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CONNECTING OPTIMIZATION WITH SPECTRAL

ANALYSIS OF TRI-DIAGONAL MATRICES

JEAN B. LASSERRE

Abstract. We show that the global minimum (resp. maximum) of a
continuous function on a compact set can be approximated from above
(resp. from below) by computing the smallest (rest. largest) eigenvalue
of a hierarchy of (r × r) tri-diagonal matrices of increasing size. Equiv-
alently it reduces to computing the smallest (resp. largest) root of a
certain univariate degree-r orthonormal polynomial. This provides a
strong connection between the fields of optimization, orthogonal poly-
nomials, numerical analysis and linear algebra, via asymptotic spectral
analysis of tri-diagonal symmetric matrices.

1. Introduction

The goal of this paper is show that the global minimum (resp. maximum)
of a continuous function f on a compact set Ω ⊂ R

n can be approximated as
closely as desired from above (resp. from below) by the smallest eigenvalues
(τ ℓr )r∈N (resp. largest eigenvalues (τur )r∈N) of a sequence of tri-diagonal
univariate “moment” matrices of increasing size r. Equivalently, τ ℓr (resp.
τur ) is the smallest (resp. largest) root of a univariate orthogonal polynomial
of increasing degree r. Thus it reveals a (perhaps suprising) connection
between the fields of optimization and the asymptotic spectral analysis of
tri-diagonal symmetric matrices (also related to the asymptotic analysis of
univariate orthogonal polynomials).

Notice that there is a large body of literature on numerical analysis of tri-
diagonal symmetric matrices for which efficient specialized algorithms exist
(for instance the characteristic polynomial can be computed efficiently and
roots of univariate polynomials can also be computed efficiently); see e.g.
[9, 19].

Our result is valid in a quite general context, namely if f is a continuous
function and Ω is compact. However to turn it into a practical algorithm
requires effective computation of such matrices. This in turn requires com-
puting integrals

∫

Ω
f(x)kdλ for arbitrary k, where λ is a measure whose

support is exactly Ω (and whose choice is left to the user). If f is a poly-
nomial, Ω is a “simple” compact set like a box, an ellipsoid, a simplex, a
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sphere, the discrete hypercube {0, 1}n (or their image by an affine mapping)
and λ is a distinguished measure (e.g., Lebesgue measure (or other fami-
lies of polynomial densities), rotation invariant (for the sphere), counting
measure for {0, 1}n) then such integrals are obtained in closed-form.

In addition, after the initial version of this paper was released, Laurent
and Slot [15] proved a O(log2 r/r2) rate of convergence for the monotone
sequence of upper bounds (τ ℓr )r∈N on the minimum (resp. lower bounds
(τur )r∈N on the maximum) under a weak geometric condition on Ω (satisfied
by the above simple sets).

Background. Let f : Ω → R be a continuous function on a compact set
Ω ⊂ R

n, and consider the optimization problem:

(1.1) f = inf
x

{ f(x) : x ∈ Ω }; f = sup
x

{ f(x) : x ∈ Ω }.

In [14] the author showed that one may approximate f from above (resp.

f from below) by solving the following hierarchy1 of optimization problems
indexed by r ∈ N:

θr = inf
σ

{

∫

f σ dλ :

∫

σ dλ = 1; σ ∈ Σ[x]r }(1.2)

θr = sup
σ

{

∫

f σ dλ :

∫

σ dλ = 1; σ ∈ Σ[x]r },(1.3)

where λ is a fixed measure whose support is exactlyΩ and Σ[x]r is the convex
cone of SOS polynomials of degree at most 2r. Indeed θr ↓ f (resp. θr ↑ f)
as t → ∞. If f is a polynomial and one knows all moments of the measure λ
on Ω, then each problem (1.2) is a very specific semidefinite program. As a
matter of fact it reduces to a generalized eigenvalue problem involving two
moment-like matrices whose size

(n+r
r

)
increases with r. For instance this

is the case whenever Ω is a simple set (e.g. the box [−1, 1]n, the Euclidean
unit ball, the sphere, the simplex, the discrete hypercube, and their affine
transformation) and λ is an appropriate measure (e.g., Lebesgue measure
on unit box, Euclidean unit ball, simplex, rotation invariant measure on the
sphere, counting measure on the discrete hypercube, etc.).

