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Abstract: For the improvement of safety and efficiency, fault diagnosis becomes increasingly
important in mining industry. The expansion of flotation processes with high-tonnage cooper
concentrators demands the use of large flotation circuits in which the large amount of
instrumentation and interconnected subsystems (with coupled measured and non-measured
variables) makes this process complex. Moreover, in a flotation process, any equipment failure
can lead to a fault condition, which will affect the operation of this process. This paper proposes
an approach for on-line fault diagnosis useful for a large flotation circuit based on a distributed
architecture. In this approach, structural analysis is used for the design of the distributed fault
diagnosis system. Finally, a procedure for the implementation of local diagnosers for on-line
operation is presented and illustrated with an application to a flotation process.
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1. INTRODUCTION

Nowadays, the recovery is one of the most important
process in mining industry. Currently, the recovery of
minerals in this industry is mainly made through the
flotation processing technique around the world.

Froth flotation uses the difference in surface properties
to physically separate minerals from gangue and is one
of the most widely used methods of ore concentration.
In order to improve the recovery of valuable minerals,
industrial flotation practice uses multiple cells. These cells
are arranged in series forming a bank. A combination of
banks is referred as flotation circuit. It is common for
conventional flotation cells to be assembled in a circuit,
with rougher, cleaner, and scavenger cells, which can
be arranged in a designed configuration. On the other
hand, in recent decades, the expansion of flotation with
high-tonnage copper concentrators in Peru, Chile, etc.
(O’Connell et al., 2016), has been demanding the use of
large flotation circuits consisting of a large number of
banks, with several cells each one.

Flotation equipment requires a machine for mixing and
dispersing air throughout the mineral slurry while remov-
ing the froth product. Instrumentation is also necessary for
a successful implementation of control strategies. The ulti-
mate aim of control is to increase the economic efficiency of
the process by seeking to optimise performance, and there
are several strategies which can be adopted to achieve this,
(Wills, 2006). In the flotation process, any equipment fail-
ure (in valves, sensors, pipelines, etc.), can lead to a fault
condition, which will affect the operation of this process. In
(Xu et al., 2012; Ming et al., 2015), methodologies for fault

detection in flotation process operation that use analysis of
variables measurement are proposed. The use of Principal
Component Analysis (PCA) models is proposed in (Bergh
and Acosta, 2009) to detect instrumentation failures on
a flotation column. The development of fault diagnosis
systems in mining industry is very important because an
effective diagnosis of faults may have a high economic
and safety impact. However, fault diagnosis in large flota-
tion circuits is a difficult task due not only to the large
amount of instrumentation, but also to its interconnected
subsystems with coupled (measured and non-measured)
variables between them. In this case, the implementation
of a global diagnoser may be an impractical option because
of the amount of needed communication, (Blanke et al.,
2016). Thus the use of centralized architecture for on-line
fault diagnosis can be very expensive and lack robustness
for large-scale interconnected subsystems, (Pérez-Zuniga
et al., 2018). One possibility to overcome this difficulty is
to employ a distributed diagnosis architecture.

Recently, a distributed diagnosis framework for physical
systems with continuous behavior using structural model
has been proposed in (Bregon et al., 2014) and a dis-
tributed diagnosis approach with a set of diagnosers that
are as local as possible was presented in (Khorasgani
et al., 2015). In distributed diagnostic architectures, unlike
centralized ones, it is not mandatory to know the model of
the global system. Distributed architectures use subsystem
models for diagnosis and local diagnosers (LDs), so they
would be more appropriate for complex systems, (Pérez-
Zuniga et al., 2017), such as the large flotation circuits.

The aim of this paper is to propose an approach for on-
line fault diagnosis in flotation process circuit based on a



distributed architecture propose in (Pérez-Zuniga et al.,
2017). In this approach, structural analysis is used as an
efficient tool for the design of fault diagnosis systems for
nonlinear processes, (Isermann, 2006). Likewise, in order
to optimize the offline design of LDs, Fault-Driven Minimal
Structurally Overdetermined (FMSO) sets are calculated
and guarantee minimal redundancy of analytical redun-
dancy relations (ARR) generators, (Pérez-Zuniga et al.,
2015). At last, a procedure for the residual generation for
on-line operation is presented and shown with the flotation
process.

