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Chapter 5.1
Combining Assembly Planning and Geometric
Task Planning

Raphaël Lallement, Juan Cortés, Mamoun Gharbi, Alexandre
Boeuf, Rachid Alami, Carmelo J. Fernandez-Agüera, Iván Maza

Abstract This chapter deals with the integration of different planners that solve
problems from different domains in a common context. In particular, a joint solution
for structure assembly planning, symbolic task planning and geometric planning
is presented and analyzed in the construction of structures with a team of aerial
robots equipped with on-board manipulators in places where the access is difficult.
Geometric reasoning is present at different levels in our joint solution in order to
reduce the computational complexity derived from the highly dimensional space
due to the many degrees of freedom of the robots and the complexity of the tasks
and also to produce more robust plans even for strongly intricate problems.

1 Introduction

The motivation for the work described in this chapter comes from context of the
ARCAS European Project 1 funded by the European Commission. One of the goals
of this project is to build a structure by using a team of aerial robotic manipulators
(AROMAs). The practical interest of this system can be found in situations where it
is required to build a structure in places with difficult access by conventional means.
Actually, the problem of automatically finding a proper place for the construction
of the structure is also addressed in the project.

Assembly planning is the process of creating a detailed assembly plan to craft a
whole product from separate parts by taking into account the final product geome-
try, available resources to manufacture that product, fixture design, feeder and tool
descriptions, etc. In this context, different planning problems such as structure as-
sembly planning, task planning and motion planning have to be solved in a highly
dimensional space due to the many degrees of freedom of the robots and the com-
plexity of the tasks. To have simple yet interesting structures to assemble the project

1 http://www.arcas-project.eu
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focused on structures made of bars. An example can be seen in Fig. 1. The simplic-
ity comes from the clipping mechanism: when two pieces are brought together they
clip ensuring a strong link. On the other hand the complexity comes from the need
for cooperative transport of certain long bars requiring two (or more) AROMAs to
strongly cooperate. Moreover the robots are using arms which must be compliant to
avoid any problems. To carry out the assembly of the structures, the complete system
must exhibit a set of properties:multi-robot plans, cooperative transport, perception
and localization and visual servoing.

Fig. 1 An example of the type of structures considered in the ARCAS project. There are 12 parts
composing a cube, but there also exist a variant with four additional diagonal bars for a total of 16
parts.

Assembly, symbolic and motion planning traditionally belong to decoupled dif-
ferent research areas and have been widely studied separately in the last decades.
However, there is a growing interest on how to properly connect these planners or
how to design coupled planners.

This chapter proposes a joint solution for these planning problems which em-
beds geometric reasoning at different levels in order to reduce the computational
complexity. The chapter is structured as follows. Section 2 presents related work on
the connection of assembly planners to task planners. The assembly planning prob-
lem covers three main assembly subproblems: sequence planning, line balancing,
and path planning. This chapter is focused on a single AROMA, and hence, the line
balancing subproblem related to the allocation of assembly operations to robots is
out of the scope of our work. The approaches followed to solve the other subprob-
lems are described in Section 3. Section 4 describes in more detail the proposed
architecture and how each component relates to each other. It also defines the in-
formation exchanged between the planner and introduces the heuristic used during
the experiments to guide Assembly Planning. Section 5 describes how the approach
works for a team of AROMAs whereas Section 6 presents how the symbolic plans
can be refined to deal with intricate constraints. Finally, the conclusions in Section 7
close the chapter.
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2 Related Work

Efficient assembly plans can reduce time and costs significantly. The assembly plan-
ning problem has been shown to be an NP-complete problem [18] and covers two
main assembly subproblems in a single robot context: sequence planning and path
planning.

The Assembly Sequence Planning (ASP) problem concerns with finding a se-
quence of collision-free operations that bring the assembly parts together, having
given the geometry of the final structure. A systematic overview on the ASP is pre-
sented in [15], which includes a survey of the elements of sequence planning, such
as finding a feasible sequence, determining an optimal sequence according to one or
more operational criteria, representing the space of feasible assembly sequences in
different ways, applying search and optimization algorithms, and satisfying prece-
dence constraints existing between subassemblies. This problem is addressed in
Section 3.1.

