to S z a given subspace of z:

min z J(z) s. t.:          z(t 0 ) fixed z(t f ) free z(t) ∈ S z (55) 
The subset S z is defined by the path and control constraints γ(•) such that

S z = {z| γ z (z(t)) ≤ 0}. ( 56 
)
with the function γ z (z(t)) defined by the following set of inequality constraints:

                    0 1 0 0 0 1        C(t)W(t) M -1 0 z(t) δ 2 , L -1 K L -1 z(t) U max , ∀t ∈ [t 0 , t 1 ], (57) 
Using flatness property of the system, the dynamic constraint of the optimal control problem has been removed. Nevertheless, problem (55) remains a difficult problem due to the infinite dimensions of the problem. To deal with the infinite dimension of the problem (55), a B-splines collocation method (Hargraves 15 ) is applied to transform problem (55) into a computationally tractable linear programming (LP) (see Neckel [START_REF] Neckel | Collocation and inversion for a reentry optimal control problem[END_REF] and Milam [START_REF] Milam | A new computational approach to real-time trajectory generation for constrained mechanical systems[END_REF] ). Contrary to the polynomials, the choice of the B-splines allows us to define flexible trajectories with high continuity level using a low number of parameters.

This method consists in parametrizing the flat output z components such that:

z i (t) = n j=1 α i, j B j,k (t), i = 1, 2, 3 (58) 
where the B j,k are a k th order B-splines basis of the piecewise polynomials of degree at most k-1 built on the breakpoints sequence {t i } p+1 i=1 such that

t 0 = t 1 < t 2 < • • • < t p < t p+1 = t f . (59) 
Thereby, the knots sequence T = {t i } is chosen to ensure a maximum continuity at interior knots: 

T = {t 1 , . . . ,
B-splines are defined by the Cox-de Boor iterative algorithm (Lee [START_REF] Lee | A simplified b-spline computation routine[END_REF] ). The α i, j coefficients are called control points. After parametrization of flat outputs, the vector of all control points α = (α 1,1 , . . . , α 1,n , α 2,1 , . . . , α 2,n , α 3,1 , . . . , α 3,n ) (

becomes the decision variable in the optimization problem. Equation ( 58) and its derivatives up to order 2 can be rewritten in matrix form: 

                                        z 1 (t) ż1 (t) z1 (t) z 2 (t) ż2 (t) z2 (t) z 3 (t) ż3 (t) z3 (t)                                         =                                         B 1,k (t) . . . B n,k (t 
                                        α, (62) 
and after reordering:

z(t) = R(t)α. (63) 
Doing so, the relative equinoctial orbital elements are computed as:

x(t) = W(t) M -1 0 6×3 ζ ū = W(t) M -1 0 6×3 z + ζD (t) 0 3×1 = W(t) M -1 0 6×3 R(t)α + ζD (t) 0 3×1 = W(t) M -1 0 6×3 R(t)α + W(t)M -1 ζD (t), (64) 
and the relative geographical position is given by:

y(t) = C ϕλ W(t) M -1 0 6×3 R(t)α + C ϕλ W(t)M -1 ζD (t). ( 65 
)
The SK constraint (35) is then transformed in the two following linear constraints:

       C ϕλ W(t) M -1 0 6×3 R(t)α δ 2 -C ϕλ W(t)M -1 ζD (t), -C ϕλ W(t) M -1 0 6×3 R(t)α δ 2 + C ϕλ W(t)M -1 ζD (t) (66) 
Likewise, the control created by the satellite thrusters is expressed as:

u(t) = L -1 K L -1 ζ ū = L -1 K L -1 z + ζD (t) 0 3×1 = L -1 K L -1 z + L -1 K ζD (t) = L -1 K L -1 R(t)α + L -1 K ζD (t), (67) 
and the constraint (36) is transformed to:

       L -1 K L -1 R(t)α U max -L -1 K ζD (t), -L -1 K L -1 R(t)α U max + L -1 K ζD (t) (68) 
The constraints are enforced at a finite number of points {τ j } j=1,...,N C named collocation points. The choice of {τ j } is then also a degree of freedom in the path planning design process. The descritize constraints read:

                   C ϕλ W(τ j ) M -1 0 6×3 R(τ j )α δ 2 -C ϕλ W(τ j )M -1 ζD (τ j ), -C ϕλ W(τ j ) M -1 0 6×3 R(τ j )α δ 2 + C ϕλ W(τ j )M -1 ζD (τ j ) L -1 K L -1 R(τ j )α U max -L -1 K ζD (τ j ), -L -1 K L -1 R(τ j )α U max + L -1 K ζD (τ j ), ∀ j = 1, . . . , N C . ( 69 
)
The objective function ( 37) is also discretized in the following way:

J(u) = t 1 t 0 |u(t)|dt, = t 1 t 0 |u R (t)| + |u T (t)| + |u N (t)|)dt, = t 1 -t 0 N C N C j=1 |u R (τ j )| + |u T (τ j )| + |u N (τ j )| + |u R (τ j+1 )| + |u T (τ j+1 )| + |u N (τ j+1 )| . (70) 
In Equation (70), the control unknowns do not appear linearly, but with absolute values. In order to remove the absolute values, auxiliary variables {w R j , w T j , w N j } j=1,...,N C are used, defining a new objective function:

J(w R j , w T j , w N j ) = N C j=1 w R j + w R j+1 + w T j + w T j+1 + w N j + w N j+1 , (71) 
with new constraints for these auxiliary variables:

       u(τ j ) -w j 0, -u(τ j ) -w j 0, with w j =           w R j w T j w N j           , ∀ j = 1, . . . , N C , (72) 
that can also be rewritten as:

       L -1 K L -1 R(τ j )α -w j -L -1 K ζD (τ j ), -L -1 K L -1 R(τ j )α -w j L -1 K ζD (τ j ), ∀ j = 1, . . . , N C . ( 73 
)
The vector of decision variables is augmen The auxiliary variables w j are new unknowns and are added to the vector of decision variables. The augmented vector is:

ᾱ = α w R 1 . . . w R N C w T 1 . . . w N N C T ∈ R 3n+3N C (74)
A last constraint is added in order to ensure that the trajectory starts at the given initial point. If x 0 is the initial point, the boundary constraint reads:

W(t 0 ) M -1 0 6×3 R(t 0 )α = x 0 -W(t)M -1 ζD (t 0 ). ( 75 
)
Finally, associated with B-splines collocation method, the flat optimal control problem can be stated as the following linear programming problem:

Problem 2 min ᾱ J( ᾱ) s. t.: ∀ j = 1, . . . , N C :                                      C ϕλ W(τ j ) M -1 0 6×3 R(τ j )α δ 2 -C ϕλ W(τ j )M -1 ζD (τ j ), -C ϕλ W(τ j ) M -1 0 6×3 R(τ j )α δ 2 + C ϕλ W(τ j )M -1 ζD (τ j ) L -1 K L -1 R(τ j )α U max -L -1 K ζD (τ j ), -L -1 K L -1 R(τ j )α U max + L -1 K ζD (τ j ), L -1 K L -1 R(τ j )α -w j -L -1 K ζD (τ j ), -L -1 K L -1 R(τ j )α -w j L -1 K ζD (τ j ), W(t 0 ) M -1 0 6×3 R(t 0 )α = x 0 -W(t)M -1 ζD (t 0 ) (76) 
•

The latter problem shows the advantages of being linear and integration-free, what makes it numerically tractable.

Numerical results

The proposed transformation of the GEO SK fuel optimization problem into a linear programming problem is applied on a 4000 kg satellite equipped with an electric propulsion system consisting of one thruster on each face producing a maximum thrust level of 0.2 N each. The station keeping mean longitude is chosen to be MΘ,sk = 218 • and the halfwidth SK window is equal to 0.5 • . Therefore, the dynamic matrix of the LTI system ( 8) can be numericaly evaluated as: 1.28 10 -9 0 0 -6.30 0 -3.65 10 -11 -1.23 10 -10 -9.57 10 -10 6.30 1.57 10 -6 -1.60 10 -10 -1.89 10 1 1.26 10 1 6.30 -4.86 10 -9 -2.55 10 -9 -6.30 

à =                          4 
                         (77) 
Althoug the analytical expression of the dynamics is available, the litteral computation of the transformation matrices M, K and L to obtain the flat outputs is too tedious and is not analytically tractable. However, these matrices, as well as the initial dynamics matrices, depend only on the station keeping longitude that is fixed for a given spacecraft mission. The numerical expression of these matrices is:

M =                          -1.32 10 -5 0 -1.59 10 -1 0 0 0 -3.00
2.00 8.74 10 -5 0 2.17 10 -8 -2.22 10 -5 -3.17 10 -1 0 -1.18 10 -7 0 0 0 -1.50

1.00 2.00 0 0 -5.00 10 -1 0 0 0 -3.17 10 -1 0 0 0 0 0 0 2.00 0

                         (79) 
K =          
-1.89 10 1 1.26 10 1 6.30 1.33 10 -7 0 -6.30 3.78 10 1 -2.52 10 1 1.56 10 -6 0 0 2.35 10 -6 0 0 0 1.26 10 1 3.13 10 -6 0

          (80) 
L =           1 4.44 10 -5 0 0 1 0 0 0 1           (81) 
Problem 2 is solved with a B-spline basis of degree 5 and 25 collocation points. Besides this, the time grid used for the evaluation of the constraints ranges from 0 to 10 days with 500 points. The initial relative state vector chosen for this study is:

x 0 = 0 0 0 0 1.10 -4 0 T . (82) 
The flat outputs and their derivatives are displayed on Figures 1, 2 and 3 for z 1 , z 2 and z 3 respectively, as well as their derivatives. The oscillations observed on the curves come from the high degree chosen for the basis of splines function that lead to the control profile skeched on Figure 4. For a time horizon of 10 days, the ∆v requirement is 1.10 m/s. -: z 1 (t), --: ż1 (t), -• -: z1 (t).
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-0.5 0 0.5 10 -3

Figure 2: Flat output z 2 with its first and second derivatives: -: z 2 (t), --: ż2 (t), -• -: z2 (t). The Figure 5 shows the spacecraft trajectory with the SK window. From Soop, [START_REF] Soop | Handbook of Geostationary Orbits[END_REF] it is well known that the C 22 and S 22 terms of the potential steer the satellite away from its SK position. Spacecraft with a longitude equal to 118 • tend to drift eastwards (the longitude decreases). The Figure 5 shows that the best way to control the spacecraft is to drive it to the west part of the Sk window and let it drift toward the east direction. at the end of the SK horizon. 
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Conclusion

In this paper, the dynamic geostationary station-keeping problem for a satellite undergoing Earth non-spherical perturbation potential harmonics up to degree and order 2 has been transformed to a linear optimization problem thanks to two transformations. The first one involves the Floquet-Lyapunov theory for transforming a periodic bounded linear time varying system in a linear time invariant system. The second transformation aims at transforming the previously computed linear system in its Brunovskii canonical form. The novelty of our approach is to have designed a time varying flat output expression for removing the constant drifting term of the relative geostationary dynamics. The flats outputs have been parametrized by B-splines. The linear transformed station keeping problem has been solved for a realistic telecommunication stallite equipped with an ideal propulsion system with one thruster mounted on each face of the satellite.

A. Disturbing Gravitational Potential of the Earth

Kaula [?, chapter 3] derives the expression of the Legendre decomposition of the Earth disturbing potential. The proposed study requires to compute these coefficients up to degree and order 2 in terms of the equinoctial orbital elements defined by Equation 1.

In the following expressions, µ is the gravitational geocentric parameter and R e the mean Earth radius. In order shorten the expression of the potentials, the following variables are used: 

       C nκ+mΘ =
The potential term of degree 2 and order 0, also known as the J 2 term, reads: 

V C 20 (x eoe ) = µR 2 e C 20 a 3        3(i 2 x + i 2 y ) (1 + i 2 x + i 2 y ) 2 - 1 2        3 + 27 
+ i x (i 2 x -3i 2 y + 1)C θ -2e x e y C 4κ -1 + (e 2
xe 2 y )S 4κ -2i y (3i 2

xiy 2 -1)S θ e x e y (C 4κ + S 4κ -1) + i x (i 2

x -3i 2 y -1)S θ (e 2

xe 2 y ) (C 4κ + S 4κ + 1)