2. PROBLEM STATEMENT

In a flotation process, the pulp is introduced into the
first cell, the froth is collected through launders and the
remaining pulp flows to the next cell. The magnitude of
the flow depends on the pressure difference between two
adjacent cells, the position of the control valves, and the
viscosity and density of the pulp. Figure 1 shows the
flotation process under study.
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Fig. 1. Diagram of the flotation process under study.

Due to the physical characteristics of the flotation process,
and considering the disturbances caused by the composi-
tion of the minerals and the constant and arduous work of
the system, these systems usually have a limited efficiency,
which is evidenced by faults in sensors, actuators and the
system such as leaks in tanks and pipes, (Jamsa et al.,
2003).

For the application of the structural analysis approach,
let the system description consist of a set of n equations
involving a set of variables partitioned into a set Z of nZ
known (or measured) variables and a set X of nX unknown
(or unmeasured) variables. We refer to the vector of known
variables as z and the vector of unknown variables as x.
The system may be impacted by the presence of nf faults
that appear as parameters in the equations. The set of
faults is denoted by F and we refer to the vector of faults
as f.

Definition 1. (System). A system, denoted Σ(z, x, f) or Σ
for short, is any set of equations relating z, x and f. The
equations ei(z, x) ⊆ Σ(z, x, f), i = 1, . . . , n, are assumed
to be differential or algebraic in z and x.

The flotation process under study has 5 levels at different
altitudes (h1 to h5) and is composed of 41 equations (36
for the system and 5 linked to the level control of each
stage). Later, we assumed each level with outlet pipe as
a subsystem so this system is composed by 5 subsystems.
The flow qin refers to the pulp inflow, while the flow qout is

related to the tailings. There are a set of 5 measurements
y1 to y5 and a set of 5 control valves u1 to u5.

3. BACKGROUND THEORY

In this section, we summarize some important concepts
presented in previous works related to the generation of
diagnostic tests using structural analysis. Structural anal-
ysis allows to obtain structural models that are very useful
for the design of Model Based Diagnosis (MBD) systems.
The main assumption is that each system component is
described by one or several constraints; thereby, violation
of at least one constraint indicates that the system com-
ponent is faulty.

The structural model of the system Σ(z, x, f), also de-
noted with some abuse of notation by Σ(z, x, f) or Σ in
the following, can be obtained abstracting the functional
equations. It retains a representation of which variables
are involved in the equations. This abstraction leads to
a bipartite graph G(Σ ∪ X ∪ Z,A), or equivalently to
G(Σ ∪ X,A), where A ⊆ A and A is a set of edges such
that a(i, j) ∈ A iff variable xi is involved in equation ej .

The structural model Σ(z, x, f) for this system is composed
of 41 equations e1 to e41 relating the known variables Z =
{u1, u2, ..., u5, y1, y2, ..., y5, qin, qout}, the unknown vari-
ables X = {ẋ1, x1, ẋ2, x2, ẋ3, x3, ..., ẋ8, x8, q0, q1, q2, ..., q8}
and the set of sensors, actuators and process faults F =
{f1, f2, f3, f4, f5, ..., f16}.

3.1 Analytical Redundancy Relations

Analytical redundancy relations (ARR) are equations that
are deduced from an analytical model and only involve
measured variables.

Definition 2. (ARR for Σ(z, x, f)). Let Σ(z, x, f) be a sys-
tem. Then, a relation arr(z, ż, z̈, ...) = 0 is an ARR for
Σ(z, x, f) if for each z consistent with Σ(z, x, f) the rela-
tion is fulfilled.

Definition 3. (Residual generator for Σ(z, x, f)). A system
taking a subset of the variables z as input, and generating
a scalar signal arr as output, is a residual generator for
the model Σ(z, x, f) if, for all z consistent with Σ(z, x, f),
it holds that lim

t→∞
arr(t) = 0.