In a recent series of papers [3, 4, 5, 6, 20], de Klerk, Laurent and their
co-workers have been able to analyze the convergence θr ↓ f of such a
hierarchy by appropriate clever choices of the reference measure (as indeed
λ it can be any measure whose support is exactly Ω). Ultimately they could
provide rates of convergence. In particular and remarkably, they show that
for certain important sets and reference measures (e.g. the box Ω = [−1, 1]n

and the sphere S
n−1) a convergence rate O(1/r2) is achieved.

However all variants of (1.2) and (1.3) consider density polynomials σ ∈
R[x] in n variables which results in eigenvalue problems with multivariate

1The hierarchy (1.2) should not be confused with the Moment-SOS hierarchy described
in [12] to solve the same problem (1.1), but which yields a converging sequence of lower
bounds ρr ↑ f as r → ∞.
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Hankel-type matrices whose size
(
n+r
n

)
grows very quickly with r. There-

fore and so far, this hierarchy of upper (resp. lower) bounds has not been
proved to be efficient in practice (even for small size problems) and its main
interest is rather theoretical as it provides an algorithm with proven rate of
convergence O(1/r2) to the global optimum on some simple sets.

Contribution. Our contribution is twofold:

I. We first provide an alternative converging hierarchy of upper bounds
in the same spirit as (1.2) and (1.3) but following a different path. The
main distinguishing feature is to reduce the n-dimensional initial problem to
a one-dimensional equivalent problem by using the pushforward measure #λ
of the measure λ on Ω, by the mapping f : Ω → R. It results in solving
again a hierarchy of eigenvalue problems but with the major advantage of
considering Hankel moment matrices in just ONE variable (hence of size r
in contrast to

(n+r
n

)
).

To achieve this result we exploit the fact that f and f are the left and right
endpoints of the support of #λ on the real line, and therefore by invoking
Lasserre [13, Theorem 3.3], one may approximate f from above by solving:

τ ℓr = sup {a : Hr(x;#λ) � aHr(#λ) }

= λmin(Hr(x;#λ),Hr(#λ)), ∀r ∈ N,(1.4)

where the real symmetric (r+1)× (r+1) matrix Hr(#λ) (resp. Hr(x;#λ))
is the moment matrix of the pushforward #λ (resp. the localizing matrix
associated with #λ and the univariate linear polynomial x 7→ x). Similarly,
one may approximate f from below by solving:

τur = inf {a : aHr(#λ) � Hr(x;#λ) }

= λmax(Hr(x;#λ),Hr(#λ)), ∀r ∈ N,

and indeed τ ℓr ↓ f (resp. τur ↑ f) as r increases; see [13].

Remark 1.1. Equivalently, by duality in convex optimization:

(1.5) τ ℓr = inf
σ

{

∫

z σ d#λ :

∫

σ d#λ = 1; σ ∈ Σ[z]r },

where Σ[z]r is the convex cone of univariate SOS polynomials of degree at
most 2r; similarly for τur just replace “inf” by “sup”. The formulation (1.5)
resembles (1.2) but with the important difference that in (1.2) one searches
over SOS polynomials of degree at most r in n-variables whereas in (1.5)
one searches over SOS polynomials of degree at most r in ONE variable.

Also notice that in contrast to (1.2), in (1.5) (or in (1.4)) the function
f to minimize does not appear explicitly; it is encoded in the pushforward
measure #λ. So if one is able to compute (or approximate) the moments of
#λ, then both matrices Hr(x; #λ) and Hr(#λ) are known and (1.4) can
be solved in practice. Also to solve (1.2) in practice one needs f to be a
polynomial.
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II. We next further simplify the analysis by considering an orthonormal
basis (Tj)j∈N of polynomials w.r.t. the pushforward measure #λ. Recall
that a family of Tj’s, j ≤ r, can be obtained from the moment matrix
Hr(#λ) by simple determinant computations. In this new basis (Tj)j∈N,

the moment matrix Ĥr(#λ) becomes the identity and the localizing matrix

Ĥr(x; #λ) now becomes a tri-diagonal (banded) symmetric matrix whose
coefficients have a direct expression in terms of the parameters defining the
classical three-term recurrence relation satisfied by the Tj ’s.

Therefore the convergence τ ℓr ↓ f (resp. τur ↑ f) is simply the asymptotic
behavior of the smallest (resp. largest) eigenvalue of tri-diagonal r× r “mo-
ment” matrices, as r increases; equivalently the asymptotic behavior of the
smallest (rest. largest) root of a certain univariate polynomial orthogonal
w.r.t. #λ.