+ 2(i 2 x + i 2 y -1)(i y C θ -i x S θ ) (e 2
xe 2 y )C 2κ + 2e x e y S 2κ

+ 3 2 + 27 16 e 2 x + e 2 y i x (i 2 x -3i 2 y + 1)C θ + i y (3i 2 x -i 2 y -1)S θ e y -C 3κ + C κ + e x S 3κ + S κ + i x (i 2 x -3i 2 y -1)S θ -i y (3i 2 x -i 2 y + 1)C θ e x C 3κ + e y S 3κ -e x C κ i y i 2 x -3i 2 y + 3 C θ + i x i 2 x + 5i 2 y -1 S θ + e y S κ i y 5i 2 x + i 2 y -1 C θ -i x 3i 2 x -i 2 y -3 S θ + 1 (1 -e 2
xe 2 y )

3 2

C 2κ i y (i 2 y -3i 2 x -1)C θ + i x (i 2 x -3i 2 y -1)S θ + S 2κ i x (i 2 x -3i 2 y + 1)C θ -i y (i 2 y -3i 2 x + 1)S θ + (i 2 x + i 2 y -1)(i y C θ -i x S θ ) (86) 
and:

V 

+ i x (i 2 x -3i 2 y -1)C θ (e 2
xe 2 y ) C 4κ -1 + 2e x e y S 4κ + i y (3i 2

xiy 2 + 1)S θ (e 2

xe 2 y ) (C 4κ + S 4κ + 1) + 2i x (i 2

x -3i 2 y + 1)S θ e x e y (C 4κ + S 4κ -1)

-2(i 2 x + i 2 y -1)(i x C θ + i y S θ ) (e 2
xe 2 y )C 2κ + 2e x e y S 2κ

+ 3 2 + 27 16 e 2 x + e 2 y i y (3i 2 x -i 2 y -1)C θ -i x (i 2 x -3i 2 y + 1)S θ e y -C 3κ + C κ + e x S 3κ + S κ + i x (i 2 x -3i 2 y -1)C θ + i y (3i 2 x -i 2 y + 1)S θ e x C 3κ + e y S 3κ -e x C κ i y i 2 x -3i 2 y + 3 S θ -i x i 2 x + 5i 2 y -1 C θ + e y S κ i x 3i 2 x -i 2 y -3 C θ -i y 5i 2 x + i 2 y -1 S θ + 1 (1 -e 2
xe 2 y )

3 2

C 2κ i x (i 2 x -3i 2 y -1)C θ -i y (i 2 y -3i 2 x -1)S θ -S 2κ i y (i 2 y -3i 2 x + 1)C θ + i x (i 2 x -3i 2 y + 1)S θ -(i 2 x + i 2 y -1)(i x C θ + i y S θ ) (87) 
with C 21 and S 21 the Earth gravitational potential Legendre coefficients of degree 2 and order 1. Their values are given in Appendix C. The potential terms of degree 2 and order 2, read: 

V C 22 (x eoe ) = µR 2 e C 22 a 3 3 (1 + i 2 x + i 2 y ) 2        - 1 2 + e 2 x + e 2 y 16        i 4 x -6i

B. Linearized Linear Time Varying GEO Dynamics

The matrices of the linearized dynamics (5) are given by:

A(t) = A K + A C 20 (t) + A C 21 (t) + A S 21 (t) + A C 22 (t) + A S 22 (t), (90a) 
D(t) = D K + D C 20 (t) + D C 21 (t) + D S 21 (t) + D C 22 (t) + D S 22 (t), (90b) 
A K = γ K                         
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (96) 