We use the decomposition of Dulmage Mendelshon as a
tool to compute redundant sets using structural analysis,
(Dulmage and Mendelsohn, 1958). Making use of this
permutation, a system model Σ can be divided into three
parts: the structurally overdetermined (SO) part Σ+ with
more equations than unknown variables; the structurally
just determined part Σ0, and the structurally underdeter-
mined part Σ− with more unknown variables than equa-
tions, (?).

Definition 4. (Structural redundancy). The structural re-
dundancy ρ

Σ′ of a set of equations Σ′ ⊆ Σ is defined as
the difference between the number of equations and the
number of unknown variables in Σ′.

Definition 5. (Fault support). The fault support FΣ′ of a
set of equations Σ′ ⊆ Σ is defined as the set of faults that
are involved in the equations of Σ′.



Definition 6. (PSO and MSO sets). A set of equations Σ
is proper structurally overdetermined (PSO) if Σ = Σ+

and minimally structurally overdetermined (MSO) if no
proper subset of Σ is overdetermined (Krysander et al.
(2010)).

Since PSO and MSO sets have more equations than vari-
ables, they can be used to generate ARRs and residuals.

A Fault-Driven Minimal Structurally Overdetermined
(FMSO) set can be defined as an MSO set of Σ(z, x, f)
whose fault support is not empty.

Let us define Zϕ ⊆ Z, Xϕ ⊆ X, and Fϕ ⊆ F as the
set of known variables, unknown variables involved in the
FMSO set ϕ, and its fault support, respectively. Next, we
summarize the definition of FMSO set,

Definition 7. (FMSO set). A subset of equations ϕ ⊆
Σ(z, x, f) is an FMSO set of Σ(z, x, f) if (1) Fϕ 6= ∅ and
ρϕ = 1 that means |ϕ| = |Xϕ|+ 1, (2) no proper subset of
ϕ is overdeterminated. (Pérez-Zuniga et al., 2017)

We propose the use of FMSO sets that guarantee to always
be impacted to faults contrary to the MSO sets that not
may not be impacted by faults. Based on the concept of
FMSO set, we summarize the concept of detectable fault,
and isolable fault :

Definition 8. (Detectable fault). A fault f ∈ F is de-
tectable in the system Σ(z, x, f) if there is an FMSO set
ϕ ∈ Φ such that f ∈ Fϕ.

Definition 9. (Isolable fault). Given two detectable faults
fj and fk of F , j 6= k, fj is isolable from fk if there exists
an FMSO set ϕ ∈ Φ such that fj ∈ Fϕ and fk 6∈ Fϕ.

Additionally, a Clear Minimal Structurally Overdeter-
mined (CMSO) set is a MSO set of Σ(z, x, f) whose fault
support is empty.

3.2 Distribution and Related Notions

A distributed diagnosis architecture assumes a decompo-
sition of the process into subsystems, each with its cor-
responding LD, with similar functions and with possible
communication between them. This communication must
be properly designed; therefore, the local diagnoses are
globally consistent. This architecture is shown in Figure
2.

Fig. 2. Distributed diagnosis architecture

For the flotation process, in this paper we propose the
design of the distributed system taking into account only

the models of each subsystem to design LDs independently
considering minimizing the communication between them
until reaching the same diagnosis as with a centralized
diagnosis. Let us consider the system Σ and define the
following:

A decomposition of the system Σ(z, x, f), into several sub-
systems Σi(zi, xi, fi) is defined as a partition of its equa-
tions. Let Σ(z, x, f) = {Σ1(z1, x1, f1), ...,Σn(zn, xn, fn)}
with Σi(zi, xi, fi) ⊆ Σ(z, x, f),

n⋃
i=1

Σi(zi, xi, fi) = Σ,

Σi(zi, xi, fi) 6= ∅ and Σi(zi, xi, fi) ∩ Σj(zj , xj , fj) = ∅
if i 6= j. where zi is the vector of known variables in
Σi, xi is the vector of unknown variables in Σi and fi
is the vector of faults in Σi. The set of variables and
faults of the ith subsystem Σi, denoted as Xi, Zi, and Fi

respectively, are defined as the subset of variables of X,
Z, and F respectively, that are involved in the subsystem
Σi(zi, xi, fi) also denoted by Σi.

