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Chapter 5.2
Motion Planning

Alexandre Boeuf, Juan Cortés, Thierry Siméon

Abstract This chapter presents a kinodynamic motion planner for computing agile
motions of quad-rotor-like aerial robots in constrained environments. Based on a
simple dynamic model of the UAV, a computationally-efficient local planner is pro-
posed to generate flyable trajectories of minimal time. This local planner is then in-
tegrated as a key component for global motion planning using different approaches.
The good performance of the proposed methods is illustrated with results in simu-
lation, as well as a preliminary experimentation with a real quad-rotor.

1 Introduction

When planning motions for Unmanned Aerial Vehicles (UAVs) such as quadrotors,
it is important to consider the dynamic model of the system since not every geo-
metrically valid path corresponds to a feasible motion. For example, because of its
dynamic behavior, flying upside down, even for a relatively short period of time,
is hardly manageable for a fixed-pitch quadrotor. Aiming to avoid the difficulties
and the high computational cost involving kinodynamic motion planning [14], the
problem is usually treated in two stages. The first stage applies a basic path plan-
ning approach, disregarding dynamic considerations. For this, sampling-based path
planning algorithms [13], such as the Rapidly-exploring Random Tree (RRT) or the
Probabilistic Roadmap (PRM), can be used to produce a collision-free path for the
center of mass of the robot. Indeed, since the robot orientation depends on dynamic
aspects, collisions cannot be tested for the robot itself but for its smallest bounding-
sphere. In a second stage, this path, usually consisting of a sequence of straight-line
segments in R3, has to be transformed into a dynamic trajectory. Trajectory gener-
ation methods, such as [20, 16, 8], can be applied in this stage to each portion of
the path. The overall trajectory then consists of a sequence of movements from one
hovering position to another, which leads to severe sub-optimality in terms of exe-
cution time. However, such an unsuitable trajectory can be subsequently optimized
using several types of algorithms.
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Fig. 1 Solution to the slot problem obtained with a basic RRT algorithm using the proposed local
planner as a steering method.

The aforementioned decoupled approach is computationally efficient, and can
be successfully applied to solve many motion planning problems for UAVs (see
for example [10, 5, 18]). However, several classes of problems cannot be treated
using this approach, because the robot orientation cannot be properly considered at
the geometric stage. One of such problems, which we refer to as the slot problem, is
illustrated in Fig. 1. In this problem, the robot has to go through a narrow slot-shaped
passage whose width is smaller that the diameter of the smallest bounding-sphere
of the robot. Since a collision-free path does not exist for this sphere, the decoupled
approach will fail to find a solution.

Another type of problem that cannot be treated using a decoupled approach is
the transportation of a large object (at medium or high velocity). When carrying
such an object, it is not suitable anymore to consider the minimum bounding-sphere
of the system because it does not fit its actual shape, thus leading to invalidity of
far too many possible solutions. In these situations, collisions have to be tested for
the actual shape of the system, and hence, non-hovering states have to be sampled
and linked by collision-free flyable trajectories. According to [16], such trajecto-
ries must be smooth in the space of the flat outputs of the system with bounds on
their derivatives. Therefore, motion planning in this context requires an efficient
trajectory generation method able to interpolate two kinodynamic states (position,
velocity and acceleration). Unfortunately, available trajectory generation methods
are either computationally expensive, or unlikely for the present application, since
they do not guarantee the respect of limits in velocity and acceleration, or because
they require flying time as an input parameter [17].

This chapter presents an efficient kinodynamic motion planner for computing
agile motions of quad-rotor-like aerial robots in constrained environments like the
slot problem of Fig. 1. The approach first builds on a local trajectory planner (see
Sec. 2) that uses fourth-order splines and a simplified model of the UAV to generate
flyable trajectories of minimal time with respect to the closed form solution. We
next explain in Sec. 3 how these local feasible trajectories can be used as part of
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Table 1 Acronyms and symbols.

Symbol Definition

x Kynodynamic state
X State space
P Admissible values for the positions
V Admissible values for the velocity
A Admissible values for the acceleration
J Admissible values for the jerk
S Admissible values for the snap
S Trajectory in the state of the flat outputs
T Total time of the motion
Ti Total time of the motion for each component
s(t) Time parameterized fourth order spline
q Configuration (notation used in the explanations of sampling-based planners)
TS and TG Trees rooted at start and goal configurations, respectively
G Graph in the configuration/state space
Gi A connected component in G
AG Adjacency matrix associated with G

an optimization method in a decoupled approach, or applied directly as a steering
method within a sampling-based motion planner for solving more constrained prob-
lems. This section also presents two improvements: an efficient quasi-metric and an
incremental sampling strategy. Both techniques enhance the performance of kino-
dynamic planning, as illustrated by the simulation results reported in Sec. 4. Finally,
preliminary experimental results with a real quadrotor are presented in Sec. 5.