                         , (91a) 
D K = δ K 0 0 0 0 0 1 T , (91b) 
γ K = - 3 2 µ a 3 sk , δ K = µ a 3 sk -ω e , (91c) 
A C 20 = α 20                          0 S κ C κ 0 0 0 7 4 S κ -3 2 S 2κ -1 2 (1 -3C 2κ ) 0 0 -1 2 C κ -7 4 C κ 1 2 (1 + 3C 2κ ) 3 2 S 2κ 0 0 -1 2 S κ 0 0 0 -1 2 S 2κ 1 2 (1 + C 2κ ) 0 0 0 0 1 2 (C 2κ -1) 1 2 S 2κ 0 7 2 -13 4 C κ -13 4 S κ 0 0 0                          , (92a) 
D C 20 = α 21 0 -1 2 S κ 1 2 C κ 0 0 -1 T , (92b) 
α 20 = µ a sk 3R 2 e C 20 a 3 sk (92c) A C 21 = α 21                          0 0 0 4(C κ C -S κ S ) 4(S κ C + C κ S ) 0 0 0 0 6S 2 κ C -6C κ S κ C 0 0 0 0 -6C κ S κ C 6C 2 κ C 0 7 4 C κ C -3 2 C 2 κ C -3 2 C κ S κ C 0 0 1 2 (S κ C + C κ S ) 7 4 S κ C -3 2 C κ S κ C -3 2 S 2 κ C 0 0 1 2 (S κ S -C κ C ) 0 0 0 11S κ C -1C κ C 0                          , (93a) 
D C 21 = α 21 0 0 0 1 2 C κ C 1 2 S κ C 0 T , (93b) 
α 21 = µ a sk 3R 2 e C 21 a 3 sk (93c) A S 21 = β 21                         
A C 22 = α 22                          10S 2 S κ2Θ -21S 3κ2Θ C κ2Θ + 21C 3κ2Θ 0 0 -8C 2 -7 4 S κ2Θ + 7S 3κ2Θ 17S 4κ2Θ -S 2 -5C 2 -17C 4κ2Θ 0 0 1 2 C κ2Θ + 21C 3κ2Θ -7 4 C κ2Θ -7C 3κ2Θ 5C 2 -17C 4κ2Θ -17S 4κ2Θ -S 2 0 0 1 2 -S κ2Θ + 21S 3κ2Θ 0 0 0 -S 2 + S 2Θ -C 2 -C 2Θ 0 0 0 0 C 2 -C 2Θ -S 2 -S 2Θ 0 -21C 2 11 4 -C κ2Θ + 7C 3κ2Θ 11 4 S κ2Θ + 7S 3κ2Θ 0 0 -12S 2                          , (95a) 
D C 22 = α 22 -4S 2 1 2 S κ2Θ + 7S 3κ2Θ 1 2 C κ2Θ -7C 3κ2Θ 0 0 6C 2 , (95b) 
A S 22 = β 22                        
                         , (97a) 
D S 22 = β 22                                 4C 2 - 1 2 C κ2Θ + 7C 3κ2Θ 1 2 S κ2Θ -7S 3κ2Θ 0 0 6S 2                                 , ( 97b 
)
β 22 = µ a sk
3R 2 e C 21 a 3 sk (97c)

B(t) =                          0 2 0 S κ 2C κ 0 -C κ 2S K 0 0 0 1 2 C κ 0 0 1 2 S κ -2 0 0                          , (98) 
C(t) =           a sk -a sk C κ -a sk 0 0 0 0 0 0 2S κ -2C κ 0 0 2S κ -2C κ 0 0 1           . (99) 

C. Physical Parameters

This appendix gives numerical values for the physical parameters involved in the proposed article. In the sequel, the unit d stands for "day". The physical and orbital parameters of the Earth are:

• geocentric gravitational parameter: µ = 3.986 10 5 km 3 /s 2 = 2.9755 10 15 km 3 /d 2 ,

• mean rotation rate: ω e = 7.2921 10 -5 rad/s = 6.3004rad/d,

• coefficient of the spherical decomposition of the Earth gravitational field: see the Table ?? (these values have been taken from the reference Vallado [START_REF] Vallado | Fundamentals of Astrodynamics and Applications[END_REF] ),

• sidereal angle Θ(t): using the computation algorithm from Vallado, [START_REF] Vallado | Fundamentals of Astrodynamics and Applications[END_REF] for January 1 st , 2034, the value of the sidereal angle is: Θ 0 = 1.7579 rad. If t denotes the elapsed time since January 1st, 2034, the sidereal angle at time t is computed as: Θ(t) = Θ 0 + ω e t (for dates before the reference date, t has to be counted negatively),

• geostationary semi-major axis: a sk = 42165.8km. [START_REF] Vallado | Fundamentals of Astrodynamics and Applications[END_REF] ). The × means that for order 0, the S l0 coefficient does not exist.

D = - 1 .
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 1 Figure1: Flat output z 1 with its first and second derivatives: -: z 1 (t), --: ż1 (t), -• -: z1 (t).