A taxonomy for assembly and task planning is described in [12]. However, the
taxonomy presents both planners in a decoupled manner. The problems that an au-
tonomous robotic assembly system must tackle both regarding assembly planning
and task planning are summarized in [30]. This paper also reviews the approaches
that use Petri Nets as a formalism to develop the corresponding planners, but the
coupling between both is not described.

In [23], the output of an assembly planner is used directly as input to a sym-
bolic planner that decomposes it. Once given the assembly plan, the system allows
them to complete motion planning in real time. However, since there is no feedback,
the system must assume that the given assembly plan is compatible with geometric
restrictions. Manipulation primitive nets are introduced in [32] to deal with uncer-
tainties occurring during assembly task execution.

In [19], the assembly planner computes a blueprint by reasoning about the holes
used to attach the parts together. It then sends the blueprint to the symbolic planner
using an object-oriented language which is then translated into a PDDL problem
and solved using the Fast-Forward solver. This builds a set of actions which is then
dispatched in the group with sometimes coordinated (multi-robot) manipulations.
So the geometry is only taken in account when computing the blueprint, not to
ensure the feasibility for the coordinated motion: a robot could block or be blocked
by others.

Finally, [14] uses a 3-layer architecture: an assembly planner generates the as-
sembly graph and finds a good sequence. Then a two-stage executive layer turns
the task tree into instances which in turns are transformed into robot behaviours.
The last step is the execution on the different robots, which is controlled by the be-
haviours layer. The system uses motion planning and an exception-handling mecha-
nism to ensure its robustness. Although it will not be as optimal as a planning-based
system, the authors claim it to be significantly faster.

Dealing with and merging symbolic and geometric constraints when planning
is a growing field that has been a focus to a number of researchers over the few
last years. Different approaches have been proposed like [29] where the search at
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geometric level is guided by the symbolic planner. Other approaches focused on dif-
ferent aspects like [28] where a placement graph is built in other to apply a Satisfia-
bility Modulo Theories solver on the actions represented in the graph. Similarly, [9]
builds a conditional-reachability graph representing different configurations reach-
able by the robot (with or without object in hand) and the FastForward algorithm is
used to guide the search and find solutions in the graph.

In [7] and [6], the authors use semantic attachments, which are external proce-
dures called by the symbolic planner to assess the feasibility of a symbolic action
at the geometric level (e.g. if a collision free path exists between 2 positions). [17]
extends this approach by adding a geometric backtracking: in order to assess the fea-
sibility of an action, the geometric planner can change the geometric choices made
for the previous actions.

Reference [16] uses a goal-driven task planner that enables calls to external pro-
cedures during the planning phase. In case of failure, this procedure provides a rea-
son of the failure to the planner and enables it to find an alternative plan. The idea of
using failure reasoning to guide symbolic planning is also stressed out in [8] where
a causal reasoner is used to find a symbolic plan, then a motion planner tries to solve
the underlying motion problem, and if the latter fails, a temporal constraint is added
to the symbolic domain and the causal reasoner tries to find a new plan. [31] uses
off-the-shelf planners and formulates a novel representational abstraction enabling
to combine them: each action in the symbolic plan can have multiple instantiations
at geometric level corresponding to the different geometrical choices possible.

In [20] a task-plan is computed, and interval bounds which are constraints on ob-
ject/robot positions are used to prune out geometric choices. Another approach, pro-
posed in [22], is to formalise the problem as geometric constraints between agents
and objects, and to use a Constraint Satisfaction Problem solver to find the solu-
tion. Reference [24] addresses the combination of a symbolic hierarchical task net-
work planner and a constraint satisfaction solver for the vehicle routing problem in
a multi-robot context for structure assembly operations. Each planner has its own
problem domain and search space, and the article describes how both planners in-
teract in a loop sharing information in order to improve the cost of the solutions.

We have proposed various contributions to the problem of combining symbolic
and geometric reasoning in order to produce pertinent and feasible robot plans. In
Asymov [13, 2] we essentially proposed a principled way to link the two plan-
ners thanks to a geometric level able to tackle the so-called “manipulation planning
problem” [1] and that allows to explicitly take into account the topological changes
occurring, in the configuration space, when a robot grabs or releases an object. Asy-
mov provided a well founded translation of pick and place actions (and similar ac-
tions) into ’transit’ and ’transfer’ motion planning requests even in multi-object and
multi-robot contexts.

