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Abstract: Lane detection has been widely studied in the literature. However, it is most of the time applied to the automo-
tive field, either for Advanced Driver-Assistance Systems (ADAS) or autonomous driving. Few works concern
aeronautics, i.e. pilot assistance for taxiway navigation in airports. Now aircraft manufacturers are interested
by new functionalities proposed to pilots in future cockpits, or even for autonomous navigation of aircrafts in
airports. In this paper, we propose a scene interpretation module using the detection of lines and beacons from
images acquired from the camera mounted in the vertical fin. Lane detection is based on particle filtering and
polygonal approximation, performed on a top view computed from a transformation of the original image. For
now, this algorithm is tested on simulated images created by a product of the OKTAL-SE company.

1 INTRODUCTION

A lot of studies have been conducted in the automo-
tive domain on computer vision, in order to perform
scene interpretation required to provide reliable in-
puts for automatic driving or driver assistance, etc. As
such, the detection of road surface markings has been
thought of as a key factor for road and lane tracking
from a vehicle. Lane detection and road analysis are
currently used in driver assistance systems and pro-
vide multiple advantages. Lane detection is the main
element used for road modelling, intelligent driving,
vehicule localization or obstacle detection.

Two main types of methods are commonly used
for lane detection: model-based and feature-based
methods. Model-Based methods, often defined for
vehicule friendly roads, either on highways or on ur-
ban streets, are based on strong models: camera pa-
rameters, width and curvature of the road, position
of the vehicule with regards to the scene elements
(Asif et al., 2007), (Deng et al., 2013), (Loose and
Franke, 2010), number of road lines (Chapuis et al.,
1995), etc. Prior knowledge is necessary to build
the road model as they allow to predict where road
surface markings could be in images, but it must be
updated with measurements extracted from these im-
ages. These models present better robustness but re-
quire more computational resources and strong as-
sumptions on the scene geometry. Feature based-

methods use a combination of low level features such
as color models, contrast, shape, orientation of groups
of pixels and so on. They are of lower computa-
tional complexity compared to model-based methods,
which is an advantage when dealing with real-time
systems (Sun et al., 2006), (Lipski et al., 2008), (Hota
et al., 2009). However, these techniques may fail in
case of shadowing or occlusions which is prompt to
happen when dealing with obstacle detection.

Less studies have been devoted to scene interpre-
tation in aeronautics, when considering aircraft nav-
igation on taxiways (Theuma and Mangion, 2015),
(Tomas et al., 2017). Road models differ from airport
ones (gates, taxiway, runway) which also are complex
and varying environments requiring a frequent update
of their models. This paper proposes a scene inter-
pretation method based on weak models exploited to
detect taxiway horizontal markings and beacons. We
use a combination of observations and prior knowl-
edge of the scene to approximate the complex func-
tions describing the ground line shapes with a set of
pre-selected samples (Sehestedt et al., 2007), (Jiang
et al., 2010).

Assuming the airport is a local 2D environment, a
top view image is first computed by an Inverse Per-
spective Mapping (IPM) transformation, applied to
raw images acquired from a camera mounted in the
aircraft vertical fin. Different observation maps are
then created from this top view, and used by a par-



Figure 1: Functions for interpretation of airport scenes

ticle filter for the detection of lines. The use of the
particle filter is motivated by the need to implement
a probabilistic method instead of a deterministic one,
as we work on weak models. Clusters of points are
collected from the particle filter, arranged and merged
to determine the line equations by polygonal approx-
imation. Other elements such as beacons are detected
on the taxyway in the same way, and added to the de-
tected lines to produce an augmented reality view of
the taxiway.

The next section describes different functions in-
tegrated in our scene interpretation module. Results
are presented in the section 3, while contributions and
current works are summarized in the section 4.

2 METHODS

The different functions described in this section are
shown on Figure 1: they currently aim at building an
augmented view to be displayed in the cockpit; the
scene representation will be used later for alerting the
pilot if a risky situation is detected, or for autonomous
navigation of the aircraft on taxiways.