Table 1 summarizes the main symbols used in this chapter.

2 Steering Method

This section briefly recalls some notions about the state space of a quadrotor and
gives an overview of the steering method presented in [3]1. The steering method uses
fourth-order splines to generate smooth trajectories between two arbitrary states of
a quadrotor, ensuring continuity up to the jerk (and therefore, up to the angular ve-
locity), which is important to facilitate controllability along the planned trajectories.
These trajectories minimize flying time (with respect to the proposed closed-form
solution) while respecting kinodynamic constraints.

Quadrotor model : A quadrotor is a free-flying object in R3. It has three degrees
of freedom in translation (position of the center of mass: [x,y,z] ∈ R3) and three in
rotation (roll, pitch and yaw angles: [ϕ,φ ,ψ]). However, due to under-actuation (six
degrees of freedom but only four actuators), these degrees of freedom (considering
their derivatives) are not independent. Indeed, the ϕ and φ angles are determined

1 The code (C and MATLAB versions) is available upon request.
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from the thrust vector, which in turn depends on the velocity and the acceleration.
Considering the standard dynamic model described in Chapter ??, the system is
differentially flat for the outputs [x,y,z,ψ] (see [16]). This implies that the full con-
figuration can be determined from these four variables, and that any trajectory in the
state of the flat outputs is flyable if their derivatives are correctly bounded.

State space : We define a kynodynamic state as a vector:

x = [x,y,z,ψ, ẋ, ẏ, ż, ψ̇, ẍ, ÿ, z̈, ψ̈] ∈X

with X the state space, we have X = P × V ×A , where P , V and A are
intervals of R4. Note that although there are no actual limits (if friction is neglected)
on linear velocity of the center of mass of a quadrotor, for safety reasons, it might
be interesting to take such limits into consideration for trajectory planning.

Steering method : The steering method we consider provides a solution (S,T ) to
the problem: 

[S(0) Ṡ(0) S̈(0)] = x0 ∈X
[S(T ) Ṡ(T ) S̈(T )] = xT ∈X

∀t ∈ [0,T ]


Ṡ(t) ∈ V
S̈(t) ∈A...
S (t) ∈J....
S (t) ∈S

(1)

where S is the trajectory in the state of the flat outputs, T is the total time of the
motion and V , A , J and S are zero centered intervals of R4. Obtaining the time-
optimal trajectory is difficult and computationally expensive. This is not well suited
for integration in sampling-based motion planners since they make extensive use
of the steering method (usually thousands of calls to solve constrained planning
problems). Therefore, our solution is to compute a trajectory that approaches the
optimal one with a simpler (imposed) shape enabling a rapid, analytical solution.
We provide below a short overview of the steering method described in [3]. From a
control point of view, it can be seen as an on-off snap based command, which means
that for each coordinate the snap has always maximum, minimum, or zero values.
This leads to piecewise polynomial solutions (splines) of degree four. The main idea
is to find for each coordinate a set of snap commutations that minimize the overall
time.

The method works in two stages. First a solution is computed independently for
each output x, y, z and ψ . Each solution is a fourth order spline s(t) with a bang-null
snap profile (i.e. a trapezoidal jerk profile) such that [s(0) ṡ(0) s̈(0)] = [x0i v0i a0i]
and [s(Ti) ṡ(Ti) s̈(Ti)] = [xTi vTi aTi] with Ti ∈R+ (different for each output of index
i). These splines are divided into seven main temporal phases (see Fig. 2). Four of
them (noted A, C, E and H) correspond to acceleration variations. Phases B and G
are constant acceleration phases. During phase D velocity v(t) = ṡ(t) is constant.
Durations of all phases are functions of this constant velocity value vD. During the
first phase A, acceleration a(t) = s̈(t) is getting from its initial value a0 to an in-
termediate value noted aB (also function of vD). Similarly, during the last phase H,
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Fig. 2 Illustration of the seven main temporal phases of the spline for one output. Red circled dots
are the values to be interpolated. Pink dashed lines are the boundary values for acceleration and
velocity.