More recently we focused on a complementary approach [5, 3]: exploiting the ca-
pacity of the Hierarchical Task Network (HTN) [27] techniques to encode domain
knowledge, and developing a geometric motion planner capable of planning actions
with several levels of abstraction opening to more elaborate action instantiations.
Such a combination provides several key features: a clean interface which corre-
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sponds to the anchoring problem and allows to better exhibit and master the links
between the incremental processes of producing the symbolic plan and its geometric
counterpart.

In [5] we presented a geometric backtracking algorithm which allows to recon-
sider the previous geometric choices by trying different alternatives to the previously
computed actions and tests the validity of this alternatives by computing their geo-
metric effects. In [11], a more elaborate management of the ramification problem is
proposed allowing the integrated planner to exploit: (1) the ability of the geometric
planner to provide several instantiations of the same action, (2) the ability to en-
code domain expert knowledge at both levels, (3) well-informed cost estimation of
actions.

3 Description of the Planners

The overall planning approach is composed of three planners: (1) an assembly se-
quence planner that computes the assembly sequence from the assembled structure,
(2) the symbolic planner, HATP (Hierarchical Agent-based Task Planner), is re-
sponsible for the task allocation, and finally (3) a motion planner, to compute the
trajectories for each action in the symbolic plan. These planners are described in
this section.

3.1 Assembly Sequence Planner

Figure 2 shows the architecture of the assembly planner [25] developed to take into
account the effect of external forces such as gravity and physical interactions be-
tween the parts of the structure to be built. It uses simulations to predict the stability
of partially assembled structures and applies that information to expand the graph
of possible plans.

The assembly planner is built on top of two main components: A classical plan-
ning engine and a physics simulation engine.

• Planning engine: a generic planning library has been developed. The library
allows transparent substitution of simple search strategies such as depth-first or
breadth-first. It provides support for heuristics for more advanced strategies as
well. At a technical level, the framework takes the form of a set of template
classes that can be inherited or instantiated with specific policies, and abstracts
the generic process of planning. A higher level component is responsible for
writing a dynamic graph tree, selecting a search strategy, and representing states
and actions that describe the application specific problem set. In the case of
assembly planner, an action would be the removal of a piece from the structure
along a discrete direction and a state would correspond to a partial assembly of
the structure that is stable and self-sustaining.
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Fig. 2 Architecture of the assembly planner developed to take into account the effect of external
forces such as gravity and physical interactions between the parts of the structure to be built

• Physics engine: This component is built using the Bullet Physics library2. It
is applied to compute whether a subassembly is stable (i.e. it is self-sustaining
and can remain indefinitely in the given configuration without external support).
When given a set of pieces and their locations in the structure, it performs a
rigid body simulation on them and checks the results. If after a fixed period, all
the pieces of the structure remain in their starting configuration (position and
orientation), the subassembly is considered stable.

The planner actually solves the problem of disassembly, and then returns the re-
verse plan as a valid assembly plan. It uses a best-first search strategy, based on
heuristics that can be refined for successive iterations of re-planning. The search
graph used for planning is given in implicit form. This avoids the need to precom-
pute and store the whole tree in memory. In order to get the possible actions that can
be performed at a given state, the planner invokes the simulator and retrieves a list
of all the pieces that can be safely removed from the remaining set.

2 http://bulletphysics.org



7

As a final step, the planner will try to combine successive actions into parallel
operations that can be executed at the same time by separate agents. The engine
tests consecutive operations combined into a single action. This process also lets the
engine compute conditional relations between operations. Let it be two consecutive
operations A, the first, and B, the latter. If the order of execution of A and B can
be reversed, then they can also be carried out in parallel. If the order can not be
reversed, then operation A is considered to be a precondition for operation B. Note
that preconditions computed in this manner are actually a super set of the absolute
precondition relations between all actions (i.e. there may be alternative plans where
B can be performed before A). However, this technique guarantees that all variants
of the plan resulting from recombining the operations according to these relations
are also stable. This property can be highly valuable for integration with planners in
other domains.

3.2 Symbolic Planner

A symbolic planner is required to get the actual set of actions to execute the assem-
bly plan. It will compute the best sequence of actions to fulfill the plan for a given
set of agents and their properties (payload, actuator, and so on).