For the flotation process, we consider each level as a
subsystem, therefore, the first subsystem includes a tank
and the outlet pipe, the second to the fourth subsystems,
contain 2 tanks, the pipe between them and the outlet
pipe and the fifth subsystem includes a tank and the outlet
pipe, see Table 1.

Table 1. Model decomposition of the flotation
process system into subsystems Σi(zi, xi, fi),

i = 1, 2, 3, 4, 5.

Σ1 = {e1, e2, e3, e4, e5, e6, e7} F1 = {f1, f2}
X1 = {ẋ1, x1, q0, w1} Z1 = {u1, y1, qin}
Σ2 = {e8, e9, e10, ..., e16} F2 = {f3, f4, f5, f6}
X2 = {ẋ2, x3, ẋ3, q2, w2} Z2 = {u2, y2}
Σ3 = {e17, e18, e19, ..., e25} F3 = {f7, f8, f9, f10}
X3 = {ẋ4, x5, ẋ5, q4, w3} Z3 = {u3, y3}
Σ4 = {e26, e27, e28, ..., e34} F4 = {f11, f12, f13, f14}
X4 = {ẋ6, x7, ẋ7, q6, w4} Z4 = {u4, y4}
Σ5 = {e35, e36, e37, ..., e40} F5 = {f15, f16}
X5 = {ẋ8, q8, w5} Z5 = {u5, y5}

The set of local variables of the ith subsystem, denoted by
X l

i , is defined as the subset of variables of Xi that are only
involved in the subsystem Σi.

Definition 10. (Shared variables). The set of shared vari-
ables of the ith subsystem, denoted as Xs

i , is defined as:

Xs
i =

n⋃
j=1,j 6=i

(Xi ∩Xj) = Xi \X l
i (1)

The set of shared variables of the whole system Σ is
denoted by Xs.

Without loss of generality, we consider that all known vari-
ables of Zi are local to the subsystem Σi, for i = 1, . . . , n.
If the same input was applied to several subsystems, it
could be artificially replicated.

3.3 Distributed FMSO sets

Definition 11. (Local FMSO set). ϕ is a local FMSO set
of Σi(zi, xi, fi) if ϕ is an MFSO set of Σ(z, x, f) and if



ϕ ⊆ Σi, Xϕ ⊆ Xi and Zϕ ⊆ Zl
i . The set of local FMSO

sets of Σi is denoted by Φl
i. The set of all local FMSO sets

is denoted by Φl =
n⋃

i=1

Φl
i.

Definition 12. (Shared FMSO set). ϕ is a shared FMSO
set of subsystem Σi(zi, xi, fi) if ϕ is an FMSO set of

Σ̃i(z̃i, x̃i, f̃i), where z̃i is the vector of variables in Z̃i = Zi∪
Xs

i , x̃i is the vector of variables in X̃i = X l
i , and f̃i = fi).

The set of shared FMSO sets for Σi is denoted by Φs
i . The

set of all shared FMSO sets is denoted by Φs =
n⋃

i=1

Φs
i .

From the above definition, a shared FMSO set ϕ for
subsystem Σi(zi, xi, fi) is such that ϕ ⊆ Σi, Xϕ ⊆ X l

i ,
Zϕ ∩Xs

i 6= ∅, and Zϕ ⊆ (Zi ∪Xs
i ).

Definitions 11 and 12 can also be applied to CMSO sets
to define local CMSO sets Λl

i and shared CMSO sets Λs
i .

The set of all shared CMSO sets is denoted by Λs.

Definition 13. (Compound FMSO set). A global FMSO
set ϕ that includes at least one shared FMSO set ϕ′ ∈ Φs

i is
called a compound FMSO set. The set of compound FMSO
sets of Σi is denoted by Φc

i . The set of all compound FMSO

sets is denoted by Φc =
n⋃

i=1

Φc
i .

Definition 14. (Root FMSO set). If a compound FMSO
set ϕ ∈ Φc includes a shared FMSO set ϕ′ ∈ Φs, then
ϕ′ is a root FMSO set of ϕ.