2.1 Inverse Perspective Mapping (IPM)

As presented in (Deng et al., 2013), the scene can be
presented, in the Euclidian space, either in the world
coordinate system or in any chosen image coordinate
system. We decided to use a top view transformation
by applying an Inverse Perspective Mapping to our
frame. The coordinate systems used are illustrated in
Figure 2.

Figure 2: Representation of the camera coordinate system
(blue) and IPM coordinate system (red)

Providing that we define a point in the world co-
ordinate system (respectively in the image coordinate
system) by the following coordinates PW (XW , YW , ZW )

(respectively PC(XC, YC, ZC)), we will note any trans-
formation in the world to camera coordinate system
process PW/C(XW/C, YW/C, ZW/C). The expression of
a point in the camera coordinate system is expressed
in Equation 1.

PC = [R1 R2 R3].PW + t (1)

R1, R2 and R3 represent the rotation between the two
coordinate systems in the three dimensions while t is
the translation part of the movement. PC can also be
defined as in Equation 2

PC = [XW/C YW/C ZW/C].PW +0W/C (2)

The homography H needed to change from the world
coordinate system to the image coordinate system can
be found in Equation 3. As we project the image on
the ground to create a top view, the ZW/C is not taken
into account. The homography used in our algorithm
can be found in Equation 4, where K is the intrinsic
matrix of the camera, D is the height of the camera
in relation to the ground and θ correspond to the tilt
value of the camera.

H = K.[XW/C YW/C 0W/C] (3)

H = K.

−1 0 x1n
0 sin(θ) D.cos(θ)
0 −cos(θ) D.sin(θ)

 (4)

To compute an IPM image adapted to our specifica-
tions, we perform a discretization of the image where
the dimensions of one cell are defined as (δX ,δY ).
This permits to describe the coordinate (i, j) of each
pixel in the IPM image in relation to its (X ,Y ) coor-
dinates in the image coordinate system. Equation 5
links the (i, j) and (X ,Y ) coordinates, where Di and
D j are the size of the IPM frame. The intensity of the
(i, j) cell is interpolated from the value of the (u,v)
cell in the image. The link between the (i, j) and (u,v)
coordinate is despicted in Equation 6. The Figure 3
exposes the IPM process. Results of the IPM are pre-
sented in Figure 4. All the following image treatments
will be applied to the resulting image shown in Fig-
ure 4(b). i
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Figure 3: Creation of IPM frame from camera frame
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Figure 4: (a) Original image, (b) IPM transformation
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2.2 Weighted Maps Computation

The transformed IPM image is used to create several
maps. The goal of these maps is to compute a weight
for each pixel before launching a particle filter on the
IPM image, for lane detection. The weight of a pixel
will increase as it is closer to the reference color of the
object to detect and its belonging to a detected border
of the object.

2.2.1 Edge map computation

Our algorithm uses two types of edge maps. One is
used to detect any border in the image whereas the
other is mainly based on the lane analysis. Combined,
they offer varied information.

The first map is created by using the Sobel gradi-
ent on the image intensity. The IPM image obtained
in Figure 4(b) is converted into a grayscale image and
a Sobel gradient is performed on the created image.
An exponential treatment is then applied to the re-
sult values in order to increase the contrast between

Figure 5: Edge map - Sobel Gradient

black and white pixels. Figure 5 is an example of the
provided map where the blurry effect is created by
our exponentional treatment. The exponential param-
eters are chosen with regards to our data to express
the noise in the measurement and confidence in the
measurement. The second edge map is based on the
model of a lane and a method proposed by (Bertozzi
and Broggi, 1998). In the aviation field, specifications
are numerous and common to all airports. The sizes
of the lanes that can be found in an airport are regu-
lated. We use the knowledge of the lane size for this
edge detection. The IPM frame is first converted in
the HSV (Hue, Saturation, Value) color-space, where
we select the saturation channel. The yellow color
of the lanes becomes much more expressive in this
representation. Based on the knowledge of the road,
our algorithm skims the resulting image of the satu-
ration channel in order to create a binary version of
the image. Each pixel is compared to its left and right
neighbors, in terms of saturation value and a threshold
is fixed to discriminate the pixels belonging to a lane
from the others. Once this binarization is computed,
we apply a distance transform, based on the algorithm
described by (Felzenszwalb and Huttenlocher, 2012)
and implemented in OpenCV, to the image obtained.
The result of this treatement is shown in Figure 6.