Our system uses Hierarchical Task-Network (HTN) planning [10], for its ex-
pressiveness and efficiency. An HTN planner computes the symbolic plan from a
domain that is a description of the different possible ways to solve the problem, and
it is provided by a domain expert. The domain is composed of tasks, and task can
be of one of two types: action or method. An action is a task that the system can ac-
tually achieve (such as go to, pick, place, and so on). On the other hand, a method is
composed of several sets of partially-ordered tasks (again actions or methods), each
set represents a way to solve the method at hand. The domain is composed of several
methods encapsulating other methods and actions, hence creating a hierarchy.

The planning goal is expressed as a task to accomplish. The principle of HTN
planning is to decompose this top-level task into one of its possible decompositions
(i.e. as set of partially ordered tasks). This process goes on until all tasks are decom-
posed into actions. In addition to this process, there is also a mechanism of variable
binding: it is indeed possible to let some task parameter as free variable, the plan-
ning process will then try different values and keep the best one. Finally the choices
for which decomposition and which value for a variable are done randomly and it
creates backtrack points. The most famous HTN planner is SHOP2 [26].

Our implementation is called HATP [21], which stands for Hierarchical Agent-
based Task Planner. It is a total-order HTN, which means that we can have the
current symbolic state anytime during planning. One of HATP main characteristic
is its object-oriented and user-friendly language which ease the development of new
domain. It uses a state variable representation, and every object in the environment
is represented with an entity. The language is rich and contains many features such
as set manipulation. Please refer to [4] for more details.
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Our planner is “agent-based” because agents are special entities used to com-
pute streams of actions in addition to the usual solution (tree) decomposition. Each
stream represents an agent. It contains its actions and causal links to order them, and
to link them with the other agents stream.

HATP is implemented in C++ and special care was taken when designing the
internal structures to ensure that it is easy to extend the planner with new function-
alities. The most notable one is the tight integration with a Geometric Task Planner.

3.3 Interleaved Task and Motion Planning

GTP (Geometric Task Planner) encapsulates a motion planner, including a level of
abstraction. For instance, it allows to plan a ‘placeReachable’ action, which is a
combination of fast trajectory, approach trajectory, ungrasp and escape trajectory.

Using this planner, we developed a system that can check the geometric feasi-
bility of symbolic plan as it is built [3]. The principle is that, when the symbolic
planner adds an action to the symbolic plan, its geometric counterpart is tried in
the current geometric state. If the geometric action is feasible, the planning process
continues, otherwise a backtrack is triggered: either change the symbolic plan or try
another solution for one of the previous geometric actions.

In addition to the symbolic plan, a geometric counterpart is built and maintained
to ensure that the current geometric state matches the current symbolic state. To
update the symbolic state, some literals are computed by GTP (e.g. an object isOn
a table, and so on) and sent to HATP to update the symbolic state. This ensures
the consistency of the symbolic state and allows to tackle the ramification problem:
when an unexpected side effect occurs, it is detected. We also implemented some
other functionalities, as further described in [11].

4 Integration of Symbolic-Geometric Planning with Assembly
Planning

Integrating the assembly planner and the Symbolic-Geometric Planner (SGP) to-
gether, we were able to compute symbolic plans with associated trajectories that
could be executed on the system. However, there was a combinatorial problem,
since the assembly plan was given as a dependency tree where each part would
specify which other part must be assembled before the symbolic planner had to find
an actual assembly sequence. For instance in the cube structure in Fig. 1, the four
first bars that compose the first level can be assembled in 4! = 24 different orders.
With the two other levels. this number explodes. Indeed, the worst case scenario is
n! where n is the number of parts in the structure. The proposed solution is to have
a tighter integration between SGP and the assembly planner.
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4.1 Principles

As it has been explained in the previous section, the assembly planner takes as in-
put a model of the structure as it should be assembled, and computes the assembly
sequence using an assembly-by-disassembly approach: it tries all the ways to disas-
semble the structure to guess the assembly sequence and the dependencies between
the parts. To improve this search, two additional tools are used, a physics engine to
ensure the stability and self-sustainability of the structure at each step, and a heuris-
tic search. The heuristic used consists in computing the risk of collision in order to
find an assembly sequence with less chances of collisions (self-collisions between
the parts or collisions with the obstacles). To obtain this information, bounding vol-
umes are placed around the objects and collisions between those volumes are used.
Once a solution is found, the assembly sequence is sent to HATP along with the
dependencies between the parts. Thanks to the heuristic search, this assembly plan
is supposedly the most likely to succeed.