Definition 15. (Locally detectable fault). f ∈ Fi is locally
detectable in the subsystem Σi(zi, xi, fi) if there is an
FMSO set ϕ ∈ Φl

i such that f ∈ Fϕ.

Definition 16. (Locally isolable fault). Given two locally
detectable faults fj and fk of Fi, j 6= k, fj is locally
isolable from fk if there exists an FMSO set ϕ ∈ Φl

i such
that fj ∈ Fϕ and fk 6∈ Fϕ.

Some properties required for the generation of compound
FMSO sets starting from shared FMSO sets are detailed
in Pérez-Zuniga et al. (2017)

4. DISTRIBUTED DIAGNOSIS

First, a set of distributed local diagnosers (LD) that
together make the entire system completely diagnosable
through compound FMSO sets is obtained, then residual
generators that make it possible to detect and isolate
all system faults are implemented. First, Algorithm 1 for
generating local diagnostics off-line is applied and then
Algorithm 2 is proposed for on-line residual generation.

4.1 Offline distributed generation of LDs

The LD design is done off-line in Algorithm 1. First,
local FMSO sets are computed for every subsystem Σi.
If there is any fault not locally detectable, then a set
of compound FMSO sets is calculated to achieve full
diagnosability for all the faults in Fi. The procedure to
compute ’good’ compound FMSO sets starting with ϕ∗ as
a root FMSO set makes use of an optimization heuristic
based on the number of shared variables and on the
number of subsystems involved with the aim of minimizing
communication between subsystems.

Algorithm 1. Offline Generation of LDs.

1: for i=1...n do
2: Φi = ∅;
3: Φl

i ← Calculate local FMSO sets of Σi;
4: if there is any fault f ∈ Fi not locally detectable
5: or not locally isolable with the set of local
6: FMSO sets Φl

i then
7: Φs

i ← Calculate shared FMSO sets of Σi;
8: Λs

i ← Calculate shared CMSO sets of Σi;
9: end if

10: while it exists f ∈ Fi that is not detectable
11: or isolable do
12: Let ϕ∗ ∈ Φs

i such that f ∈ Fϕ∗ be the ’best’
13: (not already selected) shared FMSO set of Φs

i ;
14: Label ϕ∗ as root FMSO set: ϕr ← ϕ∗;
15: Let Xs

ϕr
be the set of shared variables of ϕr;

16: Φc∗
i ← Build a ’good’ compound FMSO set

17: including ϕ∗ by always selecting the ’best’
18: shared FMSO sets to cover newly introduced
19: shared variables;
20: Φi ← Φi ∪ Φc∗

i ;
21: Φl∗

i ← Find a minimal cardinality set of local
22: FMSO sets achieving the same diagnosability
23: as all local FMSO sets;
24: Φi ← Φi ∪ Φl∗

i ;
25: end while
26: end for

4.2 On-line distributed residual operation of LDs

After the off-line design of the LDs performed with algo-
rithm 1, the online operation of the distributed diagnoser
relies on the bank of residual generators ARRi selected
for each LD LDi, i = 1, . . . , n, fed by measured signals
from their corresponding subsystems. As shown in Figure
3, fault isolation is carried out after fault detection using
local fault signature matrices according to Definition 17.

Definition 17. (FSM of a subsystem). Given a set ARRi

composed of nri ARRs and Fi the set of considered nfi
faults for the subsystem Σi and consider the function
ARRi × Fj,i −→ 0, 1, then the signature of a fault f ∈
Fi is the binary vector FSi(f) = [τ1, τ2, ...τnr

i
]T where

τk = 1 if f is involved in the equations used to form
arrk ∈ ARRi, otherwise τk = 0. The signatures of all
the faults in Fi together constitute the fault signature
matrix (FSM) FSMi for subsystem Σi, i.e. FSMi =
[FSi(f1), . . . , FSi(fnf

i
)]T .

5. APPLICATION TO THE FLOTATION PROCESS

5.1 Offline distributed generation of LDs

In this section, the construction of the LD for each sub-
system is presented in order to diagnose all system faults.
Below the steps of the offline design:
1.- The local FMSOs are calculated for each of the sub-
systems, considering only local information.