acceleration goes from aG to its final value aF . The goal is to maximize accelera-
tion variations in order to reach full speed as fast as possible and maintain it as long
as possible. Once the commutation times of all coordinates have been calculated,
final times will not match. Solutions are then synchronized to form the local tra-
jectory whose total duration is T = max

i=1..4
Ti. This is done by reducing the velocity

reached during phase D (see Fig. 2) for the three fastest coordinates, using a simple
dichotomous search in order to match the slowest one

The interesting feature of our approximate steering method lies in its computa-
tional speed at the price of a moderate sub-optimality. The statistical analysis re-
ported in [2], comparing the quality of the computed trajectories against the solu-
tions provided by a full-fledged numerical optimization (with the ACADO solver),
shows that the sub-optimality of our approximate solution is really low ( 3%) and
well justified by a high gain in computation time (103). Solutions are computed
with an average running time of less than a millisecond, thus motivating the use of
the proposed approximate ’minimum-time’ steering method inside sampling-based
planners. Finally, note that the method can be generalized to various types of sys-
tems 2. For a serial manipulator, for instance, each degree of freedom would be
treated as a flat output.

2 The steering method has been has been implemented as a general-purpose and standalone C++
library named KDTP (for KinoDynamic Trajectory Planner) and a git repository is available at
git://git.openrobots.org/robots/libkdtp.git
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3 Kinodynamic Motion Planning

We discuss in this section how the steering method can be used as part of a local op-
timization method in a decoupled planning approach or applied directly as a steering
method within a sampling-based motion planner.

3.1 Decoupled Approach

This planning approach consists of two stages : 1) planning a geometrically valid
path in R3 for the minimum bounding sphere of the quadrotor 2) and then transform-
ing the computed path into a trajectory in X . In this decoupled approach, the piece-
wise linear path computed using a standard PRM or RRT sampling-based planner is
first transformed into a trajectory by calling the steering method on every local-path,
positioning velocity and acceleration to zero at end-points. As a result, velocity and
acceleration will be correctly set along the local-paths without modifying its ge-
ometry. The resulting trajectory remains therefore collision-free since it follows the
initial geometric path, but it is far from being time optimal because of the imposed
stops at the endpoints of local paths. We then apply a random shortcut technique [7]
in order to optimize the trajectory, using the steering method to iteratively improve
paths portions between pairs of randomly selected states along the trajectory.

Fig. 3 Decoupled planner : geometric path obtained in the first stage (left) and smoothed trajectory
considering the kinodynamic constraints (right)

This simple approach is computationally efficient and it gives good quality so-
lutions for medium-complexity problems. The example illustrated by Fig. 3 was
solved in only 0.4 seconds of planning plus 2 seconds of smoothing using the it-
erative shortcut technique. However this type of approach may fail to solve more
challenging problems and is therefore incomplete in the sense that it is unable to
find solutions to some problems involving aggressive maneuvers, such as the con-
strained slot problem illustrated in Fig. 1. The approach is also unsuitable to solve
problems involving the transportation of a rigidly-attached large object, whose ori-
entation is defined by that of the quadrotor, and is therefore dependent on its velocity
and acceleration
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3.2 Direct Kinodynamic Planning Approach

In this section we focus on direct sampling-based approaches to kinodynamic mo-
tion planning for quadrotors. We first address the problem of the metric and then
present an efficient sampling strategy in the state-space that increases the probabil-
ity of generating connectable states, and thus the performance of the planner. Then
we describe directed variants of the well known RRT and PRM algorithms that need
to be adapted to handle the non-symmetry of the steering method and of the associ-
ated quasi-metric.

Efficient state-space quasi-metric : The efficiency of the state-space exploration
using randomized kinodynamic motion planning algorithms relies on a good dis-
tance metric. However, as discussed in [12], computing the actual distance between
two states is as hard (and thus as costly) as solving the corresponding optimal con-
trol problem. Our steering method provides a deterministic sub-optimal solution to
such a control problem. Therefore, it defines a quasi-metric3 M∗SM : (x0,xT ) 7→ T on
the state space. Because of the dynamics of the system, a trajectory in the state space
from x0 to xT is indeed necessarily different from a trajectory from xT to x0, and
thus M∗SM is not symmetric. Although this steering method is computationally fast,
it is still too costly to be used for nearest neighbor search inside a sampling-based
planner. This section presents a method to approximate the quasi-metric M∗SM at a
very low computational cost, and presents results that show its relevance.