This reveals a strong and perhaps surprising connection between the fields
of (global) optimization and the spectral analysis of tri-diagonal Hankel ma-
trices (or extremal roots of a family of orthogonal polynomials). Actually
such a link already appeared in de Klerk and Laurent [7] to analyze conver-
gence of upper bounds (1.2) for the specific univariate (trivial) optimization
problem min {x : x ∈ [−1, 1]} and specific reference measure λ. Then they
used this univariate problem as a building block to prove rates of conver-
gence of the bounds in (1.2) in case where Ω = [−1, 1]n or Sn−1 (and with
specific measures λ).

There is a large body of literature on various aspects of tri-diagonal sym-
metric matrices, including practical efficient algorithms; see for instance
Aurentz et al. [1], Businger [2], Ford [9], Kiliç [11], Mallik [16], Osipov [18],
and Routh [19]. Therefore this may also open the door to practical algo-
rithms for good approximations of f and f in non trivial cases, as soon as
one can obtain moments of the measure #λ for reasonably large degrees.

If the sequence (τ ℓr )r∈N (or (τur )r∈N) has obvious numerical advantages
when compared with (θr)r∈N (or (θr)r∈N) for a same fixed r, the main draw-
back of (τ ℓr )r∈N is the computation of moments of #λ which may become
tedious for non modest dimension n. However, sparsity of f (i.e. when f
has a few monomials only) can be exploited. Also the rate of convergence
for τ ℓr ↓ f as r → ∞, is more difficult to analyze because we do not know the
density of the pushforward measure #λ with respect to Lebesgue measure
on Ω.

Actually, recently Laurent and Slot [15] have provided a further detailed
analysis of some relative merits of the sequences (τ ℓr )r∈N and (θr)r∈N beyond
the scope the present paper. As already mentioned, they prove that remark-
ably, τ ℓr ↓ f at a O(log2 r/r2) rate under a weak geometric condition on Ω

(satisfied for the simple sets Ω mentioned previously).

2. Main result
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2.1. Notation, definitions and preliminary results. Let R[x] denote
the ring of polynomials in the n variables x = (x1, . . . , xn) and R[x]t ⊂
R[x] denote the vector space of polynomials of degree at most t, hence of
dimension s(t) =

(n+t
n

)
. Let Σ[x] ⊂ R[x] denote the space of polynomials

that are sums-of-squares (in short SOS polynomials) and let Σ[x]t ⊂ R[x]2t
denote the space of SOS polynomials of degree at most 2t. For univariate
polynomials in the variable x, we use the notation R[x], Σ[x], R[x]t and
Σ[x]t.

With α ∈ N
n and x ∈ R

n, the notation xα stands for xα1

1 · · · xαn
n . Also

for every α ∈ N
n, let |α| :=

∑

i αi and N
n
t := {α ∈ N

n : |α| ≤ t}, where
N = {0, 1, 2, . . .}.

The support of a Borel measure µ on R
n is the smallest closed set Ω

such that µ(Rn \Ω) = 0. Denote by B(X) the Borel σ-field associated with
a topological space X, and M (X)+ the space of finite nonnegative Borel
measures on X.

Generalized eigenvalue. Given two real symmetric matricesA,C ∈ R
n×n

denote by λmin(A,C) the smallest generalized eigenvalue with respect to the
pair (A,C), that is, the smallest scalar τ such that Ax = τ Cx for some
nonzero vector x ∈ R

n. When C is the identity matrix then λmin(A,C) is
just the smallest eigenvalue of A. Computing λmin(A,C) can be done via a
pure and efficient linear algebra routine. The notation A � 0 (resp. A ≻ 0)
stands for A is positive semidefinite (resp. positive definite). If A,C ≻ 0
then:

(2.1) λmin(A,C) = sup
τ
{ τ : A � τ C }.

Moment matrix. Given a real sequence φ = (φα)α∈Nn , let Hr(φ) denote
the multivariate (Hankel-type) moment matrix defined by Hr(φ)(α, β) =
φα+β for all α, β ∈ N

n
r . For instance, in the univariate case n = 1, with

r = 2, H2(φ) is the Hankel matrix

H2(φ) =





φ0 φ1 φ2

φ1 φ2 φ3

φ2 φ3 φ4



 .