The map created thanks to the Sobel gradient en-
ables our algorithm to detect geographical informa-
tions such as borders between the tarmac and the grass
or beacons. It can help to create a model of the scene
and filter false positive detections. The second map
is focused on the known size of the main lane to fol-
low in an airport and reduce the number of borders
to examine. To detect only a lane, we will use the
second map whereas the beacons and tarmac delimi-
tations are computed with the first map.

Using the Sobel Gradient map combined with the



Figure 6: Edge map - Lane model

second map could be efficient for double checking as
the size of the lane can vary with partial occlusion or
curvy parts but the combination of the two maps in-
crease the computation time. We know that when the
lane becomes curvy, its apparent size in the IPM im-
age can be reduced and the lane might not be detected
by our algorithm. This is why we apply treatments
to the second map, to add noise in order to simulate
our confidence in the measurement and increase the
detection rate.

2.2.2 Color map computation

The color of the various lanes that can be encoun-
tered are regulated and defined in specific range of
yellow and white. We can use these specifications in
our model, to create a map of similarity between the
color of a pixel and the reference color. To ensure
that the algorithm is more robust to wheather phe-
nomenons such as shading, we compute the color map
in the LAB color-space. A patch of reference color is
defined in the LAB color-space and our algorithm ap-
plies a convolution between this patch of the reference
color and the color IPM image (see Figure 4(b)) in or-
der to determine a distance between the two patches
of pixels, based on the A and B channels. Figure 7
shows the resulting color map.

2.2.3 Global maps computation

We combine the Edge and Color maps defined above
to create a measure map. A value is attributed to
each pixel and represents the multiplication of a color
weight by the edge weight, computed thanks to the
two previous maps. A specific exponential treatment
is applied to the color and edge weights to increase the
contrast between a pixel belonging to a lane and the
others. We also create a binarized version of this map

Figure 7: Color map

(a) (b)
Figure 8: (a) Weights map, (b) Binarized map

used for the particle initialization while the weights
will be used for the particle survival estimation. The
results are presented in Figure 8, where it can be seen
that most of the additional noise brought by the edge
map is filtered by the use of a combination of the two
maps, which increase the accuracy of the particle fil-
ter and reduce the computation time.

2.3 Particle Filter

2.3.1 Particle Initialization

As explained in the introduction, we decided to use
a particle filter for the lane detection, using the
bootstrap filter or Sequential Importance Resampling
(SIR). The Figure 9 represents its operation. We will
note the state variable xt a random variable describing
the state of a system at time t, yt a random variable de-
scribing the sensor measurements at time t, wt a vari-
able describing the computed correction of the predic-
tions (importance weight) and q(xk | x0:t−1,y0:t) the
proposal distribution. The particle filter approximates
the probable distribution of Xt with a set of sam-
ples, or particles noted p(x0:t | y1:t ) computed with{

x(i)0:t ,w
(i)
0:t , i = 1..n

}
. Particles are updated through a
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Figure 9: Principle of the particle filter

series of predictions based on the prior knowledge of
the system and corrections of these predictions based
on the sensor measurements. The estimation of the
current state variable x̂t is selected with the argmax
function.

The initialization is done by scanning the global
map row by row, from bottom to top, until white pix-
els are detected, these pixels represent the probable
starting point of a lane. The first line composed of
white pixels will be used as the initialization. Any
group of connected white pixels is defined as a seg-
ment on which we randomly scatter a defined number
of particles.