Φl
1 = Φl

2 = Φl
3 = Φl

4 = Φl
5 = ∅ (2)

No local FMSOs were found considering only informa-
tion from each subsystem. The shared FMSOs for each



Fig. 3. Scheme of distributed generation of LDs.

Algorithm 2. On-line Residual Operation of LDs.

1: for i=1...n do
2: For each LD:
3: Compute ARRs for LDi

4: for j=1...m do
5: For all selected compound FMSO sets:
6: ARRi,j ← Compute analytical residual
7: generators of LDi;
8: Save the set of known variables of
9: each ARRj,i;

10: ZLDi
← ZLDi

∪ ZARRj,i
;

11: end for
12: By means of the fault signature matrix (FSMi)
13: verify the isolability of faults of each subsystem;
14: end for
15: Add the known variables of the vector ZLDi

to the
fault diagnosis software for the online calculation of
the ARRs of the LDs;

16: Generate a on-line scalar signal arrk from
17: the respective ARRj,i using the signals of ZLDi

.

subsystem are then determined by considering the vector
of shared variables (Xs = {x2, x4, x6, x8, q1, q3, q5, q7}) as
part of the vector of known variables for each subsystem.

2.- For subsystems σ1 to σ5, shared FMSO sets are
computed, Results are given in Table 3.

3.- For each subsystem, Algorithm 1 chooses from the set
of shared FMSO sets, a subset that is labeled as root
FMSO set and complete with a shared FMSO set each
of its shared variables until get a set of compound FMSO
sets that can diagnose all the faults of that subsystem.
The set of compound FMSO sets capable of detecting and
isolating the faults constitute the LD of the corresponding
subsystem. Results are given in Table 3.

5.2 On-line distributed residual operation of LDs

Using Algorithm 2, the ARRs are calculated and the
isolation of the 16 faults of this system is verified, as shown
in Table 4 to 8. As example, Figure 4 shows the ARRs
operating online for subsystem 1, as can be seen in the
case of a momentary fault of the tank level sensor 1 (f1)
from 600 s. up to 650 s., there is a detection of ARR1 and
no detection of ARR2, which demonstrates the isolation
of this fault locally.

Φs
1 = {ϕ1, ϕ2, ϕ3}

Σ1 ϕ1 = {e2, e5, e6}, ϕ2 = {e1, e3, e4, e5}
ϕ3 = {e1, e2, e3, e4, e6}
Φs

2 = {ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, ϕ9, ϕ10, ϕ11}
ϕ4 = {e12, e14, e15}, ϕ5 = {e9, e11, e13, e14}

Σ2 ϕ6 = {e9, e11, e12, e13, e14, e15}, ϕ7 = {e8, e10, e11, e13, e14}
ϕ8 = {e8, e10, e11, e12, e13, e15}, ϕ9 = {e8, e9, e10, e14}
ϕ10 = {e8, e9, e10, e12, e15}, ϕ11 = {e8, e9, e10, e11, e13}
Φs

3 = {ϕ12, ϕ13, ϕ14, ϕ15, ϕ16, ϕ17, ϕ18, ϕ19}
ϕ12 = {e21, e23, e24}, ϕ13 = {e18, e20, e22, e23}

Σ3 ϕ14 = {e18, e20, e21, e22, e24}, ϕ15 = {e17, e19, e20, e22, e23}
ϕ16 = {e17, e19, e20, e21, e22, e24}, ϕ17 = {e17, e18, e19, e23}
ϕ18 = {e17, e18, e19, e21, e24}, ϕ19 = {e17, e18, e19, e20, e22}
Φs

4 = {ϕ20, ϕ21, ϕ22, ϕ23, ϕ24, ϕ25, ϕ26, ϕ27}
ϕ20 = {e30, e32, e33}, ϕ21 = {e27, e29, e31, e32}

Σ4 ϕ22 = {e27, e29, e30, e31, e33}, ϕ23 = {e26, e28, e29, e31, e32}
ϕ24 = {e26, e28, e29, e30, e31, e33}, ϕ25 = {e26, e27, e28, e32}
ϕ26 = {e26, e27, e28, e30, e33}, ϕ27 = {e26, e27, e28, e29, e31}
Φs

5 = {ϕ28, ϕ29, ϕ30}
Σ5 ϕ28 = {e36, e39, e40}, ϕ29 = {e35, e37, e40}

ϕ30 = {e35, e36, e37, e39}

Table 2. Shared FMSO sets of Σ1 to Σ5.