If φ = (φj)j∈N is the moment sequence of a Borel measure φ on R then
Hr(φ) � 0 for all r = 0, 1, . . .. Conversely, if Hr(φ) � 0 for all r ∈ N, then
φ is the moment sequence of some finite (nonnegative) Borel measure φ on
R. The converse result is not true anymore in the multivariate case.

Localizing matrix. Given a real sequence φ = (φα)α∈Nn and g ∈ R[x],
x 7→ g(x) =

∑

α gα x
α, Hr(g ;φ) denote the multivariate (Hankel-type)

localizing matrix defined by

Hr(g ;φ)(α, β) =
∑

γ

gγ φγ+α+β , ∀α, β ∈ N
n
.
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For instance, in the univariate case n = 1, with r = 2 and g(x) = x, H2(g ;φ)
is the Hankel matrix

H2(g ;φ) =





φ1 φ2 φ3

φ2 φ3 φ4

φ3 φ4 φ5



 .

Equivalently, if φ is the moment sequence of a Borel measure φ on R
n

then Hr(g ;φ) is the moment matrix Hr(ν) associated with the measure
dν = g dφ.

Pushforward measure. Let λ ∈ M (Ω)+ be a finite Borel measure on
Ω ⊂ R

n whose support is exactly Ω, that is, Ω is the smallest closed set
such that λ(Rn \ Ω) = 0. Let #λ be the pushforward measure on R of λ
with respect to (w.r.t.) the mapping f : Ω → R. That is:

#λ(C) = λ(f−1(C)), ∀C ∈ B(R).

In particular, its moments #λ = (#λk)k∈N read:

(2.2) #λk =

∫

[0+∞)
zk d#λ(z) =

∫

Ω

f(x)k dλ(x), k = 0, 1, . . .

It is straightforward to see that the support of #λ is contained in the interval
[f, f ] with f and f as its left and right endpoints.

Remark 2.1 (Computing the moments #λ). While (2.2) is quite general,
exact numerical computation of #λk is not possible in full generality. How-
ever, for specific combinations of (f , Ω, λ) one may obtain#λ in closed-form
(let alone combinations where numerical approximations schemes, e.g. cu-
bature formula or Monte-Carlo, can be used). This is the case when f is
a polynomial and Ω is a “simple” set like a box, an ellipsoid, a simplex,
a sphere, the discrete hypercube {0, 1}n, or their image by an affine map.
Then several choices of λ are possible: Lebesgue measure (or specific fami-
lies of polynomial densities) if Ω is a box, simplex or ellipsoid, the rotation
invariant measure if Ω is the sphere, the discrete counting measure if Ω is
the hyper cube, etc. For instance, if Ω = [−1, 1]n and λ is Lebesgue measure
then writing

f(x)k =
∑

α∈Nn
2kd

fkα x
α, k = 0, 1, . . . ,

one obtains

#λk =
∑

α∈Nn
2kd

fkα

n∏

i=1

(∫ 1

−1
xαi dx

)

, k ∈ N.
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Similarly if Ω = {x : ‖x‖22 ≤ 1 } then for every k ∈ N:

#λk =

∫

Ω

g(x)k dλ =
1

Γ(1 + n+kt
2 )

∫

Rn

f(x)k exp(−‖x‖22) dλ

=
1

Γ(1 + n+kt
2 )

∑

|α|=kt

fkα

n∏

i=1

∫

R

xαi exp(−x2) dx,

which is also obtained in closed form. Notice that for large k, computing
#λk can be time and space consuming.

Remark 2.2 (On compactness assumption). In fact non compact sets, e.g.,
Ω = R

n with λ being the normal distribution N (0, I), or Ω = R
n
+ with λ

being the exponential distribution dλ =
∏

i exp(−xi) dx, can be treated as
well; see [14].

In particular, and interestingly, it permits to provide upper bounds that
converge to the global minimum f∗ of f on R

n, even if f∗ is not attained
(a difficult case in practice because then ‖x‖ → ∞ if f(x) → f∗). For
instance with f(x, y) = (xy − 1)2 + y2 on R

2, f∗ = 0 is not attained and
f(n, 1/n) → 0 as n → ∞. Then letting dλ = (2π)−1 exp(−(x2−y2)/2)dxdy,
the pushforward #λ is supported on [0,+∞), and

#λk =
1

2π

∫

R2

((xy − 1)2 + y2)k exp(−x2/2) exp(−y2/2) dxdy, k ∈ N,

is obtained in closed-form. However, for ease of exposition and to avoid
technicalities, we restrict to the compact case.