2.3.2 Particle correction and future prediction

The particle filter implemented in our algorithm scans
the image every n rows, where n has been defined
to be small enough to detect possible new starts of
lanes and big enough to reduce the computational
time. At initialization, these particles are associated
to a weight given by the global map. The weights are
used at time t > t0 to give higher importance to most
probable particles, thus resulting in better prediction
for future particles through multinomial resampling.
The weights of the different particles are normalized
and create a cumulative weights scale. Random val-
ues between 0 and 1 are computed and represented in
this scale where they are matched to specific particles.

To predict new particules, we only use, as past po-
sitions, the positions of the particles related to the ran-
dom values. The new particles will follow a Gaussian
distribution centered around the past particle.

2.3.3 Cluster mergings and separations

As we said before, the airport areas are difficult to
model because they can easily vary. While the parti-
cle filter scans the image row after row, new lanes can
appear, old lanes can disappear and several lanes can
merge to form only one remaining lane. It is also pos-
sible that false positives trigger new lanes detections.

The initialization of particle clusters for new detected
lanes at time t and the prediction of future particles
for already existing clusters are done before launch-
ing the t + 1 step. To manage the cases where a lane
can disappear or when a false positive has created a
suspicion of lane, we implemented several thresholds.
A survival likelihood is computed for each particle,
with regards to its weight and the weights of the other
particles, such as in Equation 7 where wi is the nor-
malized weight, n is the number of particles and pi
is the survival likelihood. Once several particles have
reached a determined value of survival likelihood, the
cluster of particles is terminated.

pi =

{
1, i f wi ≥ 1

n
n∗wi, otherwise

(7)

In case of merging of lanes or separation of a de-
tected lane in multiple lanes, we decided to study the
barycenter of each cluster of particles. Based on their
proximity, our algorithm either merges the clusters in
one or creates new clusters for new detected lanes.
An illustration of this cases can be found in Figure 10
where the green pixels represent particles with high
survival likelihood while red pixels represent parti-
cles with low survival likelihood. It also shows as
new lanes are tracked and clusters are merged.

2.4 Line extraction

2.4.1 Polygonal approximation

Once the particle filter processing of the image is fin-
ished, the algorithm output is a list of all the created
clusters and the positions of its particles at each iter-
ation of the particle filter. We select the most promi-
nent particle for each iteration based on the particle
weight. We then choose to approximate the detected
lanes by affine equations. As the clusters can some-
time include curves, we perform a polygonal approx-
imation. This increases the number of clusters but the
approximated lanes for the cluster positions are more
accurate. As the lanes in the tarmac will not be too
curvy, we can use this method without increasing the
computational time.

2.4.2 Line fitting and cluster merging

Most of the time, we can see that a unique lane can be
separated in multiple clusters by the previous steps.
It also happens when there is a crossing in the image,
where a straight lane will separate in two and reappear
few meters ahead. As we need to give useful informa-
tion to the pilots, we decided to recreate this lanes by
merging the clusters. Figure 11 is an example of two



(a)

(b)
Figure 10: (a) Fusion of clusters, (b) New lane tracking

Figure 11: Clusters to be merged together

clusters to be merged together to form one lane. For
each cluster of positions, we use a line fitting algo-
rithm. Lines can either be vertical or horizontal. To be
able to compute the cluster line equation, we differen-
ciate these two cases. Once lines have been computed
for each cluster, we compare them between each other
in order to merge similar clusters and recreate the ob-
served lanes in the image.

2.5 Beacon extraction

The main goal of our algorithm is to perform scene
analysis and lane detection. In the sections 2.2
and 2.3, we defined the method for the lane detection
but it can also be applied for beacon detection or tar-
mac limits detection. For the lane detection, we used
an edge map based on the model of a vertical straight
lane. In order to detect the horizontal lanes, we per-
form a transposition on the image before launching
our algorithm again. The results of the two iterations
are then mixed together. The process is also simi-
lar for beacons detection, for which we use the Sobel
edge map and a specific color map. As we use the
IPM view, the beacons are deformed and can be seen
as little blue stripes. Those are detected by our al-
gorithm, from which we select the first position, as it
represents the real position of the beacon.