It is possible, when solving the problems individually, that solutions to one prob-
lem are incompatible with the other domains (e.g. it might not be possible to com-
pute paths for an otherwise correct assembly plan). Thus, it is important to keep a
loop of information between the planners. This loop can also hint each planner into
the right direction to get better plans. For example, information from the symbolic
planner can help the assembly planner choose a sequence of operations with better
odds of succeeding on later phases of planning. At the other end of the system, a
complete assembly plan can save the symbolic and geometric planners a good deal
of computation, because it provides them with a smaller search space, with far less
degrees of freedom.

The approach followed in this work, illustrated in Fig. 3, is to feed a structure to
the assembly planner, which will generate a single assembly plan, and to feed this
plan to the symbolic planner, which in turn will invoke the geometric planner as
needed. The assembly planner is guided by an heuristic that can be modified with
information from HATP. When an assembly plan results unfeasible during HATP or
GTP phases, information about the causes of the failure can be fed back to AP to
improve the heuristic and have better chances of finding a successful assembly plan.

We decided to send only one plan at a time, in order to reduce the search space
HATP has to work with. Sending an explicit graph representation (e.g. an AND/OR
graph) of all plans is impractical for large structures in general. The number of
possible states follows a growth rate of the order of O(n!) with n being the number
of pieces in the structure. Hence, a simple structure as the cube used in this work
(16 pieces) can easily get a graph with too much nodes to be able to compute it,
reaching the trillions. In addition to that, evaluating each plan has an important cost,
because we have to try it in both GTP and HATP, which can be time consuming.

Our approach not only reduces the search space for both planners, it also allows
each of them to address the part of the problem it fits better. For instance, GTP would
have a hard time figuring out stability issues within a structure, but the assembly
planner is specifically designed for that. Complementary, the assembly planner can
only solve linear straight paths for assembling each piece, but GTP can find more
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Fig. 3 Complete planning architecture including assembly planning, symbolic planning and ge-
ometric task planning. The assembly planner sends the assembly plan computed thanks to the
heuristic, then HATP plans the symbolic action and assesses their feasibility at geometric level
thanks GTP. If the symbolic plan can not be found or if it is not geometrically feasible, the part
that prevents it is sent to the heuristic, which is updated, and a new assembly plan is computed.

complex solutions if they exist. While geometric analysis might be used to predict
some precedence relationships between assembly operations that must be fulfilled,
it misses a family of limitations of mechanical nature such as balance and friction
issues (where extracting a piece in a given direction might drag other pieces out of
place). The case shown in Fig. 4 demonstrates a structure where pure geometrical
reasoning can not anticipate the cause of instability, since the behaviour depends on
physical properties of the bodies (i.e. their masses) and there is no direct contact
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between the critical pieces. Since AP performs rigid body simulations on the result-
ing subassemblies, the problem would be detected early, and would never reach the
HATP or GTP phases, thus saving a lot of computation time that would be wasted
otherwise. Note that this is different from physics based geometric planning, since
we are studying a stability condition inherent to the structure itself and independent
from the path that agents follow while actually executing the assembly sequence. In
a similar fashion, HATP can handle multi-agent domains and allocate tasks in paral-
lel easily, while adding this to the assembly planner would increase complexity and
computation time.

Fig. 4 Example of structure with potential instability. The stability depends on the order of opera-
tions where there is no contact between critical pieces. If the red block was to be removed before
the green one, the structure would become unstable and the blue block would fall.

4.2 Formalisation

A planning session starts with HATP requesting an assembly plan from the assembly
planner for a given structure. Such request would simply contain the name of the
structure that the assembly planner needs to analyze, and a request ID that must be
the same for further requests in the same session.