2.2. Main result. We have just seen that the support of the pushforward
#λ is precisely contained in the interval [f, f ], with f , f as its left and right

endpoints. Therefore the problem of approximating f and f reduces to
approximate the endpoints of the support of #λ from the sole knowledge of
its moments. That is,

(2.3) f = min {x : x ∈ supp(#λ) }; f = max {x : x ∈ supp(#λ) }.

In [13] the author has already considered the more general problem of bound-
ing the support of a measure µ on R

n from knowledge of its marginal mo-
ments. In our case µ is the push forward measure #λ on R and therefore
we can invoke Theorem 3.3 in [13]. More precisely:

Let Ω ⊂ R
n be compact with nonempty interior, λ ∈ M (Ω)+ and con-

sider the hierarchy of optimization problems indexed by r ∈ N:

τ ℓr = sup
a

{ a : Hr(x; #λ) � aHr(#λ) }(2.4)

τur = inf
a
{ a : aHr(#λ) � Hr(x; #λ) },(2.5)

where Hr(x; #λ) is the (univariate) localizing matrix associated with the
polynomial x 7→ x and the measure #λ on R, andHr(#λ) is the (univariate)
moment matrix associated with #λ.
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Theorem 2.3. Let λ ∈ M (Ω)+ be such that supp(λ) = Ω. Then:

(2.6) f ≤ τ ℓr ≤ τur ≤ f ∀r ∈ N.

In addition the sequence (τ ℓr )r∈N (resp. (τur )r∈N) is monotone non-increasing
(resp. non-decreasing), and:

(2.7) lim
r→∞

τ ℓr = f ; lim
r→∞

τur = f .

Finally, for all r ∈ N:

τ ℓr = λmin(Hr(x; #λ),Hr(#λ))(2.8)

τur = λmax(Hr(x; #λ),Hr(#λ)).(2.9)

Proof. That the sequence (τ ℓr )r∈N is monotone non-increasing is straightfor-
ward as the feasible set in (2.4) shrinks with r. The same argument shows
that (τur )r∈N is monotone non-decreasing. Next, the support of #λ is con-
tained in the interval [f, f ] with f and f as its left and right endpoints, and
we know all moments of #λ. Therefore (2.6)-(2.8) follow from [13, Theorem
3.3, p. 3379]. �

Even though Hr(x; #λ) may not be positive definite we still have

sup
a

{ a : Hr(x; #λ) � aHr(#λ) } = λmin(Hr(x; #λ),Hr(#λ)).

This is because Hr(x− a; #λ) = Hr(x; #λ)− aHr(#λ); see Lemma 3.1.

So after one has reduced the n-dimensional problem (1.2) to the one-
dimensional problem (1.5), Theorem 2.3 shows that one thus has to han-
dle Hankel moment matrices of size r only whereas θr requires to handle
Hankel-like moment matrices of size

(n+r
r

)
. However the moment infor-

mation needed to build up the moment and localizing matrices Hr(#λ),
Hr(x; #λ), still requires computing

∫

Ω
f(x)2kdλ with k ≤ 2r (hence han-

dling n-variate moments up to degree 2d). But once this has been done, the
eigenvalue problem is much easier.

2.3. On finite convergence. For same reasons as for the convergence θr ↓
f , in (2.7) the convergence τ ℓr ↓ f as r → ∞, is only asymptotic and not finite
in general (and similarly for τur ↑ f in (2.9)). Indeed the rationale behind
(1.5) is to approximate the Dirac measure δz∗ at the minimizer z∗ = f ∈ R

by a measure of the form σd#λ, and such an approximation cannot be exact
because the pushforward measure #λ has no atom if Ω is not finite.

An exception is when Ω is a finite set (e.g., the discrete hypercube {0, 1}n

or {−1, 1}n) and λ is the counting measure
∑

v∈Ω δv, with δv being the Dirac
measure at v ∈ Ω. Introduce the finite set Z := {f(v) : v ∈ Ω} ⊂ R.

Lemma 2.4. Let Ω ⊂ R
n be a finite set and let λ be the counting measure

on Ω. Then finite convergence takes place at most at r = r̄ = card(Z) − 1.
That is, τ ℓr̄ = f and τur̄ = f .
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Proof. The support of the pushforward measure #λ is the finite set Z with
smallest element z∗ := f ∈ Z and largest element f ∈ Z. In addition, the
pushforward measure #λ satisfies #λ =

∑

z∈Z az δz, where:

0 < az = λ(f−1({z})) = λ({v ∈ Ω : f(v) = z})

= card({v ∈ Ω : f(v) = z}), z ∈ Z.