The complexity of the problem (1) defined in Section 2 is mainly due to its order
(four) and to the inequality constraints on the derivatives. We propose to solve a
simpler time optimal control problem for the third order (i.e. by considering the
jerk as the control input), in one dimension and without constraints other than the
bounds on the control input. The problem is then to find for each output of index i
the couple (Si,Ti) such that:

minTi ∈ R+ s.t.
[Si(0) Ṡi(0) S̈i(0)] = [x0 v0 a0] ∈ R3

[Si(Ti) Ṡi(Ti) S̈i(Ti)] = [xTi vTi aTi ] ∈ R3

∀t ∈ [0,Ti], |
...
S i(t)| ≤ jmax ∈ R+

(2)

For this simple integrator of the third order without constraints on the state, Pon-
tryagin maximum principle (see for example [1]) says that the optimal control is
necessarily saturated, i.e.:

∀t ∈ [0,Ti],
...
S i(t) ∈ {− jmax, jmax}

with at most two control commutations. Solving (2) implies to find Ti and these
(at most) two commutation times, which requires to solve polynomial equations of
maximum degree four. Further details on how to derive the solution of this problem
can be found in [2] The proposed quasi-metric is then defined as:

3 A quasi-metric has all the properties of a metric, symmetry excepted.
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Fig. 4 Histograms of the distributions of the relative errors for the MSM (left) and the ED (right)
metrics

MSM : (x0,xT ) 7→ max
i=1..4

Ti

Here we present results of an experimental test to validate the proposed approxi-
mate quasi-metric. 104 pairs of kinodynamic states were randomly sampled in X =
[−5,5]3× [−5,5]3× [−10,10]3, considering J = [−20,20]3 and S = [−50,50]3.
Note that, without loss of generality and for simplification purposes, we consider
here a constant yaw. For each pair (x1,x2), we computed the value M∗SM(x1,x2) of
the quasi-metric induced by our steering method, the value MSM(x1,x2) given by
the proposed approximation, and the value ED(x1,x2) of the euclidean distance in
R3 considering only the position of the center of mass. We study the distribution of
the relative error between M∗SM and MSM , i.e. the quantity:

REMSM (x1,x2) = 1− MSM(x1,x2)

M∗SM(x1,x2)

For comparison, we also provide the relative error REED between M∗SM and
ED. Fig. 4 shows histograms of the distributions of these errors, The low stan-
dard deviation of the distribution of the relative error for the proposed quasi-
metric is a measure of the quality of the approximation. These results also pro-
vide empirical evidence that MSM and M∗SM are equivalent since for all pairs
(x1,x2), we have 0.16396≤ REMSM (x1,x2)≤ 0.85540 which therefore implies that
1

10
.M∗SM(x1,x2) < MSM(x1,x2) < 10.M∗SM(x1,x2) This means that MSM and M∗SM

are inducing the same topology on X , and thus that the cost-to-go defined by our
steering method is correctly evaluated by MSM . This is clearly not the case for the
euclidian metric ED. While MSM represents a good approximation of the real cost-
to-go, it is also computationally much faster (20 times) than M∗SM , which motivates
its use as distance metric in order to increase the performance of the planning algo-
rithms, as shown by the simulation results of Section 4

Sampling connectible states : We present below an efficient state sampling strategy
proposed in [4] with the aim to increase the probability of generating ”connectable”
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states and thus the performance of the planning algorithms. Indeed, trajectories gen-
erated by the steering method presented in Section II do not guarantee to respect
bounds on the position of the robot. Such a constraint is typically violated when
samples are close to the boundary of the workspace and the velocity is high, so
that it is not possible to decelerate to avoid crossing this positional limit. In a similar
way, bounds on velocity can also be violated. If acceleration is too high and velocity
is close to the limit, produced trajectories will be invalid because velocity can not be
reduced in time to meet the constraints. Note however that the imposed shape for the
trajectories produced by our steering method guarantees that bounds on acceleration
are respected.

We say that a kinodynamic state x̄ ∈ X is forward-connectible (respectively
backward-connectible) if and only if there is a state x ∈X such that the local path
(x̄,x) (respectively (x, x̄)) produced by the steering method lies entirely in X (i.e.
respects bounds on position, velocity and acceleration). A state that is forward-
connectible and backward-connectible is said to be connectible (non-connectible
otherwise). This is illustrated on Fig. 5. In case of uniform sampling of the state
space, non-connectible states can be generated, and thus, local paths computed to
connect those states have to be discarded a posteriori by the planner. This is rather
inefficient since generating and testing a local path for validity is a costly operation.
The goal of the proposed sampling technique is to notably reduce the probability of
generating non-connectible states, and hence to improve the performance of plan-
ning algorithms.