The assembly planner will retrieve the current world state (mainly obstacles)
from the same model that GTP uses, and a description of the structure as it should
be (from a CAD 3D model), and generates an assembly plan for it. Then, it will
answer with a response in the form of a tuple PR = 〈S,D〉, where:

• S = {s1, ...,sn} is the ordered sequence of assembly operations si that must be
performed to assemble the structure. Each element si describes the type of oper-
ation and the pieces involved. At the moment, only putting the pieces in place is
supported as a type of operation, but this can be generalized to other operations
as screwing them in or securing them in other ways. An operation has the form
si = (id, type, pieces...), where the first element is a number to identify the mo-
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ment when the operations should be done (the smaller the number the earlier it
must be done), then comes the type of operation, and finally the list of pieces.

• D = {d1, ...,dm} is a set of dependencies between assembly operations. Each
element d j is a tuple made of the target operation and the set of all other op-
erations that must necessarily be performed before that one, with d j = 〈tl , pk〉
which reads as the set of operations pk that must be achieved before the opera-
tion tl , where tl is just the identifier of an operation sl . The set pk contains the
list of identifiers for operations from S.

Making precedence relationships between operations explicit allows the symbolic
planner to perform more than one operation of the sequence at the same time in
multi-agent environments, with one or more assembly operations starting before all
previous operations in the sequence are finished.

See below an example of such plan, for the cube in Fig. 1, where in order to
assemble the vertical bar we need the four operations that put the horizontal (bottom)
bars:

PR = 〈(0, place,horizontal bottom bar 0), . . . ,(4, place,vertical bar 5), . . .
. . . ,〈4,0,1,2,3〉, . . .〉

When HATP starts, it requests the assembly plan and upon receiving it, starts the
decomposition. The first step is to detect which operation to achieve first and to do
so it uses the identifier, starting at 1 and going up to the number n of operations.
For each operation an Assemble task is called: it detects the type of operation and
execute it for all the parts listed. Then it uses the dependencies D to add causal links
and in multi-agent scenario uses those links to parallelize some operations.

4.3 Heuristics

The assembly planning search space is tremendously high even for structures with
a small number of pieces (ten to twenty), so we use a heuristics based best first to
navigate it efficiently. While choosing heuristics to guide the assembly planning pro-
cess, the goal is to reach an assembly plan with high probability of being successful
during the symbolic and geometric planning phases. By feeding information from
the later phases back into the assembly planner’s heuristic, the odds are improved
but both domains remain decoupled.

Different heuristics can be used in assembly planning for this purpose. We used
a measurement of the free space available around each piece in the directions of
assembly, in order to give preference to the least occluded one. The reasoning behind
this heuristic is that occluded pieces are more likely to introduce difficulties during
assembly by posing obstacles to the agents. For any given piece, its geometry is
projected along various directions (possible assembly directions) and each collision
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detected will increase the cost associated to the removal of that piece. If replanning
is needed, these costs can be increased according to information received from the
symbolic planner. In this fashion, occlusion would be more costly if the associated
piece is directly linked with the reason why the first plan was discarded.

For future work, other heuristics such as using a bounding sphere of the size of
the agents may be tested.

5 Multi-AROMA Planning

The current implementation of GTP has a limitation: it does not allow to plan trajec-
tories in parallel, it is only possible to plan trajectories where no other robot move or
cooperatively transport one of the parts (which is considered by GTP as one “agent”
acting, not two individual trajectories). The method used for trajectory planning
of individual AROMAs will be described in Chapter ??. To cope with this limita-
tion, we generate fully sequential symbolic plans that can later be transformed into
plans with parallelism thanks to a post-process, as long as the dependencies between
the parts are respected. The actions that GTP can plan are: goto, pick, place and
pickAndPlace. The latter is more efficient than a pick followed by a place because
the different step to compute the trajectories, grasp and position are interleaved. (It
is still important to allow separate pick and place if we need to add actions in be-
tween.) In addition to those actions with a geometric counterpart we have a monitor
action, which triggers in the supervisor a visual servoing low-level task. It could
be interesting to plan it in GTP, so the position of the monitoring UAV is taken into
account when planning the others trajectories, but again GTP can not plan actions in
parallel. Consequently, there is no point in planning the monitoring trajectory, so in
our current implementation it is just considered a symbolic task during the planning
process. Figure 5 presents an extract from a plan where a monitoring task must be
carried out in parallel of an assembly task. When the robot must place the part, the
action is actually called PlaceInSupport because of the domain representation we
use when HATP and GTP communicate to assemble parts. The idea is that HATP
needs a way to tell GTP where to place the bars, and we refer to the end position
as “supports”. Those supports are extracted from the final configuration of each part
in the assembled structured (from the same model the assembly planner uses). In
this particular example, the interesting points are the causal links, they force the
monitoring task to last as long as the assembly task (place in support).