Let p ∈ R[z]r̄ be the degree-r̄ polynomial z 7→
∏

a∈Z;a6=z∗
z−a
z∗−a , so that

p(z) = 0 for all z∗ 6= z ∈ Z, and p(z∗) = 1. Then letting σ∗ := a−1
z∗ p

2 ∈ Σ[z]r̄,
one obtains

∫
σ∗d#λ =

∑

z∈Z az σ
∗(z) = p(z∗)2 = 1, and

∫
zσ∗ d#λ = z∗ =

f . This proves that σ∗ is an optimal solution of (1.5) when r = r̄ (recall that

τ ℓr ≥ f for all r) and so τ ℓr̄ = f (and with a similar argument, τur̄ = f). �

So Lemma 2.4 states that r̄ = card(Z)−1 determines when finite conver-
gence is guaranteed, i.e., τ ℓr̄ = f . In other words, the larger is the set Z the

more difficult is to compute f (or f).

2.4. Link with tri-diagonal matrices. Let (Tj)j∈N be a family of or-
thonormal polynomials with respect to #λ. For instance, such a family
can be computed from the moments (#λk)k∈N as follows. T0(x) = 1 =
D0(x)/#λ0 for all x ∈ R. Then compute the degree-one polynomial:

x 7→ D1(x) = det

[
#λ0 #λ1

1 x

]

= #λ0 x−#λ1

and normalize T1(x) = aD1(x) to obtain
∫
T1(x)

2d#λ = 1, i.e., T1(x) =

aD1(x) with a = #λ
−1/2
0 (#λ0#λ2−#λ2

1)
−1/2. Next, to obtain T2 compute

x 7→ D2(x) = det





#λ0 #λ1 #λ2

#λ1 #λ2 #λ3

1 x x2





and again normalize T2(x) = aD2(x) to obtain
∫
T 2
2 d#λ = 1, etc. Next, the

orthonormal polynomials satisfy the so-called three-term recurrence relation:

(2.10) xTj(x) = aj Tj+1(x) + bj Tj(x) + aj−1 Tj−1(x), ∀x ∈ R, j ∈ N,

where aj = (dj dj+2/d
2
j+1)

1/2, bj =
∫
xTj(x)

2 d#λ, and

dj = det







#λ0 #λ1 · · · · · · #λj−1

#λ1 #λ2 · · · · · · #λj

· · · · · · · · · · · · · · ·
#λj−1 #λj . . . · · · #λ2j−2






, j ∈ N.

The tri-diagonal infinite matrix:

(2.11) J =







b0 a0 0 · · · · · · 0
a0 b1 a1 0 · · · 0
0 a1 b2 a2 · · · 0
0 0 · · · · · · · · · 0






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is called the Jacobi matrix associated with the orthonormal polynomials
(Tj)j∈N; see e.g. Dunkl and Xu [8, pp. 10–11].

Proposition 2.5. Expressed in the basis of orthonormal polynomials (Tj)j∈N,

the moment matrix Ĥr(#λ) is the identity matrix while the (r+1)× (r+1)

localizing matrix Ĥr(x; #λ) is the r-truncation

(2.12) Jr =











b0 a0 0 · · · · · · 0
a0 b1 a1 0 · · · 0
0 a1 b2 a2 · · · 0
0 · · · · · · · · · · · · 0
0 0 · · · ar−2 br−1 ar−1

0 0 · · · · · · ar−1 br











of the Jacobi matrix (2.11).

Proof. That the moment matrix Ĥr(#λ) expressed in the basis (Tj)j∈N is
the identity matrix follows from

Ĥr(#λ)(i, j) =

∫

Ti(x)Tj(x) d#λ = δi=j , ∀i, j = 0, 1, . . . , r

Next, in this basis the localizing matrix Ĥr(x; #λ) associated with #λ and
the polynomial x 7→ x, reads:

Ĥr(x; #λ)(i, j) =

∫

xTi(x)Tj(x) d#λ

= ai

∫

Ti+1(x)Tj(x) d#λ

︸ ︷︷ ︸

=ai δi+1=j

+ bi

∫

Ti(x)Tj(x) d#λ

︸ ︷︷ ︸

bi δi=j

+ ai−1

∫

Ti−1(x)Tj(x) d#λ

︸ ︷︷ ︸

ai−1 δi−1=j

= 0 if j 6∈ {i− 1, i, i + 1},

for all i, j = 0, 1, . . . , r, where we have used (2.10). Hence Ĥr(x; #λ) is
a tri-diagonal matrix where at row i the three elements are (ai−1, bi, ai+1).