3 RESULTS

In order to illustrate the results of our algorithm, we
simulated a case of line intersection, as we can see in
Figure 4(b), which is a case that can commonly occur
in airport areas.

The airplane model used for this simulation
is a A380 and the camera, which resolution is
1280pX960p and horizontal field of view is 80 de-
grees, is mounted on its fin at a distance D of 19,5
meters above the ground and an angle θ of 20 de-
grees. Our goal is to perform scene analysis to im-
prove pilots comprehension of the environment. Our
specifications is to analyse the scene up to 350 meters
ahead. For our algorithms, the image is represented
by an IPM view of resolution 1400pX14OOp where
each pixel represents an area of 25cmX25cm.

Figure 12 gives an overall view of the algorithm
results. In Figure 12(a) the green pixels represent
the estimation of the beacon position. Figure 12(b)
shows the results of the particle filter on the vertical
lines, with red points representing the particles with
low survival likelihood, where lines estimations are
highlighted in green in Figure 12(c). Figure 12(d)
and 12(e) follow the same process but on the trans-
posed IPM image.

To produce an image which could be easily used
by pilots, we return to the original view by performing
an inverse homography to highlight the detected lanes
and beacons in the real image. The result is shown in
Figure 13, where Figure 13(a) shows the combination
of the clusters detected in Figure 12(b) and 12(d).

The estimation of the lines positions is quite ac-
curate. The positions of the beacons, colored in red



(a) (b) (c)

(d) (e)
Figure 12: (a) Detected beacons based on the original image, (b) Position of clusters from the particle filter based on the
original image, (c) Detected lines based on the original image, (d) Position of clusters from the particle filter based on the
transposed image, (e) Detected lines based on the transposed image

(a) (b)
Figure 13: (a) Result of the combined position of clusters, (b) Result of the combined lines (green) and beacons (red)

in Figure 13(b) are nearly all matching the original
beacon positions. However, our algorithm does not
precisely detect the curve part of the taxiway lanes.
Any curved part brings noise to the lane detection be-

cause our lane detection algorithm is based on an edge
map established by the lane model. On curved parts,
the lane model is modified and not accurately repre-
sented in the resulting edge map. Merging the two



edge maps in one with the same operation used to cre-
ate the global weights map could improve our algo-
rithm accuracy on curved parts without significantly
increasing the computation time.

4 CONCLUSIONS AND
PERSPECTIVES

In this paper, we presented an accurate algorithm for
scene analysis and lane detection in an airport taxi-
way, based on an IPM transformation and a particle
filter. For the moment, the algorithm is based on a
straight lane model. For curved parts, as the lane
model changes, we will need to explore new mod-
els, in order to detect any type of lanes in the scene
and give a more detailed view to the pilots. Extra tun-
ing of the road size threshold based on the modelling
of the size decrease in curved parts would greatly in-
crease the lane detection.

By now, images used for our algorithm validation
are produced by a simulator. They are modelised at
daytime, with clear weather conditions. Our objec-
tive is to generalize our algorithm to other weather
conditions such as night time, rainy or foggy days. To
achieve this, we plan to increase our dataset by com-
bining information from RGB camera and IR camera.
As the simulation tool can be tuned to match our cam-
era, we can work on images similar to real ones.

Our future goal is to use the combination of lanes
and beacons, with the help of other scene elements
such as the tarmac limits and panels on the side of
the tarmac for example, to implement a line tracking
algorithm. This algorithm will enable us to perform
egomotion estimation. This information can then be
used in an object detection algorithm also based on
an IPM transformation, which goal is to detect ob-
jects combining the egomotion estimation and images
at time t and t−1.

For now, our algorithm is not optimized and is
launched on a basic computer, with a computation
time of few seconds for lines, beacons and tarmac de-
tection for one image. In the future, we plan to opti-
mize the code and implement it on a dedicated archi-
tecture including multi-cores CPU, GPU and FPGA.
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