Figure 3 :

 3 Figure 3: Flat output z 3 with its first and second derivatives: -: z 3 (t), --: ż3 (t), -• -: z3 (t).

Figure 4 :

 4 Figure 4: Control profile.

Figure 5 :

 5 Figure 5: Trajectory of the spacecraft in the station keeping window. * : initial point.

  κ C + C κ S ) 4(S κ S -C κ C )

CCCC

  2Θ = cos(2Θ), S 2Θ = sin(2Θ), κ2Θ = cos(κ sk -2Θ), S κ2Θ = sin(κ sk -2Θ), 3κ2Θ = cos(3κ sk -2Θ), S 3κ2Θ = sin(3κ sk -2Θ), 4κ2Θ = cos(4κ sk -2Θ), S 4κ2Θ = sin(4κ sk -2Θ).

  W -1 (t) + ÃK + ÃC 20 + ÃC 21 + ÃS 21 + ÃC 22 + ÃS 22 , D = DK + DC 20 + DC 21 + DS 21 + DC 22 + DS 22 ,

  2ω e -81 4 η C 22 + 29 8 α 20 -ω e -45 8 η C 22 + 55 2 η S 22 + 9 4 γ K -3 16 α 20 + 3ω e 15 4 η C 22 + 28 4 η S 22 -3 2 γ K + 1 8 α 20 -2ω e -195 8 η C 22 + 71 16 α 20 -ω e -56η C 22 + 36η S 22 + 4α 20 + 3ω e 12η C 22 -24η S 22 -2α 20 -2ω e C 22 + 16η S 22 + 15 4 α 20 -3ω e 15η C 22 -24η S 22 -5 2 α 20 + 2ω e 12η C 22 -20η S 22 -2α 20 + ω e

				-36η S 22
	77 2 η	-2η C 21 4 η C 22 -2η S 22 -3	2η C 21 2 η C 22 + 2η S 22 1	0 2 η C 22 -3

  cos nκ sk (t) + mΘ(t) , S nκ+mΘ = sin nκ sk (t) + mΘ(t) , with κ sk (t) = MΘ,sk + Θ(t), for n and mintegers.

	(83)
	    C
	  

n = cos n MΘ,sk , S n = sin n MΘ,sk ,

for n an integer.

  )(e x C κe y S κ ) + 2i x i y (e y C κ + e x S κ ) 20 the Earth gravitational potential Legendre coefficient of degree 2 and order 0. Its value is given in Appendix C.

						8	(e 2 x + e 2 y ) e x C κ + e y S κ
				9 2	+	7 2	(e 2 x + e 2 y ) (e 2 x -e 2 y )C 2κ + 2e x e y S 2κ
		-	3 2	1 (1 + i 2 x + i 2 y ) 2 -1 + y 2 -5(e 2 1 8 (e 2 x + e 2 y ) (i 2 x -i 2 x + e 2 y ) + 13 8 (e 2 x + e 2 y ) 2 (i 2 x -i 2 y )C 2κ + 2i x i y S 2κ
				7 -	123 8	(e 2 x + e 2 y ) [e x (i 2 x -i 2 y ) -2e y i x i y ]C 3κ + [e y (i 2 x -i 2 y ) + 2e x i x i y ]S 3κ
				17 -	115 3	(e 2 x + e 2 y ) -[4e x e y i x i y -(e 2 x -e 2 y )(i 2 x -i 2 y )]C 4κ + 2[e x e y (i 2 x -i 2 y ) + i x i y (e 2 x -e 2 y )]S 4κ
						(85)
	with C The potential terms of degree 2 and order 1 read:
	V C 21 (x eoe ) =	µR 2 e C 21 a 3	3 (1 + i 2 x + i 2 y ) 2
			9 4	+	7 4	e 2 x + e 2 y	-i y (3i 2 x -iy 2 + 1)C θ C 4κ + 1 (e 2 x -e 2 y ) + 2e x e y S 4κ

  S 21 (x eoe ) =

	µR 2 e S 21		3	
	a 3		(1 + i 2 x + i 2 y ) 2
	9 4	+	7 4	e 2 x + e 2 y	i y (3i 2 x -iy 2 -1)C θ -2e x e y C 4κ -1 + (e 2 x -e 2 y )S 4κ