Therefore, Ĥr(x;#λ) is the r-truncation of the Jacobi matrix (2.11). �

As a consequence we thus obtain:

Corollary 2.6. Let τ ℓr and τur be as in Theorem 2.3 and let Jr be the tri-
diagonal matrix in Proposition 2.5. Then τ ℓr = λmin(Jr) and τur = λmax(Jr).
Therefore:

(2.13) λmin(Jr) ↓ f and λmax(Jr) ↑ f as r → ∞.

Also for every r ∈ N, τ ℓr (resp. τuf ) is the smallest (resp. largest) root of the
univariate polynomial Tr+1.
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Proof. Follows from Theorem 2.3 and the definition of τ ℓr and τur . The last
statement can be found in Dunkl and Xu [8, Theorem 1.3.12]. �

Remark 2.7. The use of an othonormal polynomial basis to reduce the
initial n-dimensional problem (1.2) to a standard (n-dimensional) eigenvalue
problem was already proposed in [14] and in de Klerk et al. [5] and de Klerk
and Laurent [6] but for the original n-dimensional problem and the reference
measure λ (and not on R for the pushforward measure #λ).

In addition, in [7] de Klerk and Laurent have used the univariate problem
min{x : x ∈ [−1, 1] } as a building block to prove the O(1/r2) rate of conver-
gence for the bounds (1.2) and (1.3) in the multivariate case of the Sphere,
the unit box and for some different reference measures λ. They observed
that if f is the univariate polynomial x then solving the resulting eigen-
value problem is computing the smallest eigenvalue of the Jacobi matrix
associated with λ (or equivalently, the smallest root of a certain orthogo-
nal polynomial) as in Corollary 2.6. For specific reference measures λ, the
associated orthogonal polynomials have been well-studied (e.g. Chebyshev
or Legendre polynomials), in particular the asymptotic behavior of their
smallest (or largest) root used by the authors in [7]. For more details the
interested reader is referred to [3, 4, 5, 6, 7]. However, in Corollary 2.6 the
underlying univariate problem min{x : x ∈ supp(#λ) } in (2.3) is equiva-
lent to the original multivariate problem (1.1). The price to pay is that the
density of #λ is not known explicitly and makes the analysis of the rate of
convergence more intricate.

Discussion. As already mentioned, computing the entries of Hr(#λ) (and
hence of H(x; #λ) as well) is easy but tedious for large n. For a fixed r ∈ N,
and once the moment matrix Hr(#λ) has been computed, computing the
scalar τur or τ ℓr in (2.4)-(2.5) is definitely easier than computing θr or θr as
in the former one handles univariate moment matrices of size r instead of
n-variate moment matrices of size

(n+d
n

)
in the latter. However we have not

proved any rate of convergence for τ ℓr ↓ f whereas θr ↓ f at a rate O(1/r2)
for some simple sets Ω and appropriate measures λ. As mentioned earlier,
convergence analysis of the sequence (τ ℓr )r∈N is difficult because we do not
have an explicit expression of the density of #λ w.r.t. Lebesgue measure on
[f, f ].

For illustration purpose, for r = 5, 6, we have considered four toy prob-
lems in n = 2 variables to compare the upper bounds τ ℓr on f obtained in
(2.4) with the upper bounds θr obtained in (1.2) as described in de Klerk
and Laurent [5]. Hence for the same r, the former are obtained by solving
eigenvalue problems with matrices of size 6 for r = 5 (resp. size 7 for r = 6)

as opposed to matrices of size
(2+r

2

)
= 21 for r = 5 (resp. size 28 for r = 6)

for the latter.

Motzkin polynomial: f(x) = 64 (x41x
2
2 + x21x

4
2)− 48x21x

2
2 + 1

Matyas function: f(x) = 26 (x21 + x22)− 48x1x2
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Booth function: f(x) = (10x1 + 20x2 − 7)2 + (20x1 + 10x2 − 5)2

Three-hum-camel function: f(x) = 56x61/6 − 1.05 ∗ 54x41 + 50x21 +
245x1x2 + 25x22

pb Moztkin Matyas Booth Three-hump camel

θ5 0.801 3.69 69.81 9.58

τ ℓ5 0.873 2.06 56.64 15.07

θ6 0.801 2.99 63.54 4.439

τ ℓ6 0.808 1.68 45.49 12.68

Table 1. Comparing τ ℓr and θr on 4 toy examples

In Table 1 are displayed the results. Except for the Motzkin polynomial
the bounds τ ℓr are comparable and even better than the bounds θr.