The sampling technique proceeds in a decoupled and incremental way. First,
acceleration is uniformly sampled. The idea is then to compute a set of velocity
values for which the state is known to be non-connectible. Velocity is then uniformly
sampled outside this set. Finally, given this couple (velocity, acceleration) a set of
position values for which the state is known to be non-connectible is computed, and
the position is then uniformly sampled outside this set.

Fig. 6 illustrates how to compute given a uniformly sampled acceleration value
as for one output the set of velocity values for which the state is known to be non-
connectible, Let us denote vmax and amax as the bounds on the absolute value of
velocity and acceleration respectively. We study acceleration a(t) and velocity v0(t)
on a neighborhood around t = 0 for a(0) = as and v0(0) = 0. The idea is to ap-
ply a saturated acceleration variation and determine the extrema of v0(t) in this
neighborhood. Using them, we can compute the limits on velocity vs such that

Fig. 5 Examples of non-connectible states in two dimensions. Red squares are positions and red
arrows are velocity vectors. Blue curves are examples of trajectories. Bounds on position are rep-
resented in black. The state on the left is not backward-connectible. The state on the right is not
forward-connectible.
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v(t) = v0(t) + vs lies in [−vmax,vmax]. We use notations defined in section 2. For
t > 0, phase A of our steering method is applied. Phase H is applied for t < 0. The
sampled value as locally imposes a direction of variation of v0(t) on phases A and H.
We want to reverse this direction of variation in minimum time. This is equivalent
to driving a(t) to zero in minimum time. For that, we set aB = aG =−sign(as).amax.
This corresponds to the highest acceleration variation achievable by our steering
method. Note that, by construction, acceleration is symmetric during phases A and
H (i.e a(−t) = a(t)) and v0(t) is anti-symmetric (i.e v0(−t) = −v0(t)). Since a(t)
is a second order spline strictly monotonic on phase A, it is straightforward to com-
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Given a couple (vs,as) for one output, Fig. 7 illustrates how the set of position
values for which the state is known to be non-connectible can be computed The
principle is similar to the one above for velocity sampling. Velocity v(t) and position
x0(t) are studied around t = 0 for a(0) = as, v(0) = vs and x0(t) = 0. We apply a
saturated velocity variation and determine the extrema of x0(t) in this neighborhood.
Using them, we can compute the limits on position xs such that x(t) = x0(t)+xs lies
in [−xmax,xmax] (bounds on position). For t > 0, phases A to C of our steering method
are applied. Phases E to H are applied for t < 0. We want to reverse the direction
of variation of the position imposed by vs as fast as possible. This is equivalent
to driving v(t) to zero in minimum time. For that, we set vD = −sign(vs).vmax for
both phases A to C and E to H. This corresponds to the highest velocity variation
achievable by our steering method. The only difference here is that neither v(t) nor
x0(t) have symmetry proprieties. We compute t+ > 0 such that v(t+) = 0 and t− < 0
such that v(t−) = 0. If vs ≥ 0 then x+ = xmax−x0(t+) and x− =−xmax−x0(t−) else
x+ = xmax− x0(t−) and x− =−xmax− x0(t+). A position value xs is then uniformly
sampled in [x−, x+].

Directed bi-RRT : In the well known undirected version of the bi-RRT algorithm
[11], two trees TS and TG are constructed in parallel. TS grows from the start con-
figuration and TG from the goal configuration. Each iteration for one of the trees
consists of sampling a configuration qrand , finding its nearest neighbor qnear in the
tree (according to a defined metric), and extending it toward qrand (using a steering
method) to create a new configuration qnew. Each time an expansion is successful
for one of the trees, a direct connection is attempted between qnew and its nearest
neighbor in the other tree. The algorithm ends if this local path is valid (i.e. when
the trees are connected). In our directed version, both the steering method and the
quasi-metric MSM are non-symmetric, and thus have to be called taking care of the
order of the two states. The nearest neighbors NS(x̄) and NG(x̄) of a state x̄ in TS
and TG respectively are defined as such:

NS(x̄) = argmin
x∈TS

MSM(x, x̄)

NG(x̄) = argmin
x∈TG

MSM(x̄,x)

For an expansion of TS, we test the local path
(
NS(xrand),xnew

)
for validity. In

case of success, the algorithm ends if the local path
(
xnew,NG(xnew)

)
is valid. For

an expansion of TG, the local path
(
xnew,NG(xrand)

)
is tested for validity, and the

algorithm ends in case of validity of the local path
(
NS(xnew),xnew

)
.