LD1 ϕ31 = {e1, e2, e3, e4, e5, e6, e8, e9, e10, e14}
ϕ32 = {e2, e5, e6, e8, e9, e10, ..., e15, e17, e18, e19, e23}

LD2 ϕ33 = {e1, ..., e6, e9e11e13, e17, ..., e24, e26,
e27, e28, e32}

ϕ34 = {e1, ..., e6, e8, e10, e11, e13, e14e17, ..., e22,
e23, e24, e26, e27, e28, e32}

LD3 ϕ35 = {e2, e5, e6, e8, ..., e15, e18, e20, e22, e23,
e26, ..., e33, e38}

ϕ36 = {e2, e5, e6, e8, ..., e15, e17, e19, e20, e22, e23,
e26, ..., e33, e38}

LD4 ϕ37 = {e12, e14, e15, e17, ..., e24, e27, e29, e31, e32,
e35, e37, e38, e40}

ϕ38 = {e12, e14, e15, e17, ..., e24, e26, e28, e29, e31,
e32, e35, e37, e38, e40}

LD5 ϕ39 = {e30, e32, e33, e35, e37, e38, e40}
ϕ40 = {e36, e38, e39, e40}

Table 3. Compound FMSO sets of LDs.

Faults

f1 f2
arr1 ∈ ARR1,1 X
arr2 ∈ ARR1,2 X

Table 4. isolation capability for ARRs for LD1.

Faults

f3 f4 f5 f6
arr3 ∈ ARR2,1 X X
arr4 ∈ ARR2,2 X X

Table 5. isolation capability for ARRs for LD2.

Faults

f7 f8 f9 f10
arr5 ∈ ARR3,1 X X
arr6 ∈ ARR3,2 X X

Table 6. isolation capability for ARRs for LD3.

Finally, Figure 5 shows the human machine interface of
the fault diagnosis software running on-line where a fault
alarm is shown in valve 2 (f6). This software is executed



Faults

f11 f12 f13 f14
arr7 ∈ ARR4,1 X X
arr8 ∈ ARR4,2 X X

Table 7. isolation capability for ARRs for LD4.

Faults

f15 f16
arr9 ∈ ARR5,1 X
arr10 ∈ ARR5,2 X

Table 8. isolation capability for ARRs for LD5.
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Fig. 4. LD for subsystem 1

in a programmable automation controller (PAC) that
receives the signals from the sensors and generates the
control signals.

Fig. 5. Fault diagnosis software

In fact, the proposed approach is applicable to fault
diagnosis of a large floating circuit, decomposing the latter
into subsystems. Here, as shown above, each subsystem in
the distributed architecture will have its own LD.

6. CONCLUSION

An approach for on-line fault diagnosis in a flotation
process was proposed based on a distributed architecture.
The application of the approach allows the development
of diagnosis systems for large-scale flotation circuits. The
fault diagnosis system developed, was tested by simulation

validating that the 16 faults can be detected and isolated
locally or at a higher level. Likewise, a procedure for
residual generation was presented and it has been tested
into a programmable automation controller for on-line
operation of fault diagnosis software.
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Pérez-Zuniga, C., Chanthery, E., Travé-Massuyès, L., and
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Pérez-Zuniga, C., Trav-Massuyes, L., Chantery, E., and
Sotomayor, J. (2015). Decentralized diagnosis in a
spacecraft attitude determination and control system.
Journal of Physics: Conf Series vol. 659(1) pp. 1-12.

Wills, B. (2006). Mineral Processing Technology.
Butterworth-Heinemann, Oxford, UK.

Xu, C., Gui, W., Yang, C., Zhu, H., Lin, Y., and Shi, C.
(2012). Flotation process fault detection using output
pdf of bubble size distribution. Minerals Engineering
vol. 26 pp. 5-12.