  ) 2 C 2θ + 2i x i y S 2Θ e x C K + e y S K

	and:				
	V S 22 (x eoe ) =	µR 2 e S 22 a 3	3 (1 + i 2 x + i 2 y ) 2
		       -	1 2	+	e 2 x + e 2 y 16	       -i 4 x -6i 2 x i 2 y + i 4 y e x S κ+2Θ + e y C κ+2Θ
					+ 4(i 2 x -i 2 y )i x i y e x C κ+2Θ -e y S κ+2Θ + e x S κ-2Θ + e y C κ-2Θ
		+ 1 -	5 2	(e 2 x + e 2 y ) +	13 16	(e 2 x + e 2 y ) 2 -i 4 x -6i 2 x i 2 y + i 4 y S 2κ+2Θ + 4(i 2 x -i 2 y )i x i y C 2κ+2Θ
		+	7 2		-	123 16	(e 2 x + e 2 y ) i 4 x -6i 2 x i 2 y + i 4 y -e x S 3κ+2Θ + e y C 3κ+2Θ
					+ 4(i 2 x -i 2 y )i x i y e x C 3κ+2Θ + e y S 3κ+2Θ + e x S 3κ-2Θ -e y C 3κ-2Θ	(89)
		+	17 2	-	115 6	(e 2 x + e 2 y ) i 4 x -6i 2 x i 2 y + i 4 y -(e 2 x -e 2 y )S 4κ+2Θ + 2e x e y C 4κ+2Θ
					+ 4(i 2 x -i 2 y )i x i y (e 2 x -e 2 y )C 4κ+2Θ + 2e x e y S 4κ+2Θ + (e 2 x -e 2 y )S 4κ-2Θ -2e x e y C 4κ-2Θ
		+ 4		9 4	+	7 4	(e 2 x + e 2 y ) 2i x i y C 2θ -(i 2 x -i y ) 2 S 2Θ (e 2 x -e 2 y )C 2κ + 2e x e y S 2κ
		+ 4		3 2	+	27 16	(e 2 x + e 2 y ) 2i x i y C 2θ -(i 2 x -i y ) 2 S 2Θ e x C K + e y S K
		+	2 (1 -e 2 x -e 2 y )	2 3	2i x i y C 2θ -(i 2 x -i y ) 2 S 2Θ
						2 x i 2 y + i 4 y e x C κ+2Θ -e y S κ+2Θ
					+ 4(i 2 x -i 2 y )i x i y e x S κ+2Θ + e y C κ+2Θ + e x C κ-2Θ -e y S κ-2Θ
		+ 1 -	5 2	(e 2 x + e 2 y ) +	13 16	(e 2 x + e 2 y ) 2 i 4 x -6i 2 x i 2 y + i 4 y C 2κ+2Θ + 4(i 2 x -i 2 y )i x i y S 2κ+2Θ
		+	7 2		-	123 16	(e 2 x + e 2 y ) i 4 x -6i 2 x i 2 y + i 4 y e x C 3κ+2Θ + e y S 3κ+2Θ
					+ 4(i 2 x -i 2 y )i x i y e x S 3κ+2Θ -e y C 3κ+2Θ + e x C 3κ-2Θ -e y S 3κ-2Θ
		+	17 2	-	115 6	(e 2 x + e 2 y ) i 4 x -6i 2 x i 2 y + i 4 y (e 2 x -e 2 y )C 4κ+2Θ + 2e x e y S 4κ+2Θ
					+ 4(i 2 x -i 2 y )i x i y (e 2 x -e 2 y )S 4κ+2Θ -2e x e y C 4κ+2Θ + (e 2 x -e 2 y )C 4κ-2Θ -2e x e y S 4κ-2Θ
		+ 4		9 4	+	7 4	(e 2 x + e 2 y ) (i 2 x -i 2 y )C 2Θ + 2i x i y S 2Θ (e 2 x -e 2 y )C 2κ + 2e x e y S 2κ
		+ 4 x -i y + 3 2 + 27 16 (e 2 x + e 2 y ) (i 2 2 (1 -e 2 x -e 2 y )

with C 22 and S 22 the Earth gravitational potential Legendre coefficients of degree 2 and order 2. Their values are given in Appendix C.

Table 1 :

 1 C lm and S lm coefficients for the spherical harmonics decomposition of the Earth gravitational potential (values taken from Vallado

	degree l order m	C lm	S lm
	2	0	-1.083 10 -3	×
	2	1	-2.414 10 -10	1.543 10 -9
	2	2	1.574 10 -6	-9.038 10 -7

2 (i 2 xi 2 y )C 2Θ + 2i x i y S 2Θ(88)