Figure 6 shows another extract from a plan, this time however it is focused on
the action necessary to execute a cooperative transport. Our strategy is to elect a
master and create a group, each other AROMA necessary is added to the group. To
assign all the AROMAs in the group (master and others alike) we use the payload of
each AROMA and compare the sum to the masses of the parts to transport. However
if we only limit ourselves to this comparison, we will end up trying many groups
just by changing the order of the AROMAs in the group (for instance a group with
UAV1 and UAV2, and another UAV2 and UAV1, two different groups for HATP, but
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Fig. 5 Extract of a plan with a monitoring task. The AROMA UAV1 picks and places the bar
Top02, while the UAV2 monitors this assembly.

with the similar meaning). Testing all the possible orders is useless since the order
of the AROMAs in the group does not change the efficiency of the group. Moreover,
it represents a very big number of attempts: N! in fact, where N is the number of
AROMAs in the problem. To address this issue, we have a mechanism that stores
the group that were tested on each part, and prevents to try the same group with a
different order on the same piece.

Fig. 6 Extract of a plan with a cooperative transport. In order for a group of AROMAs to coop-
eratively transport a bar we must assign them into the group, then they must all go to the part and
grab it, then the group transports the bar. When it is finally clipped to the structure only then the
AROMAs are released and can go do other actions.

6 Refining Symbolic Plans and Dealing with intricate constraints

We illustrate in Fig. 7 the interplay between the symbolic planner and GTP to build
a valid plan to assemble two simple structures: the small green and the big blue
structures. As the plan is computed, it can fail because geometry constraints not
seen by the high-level planner prevent an action (cluttered space, or any other prob-
lem) or it can be due to a symbolic choice that leads to impossible execution. During
the planning process both “green then blue” and “blue then green” orders are tried,
however, only one is feasible. Without geometric projection, there would be no dif-
ference at the symbolic level, while in fact, if the big (blue) structure is assembled
first, then the small (green) one cannot be assembled because, in this specific con-
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text, the robot can not reach the position to place the last horizontal bar. So, only the
order depicted in the picture leads to a possible plan.

Fig. 7 Action stream and geometric states for the assembly of two structures. The AROMA as-
sembles first the small green structures then proceeds with the big blue. Only this order is feasible
because the AROMA must hold the bars in their middle and the long blue horizontal bar prevents
it to place the last bar of the small green structure. Please notice that the actions are called Pick
and Place as two separate actions but this is done only for a matter of clarity for the picture. The
black arrows are pointing at the geometric state corresponding to the symbolic state.
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7 Conclusions

This chapter has presented the algorithms used to solve the cooperative assembly
planning problem. All the planners presented have been validated in simulation.
The first planner, and the first step to solve the problem at stake, is the assembly
planner. It builds an assembly plan that describes how the assembly must be done.
However, it does not describe how to carry the assembly out using the available
agents. To face this particular issue, we propose an approach based on combining
several planning techniques to enrich the planning capabilities. The task planner is
based on HTN (for its powerfulness and expressiveness) combined with an object-
oriented language to ease the development of new domains. The domain model is
such that sub-assemblies, multi-AROMA tasks and heavy parallelism are possible.
Thanks to GTP, the geometric feasibility of the actions is ensured, and thanks to the
physics engine from the assembly planner, the stability of the structure is guaran-
teed at each step of the assembly. The symbolic planner adds monitoring actions
to increase the chances of success when actually executing the plan. The symbolic
solution plan has a motion associated to each action, but is completely sequential.
However, it is possible to have parallelism in the plan thanks to a post process as
long as the dependencies between the parts are respected.



17

References

1. Rachid Alami, Thierry Simeon, and Jean-Paul Laumond. A geometrical approach to planning
manipulation tasks. the case of discrete placements and grasps. In The fifth international
symposium on Robotics research, pages 453–463. MIT Press, 1990.
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9. Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. FFRob: An efficient
heuristic for task and motion planning. In International Workshop on the Algorithmic Foun-
dations of Robotics (WAFR), 2014.

10. Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and Practice.
Elsevier, 2004.
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