Convergence rate. After the initial version of this paper was released on a
public repository, Laurent and Slot [15] have analyzed the convergence τ ℓr ↓ f

as r → ∞, of Theorem 2.3. Quite remarkably they prove a O(log2 r/r2) rate
of convergence under a weak geometric condition on Ω (satisfied for the
“simple” sets Ω). Their proof is in the same vein and spirit as the one
in Slot and Laurent [20] where the authors prove convergence θr ↓ f at a

O(log2 r/r2) rate for general convex bodies. For more details the interested
reader is referred to [15].

3. Appendix

Lemma 3.1. Let Hr(x; #λ) be the Hankel matrix associated with #λ and
the polynomial x 7→ x. Then

(3.1) λmin(Hr(x; #λ),Hr(#λ)) = sup
a

{ a : Hr(x; #λ) � aHr(#λ) }.

Proof. Let c < f be arbitrary, fixed. As x ≥ f > c for all x in the support
of #λ, it follows that Hr(x− c; #λ) ≻ 0, and since Hr(#λ) ≻ 0,

λmin(Hr(x− c; #λ),Hr(#λ)) = sup
a

{ a : Hr(x− c; #λ) � aHr(#λ) }.

Notice also that since Hr(x− c; #λ) = Hr(x; #λ)− cHr(#λ):

λmin(Hr(x− c; #λ),Hr(#λ))

= inf
a
{ a : ∃p, Hr(x− c; #λ) p = aHr(#λ) p}

= inf
a
{ a : ∃p, Hr(x; #λ) p = (a+ c)Hr(#λ) p}

= −c+ inf
a
{ a : ∃p, Hr(x; #λ) p = aHr(#λ) p}

= −c+ λmin(Hr(x; #λ),Hr(#λ)).
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Next,

−c+ λmin(Hr(x; #λ),Hr(#λ)) = λmin(Hr(x− c; #λ),Hr(#λ))

= sup
a

{a : Hr(x; #λ) � (a+ c)Hr(#λ)}

= −c+ sup
a

{a : Hr(x; #λ) � aHr(#λ)},

and the proof is complete. �

4. Conclusion

We have exhibited a strong (and perhaps surprising) connection between
global optimization and spectral analysis of tri-diagonal univariate moment
matrices (equivalently, roots of some sequence of univariate orthogonal poly-
nomials). Essentially computing the global minimum (resp. maximum) of a
function f on a compact set Ω ⊂ R

n reduces to a one-dimensional problem,
namely computing the limit of the smallest (resp. largest) eigenvalue of a
sequence of tri-diagonal moment matrices whose size r is independent of
the dimension n. Of course the entries of these matrices require computing
integrals

∫

Ω
f(x)kdλ, k ∈ N, for some choice of a measure λ whose support

is exactly Ω. When Ω is a simple set then this is theoretically easy but
becomes tedious for large n.

On the theoretical side, the question of how fast such bounds converge
to the global minimum was not addressed in this paper but was addressed
in the recent work of Laurent and Slot [15]. In [15] the authors prove that
the bounds converge to the global minimum (resp. global maximum) at a
O(log2 r/r2) rate, under a weak geometric condition on Ω (satisfied by all
of simple sets except for the discrete hypercube).

On a more practical side, whether such an approach may provide good
bounds for not too large r and significant dimension n, is a topic of future
research. Interestingly, it is definitely related to a problem in numerical
analysis, namely how efficiently can be computed integrals

∫

Ω
f(x)k dλ when

f is a polynomial, Ω is a simple set and λ an appropriate measure whose
support is Ω.

At last but not least, observe that if the global optimum can be ap-
proximated at a O(log2 r/r2) rate, so far one cannot approximate global
minimizers as we are essentially addressing a related one-dimensional prob-
lem. Therefore our result in this paper suggests the following question: For
the particular class of NP-hard polynomial optimization problems studied
in this paper, is the problem of computing (only) the optimal value of same
computational complexity as the problem of computing the optimal value
and global minimizers ?
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