Directed PRM : At each iteration of the undirected version of the PRM algo-
rithm [9], a collision free configuration q is sampled and added to the graph G .
For every connected component Gi of G , connections are attempted between q and
each node of Gi in increasing order of distance from q until one is successful. A
threshold on this distance can be considered with the aim to reduce computational
cost. In our directed version, we consider the strongly connected components Gi
of G . Moreover, we maintain during the execution the adjacency matrix AG of the
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transitive closure of the graph of the strongly connected components of G. This
square matrix, whose dimension is the number of strongly connected components,
is defined by AG [i][ j] = 1 if a path in G exists from every node of Gi to every node
of G j and AG [i][ j] = 0 otherwise. If AG [i][ j] = 1 we say that Gi is connected to
G j. Note that AG [i][ j] = AG [ j][i] = 1 if and only if i = j. At each iteration, a valid
state x is sampled and added to G (which has n strongly connected components).
Its strongly connected component Gn+1 = {x} is added to the matrix AG . For every
connected component Gi of G (i = 1..n), if Gi is not connected to Gn+1, connections
from every node x j of Gi to x are attempted in increasing order of MSM(x j,x) until
one is valid. As for the undirected version, a threshold on the value of MSM can
be considered here. AG is updated if neecessary. Then, if Gn+1 is not connected to
Gi, connections from x to every node x j of Gi are attempted in increasing order of
MSM(x,x j) until one is valid. If used in single query mode, the algorithm ends when
the strongly connected component of the initial state is connected to the strongly
connected component of the goal state.

4 Simulation Results

Results presented below show the influence of the quasi-metric and the sampling
technique on the two previously presented motion planners. Experiments have been
conducted on two different environments shown in Fig. 8 and for the same quadrotor
whose diameter is equal to 0.54 meters. We consider V = [−5,5]3, A = [−10,10]3,
J = [−20,20]3, S = [−50,50]3 (using SI base units). Yaw is kept constant.

The first environment, referred to as boxes, is a cube with side length of 10 meters
filled with box shaped-obstacles of different sizes. The second environment, referred
to as slots, is also a cube with side length of 10 meters but divided in two halves
by a series of aligned obstacles separated by 0.40 meters (hence smaller than the
robot diameter). This problem is particularly challenging since going across these
obstacles requires to find a path in a very narrow passage in the state-space. Ev-
ery combination of environment, algorithm, metric and sampling strategy has been
tested. Results are provided in Tab. 2 for CPU and flying times in seconds, number
of nodes (and iterations for the RRT) and percentage of not connectible nodes (with

Fig. 8 Testing environments (a) boxes (b) slots
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Table 2 B: boxes, S: slots, P: prm, R: rrt, M: proposed metric, E: euclidean metric, I: incremental
sampling, U: uniform sampling

Experiment B.P.M.I. B.P.E.I. B.P.M.U. B.P.E.U. S.P.M.I. S.P.E.I. S.P.M.U. S.P.E.U.
CPU time (s) 0.05648 0.07884 3.284 4.409 1.505 1.220 578.5 444.2

Flying time (s) 8.180 8.772 8.000 8.126 9.074 8.979 8.615 8.387
Number of nodes 12.11 13.77 78.64 88.33 71.93 61.59 767.9 725.8

% of not connectible nodes 0 0 82.53 84.38 0 0 89.11 89.19

Experiment B.R.M.I. B.R.E.I. B.R.M.U. B.R.E.U. S.R.M.I. S.R.E.I. S.R.M.U. S.R.E.U.
CPU time (s) 0.02780 0.04088 0.04144 0.05612 2.165 2.466 558.8 512.9

Flying time (s) 9.674 10.84 9.365 10.09 25.42 34.72 33.96 55.98
Number of nodes 8.79 8.84 9.18 10.77 334.5 565.6 4429.4 8813.0

Number of iterations 26.45 45.04 45.58 65.02 982.9 2502.9 30253.7 196233.3
% of not connectible nodes 50.34 54.94 51.51 59.85 25.60 34.86 79.41 82.48

respect to the criteria defined in section 3). Each experiment is designated by an
acronym whose meaning is explained in the caption. Results are averaged over 100
runs and are for an implementation in C, integrated in our motion planning soft-
ware Move3D [19], and run on a single core of an Intel Xeon W3520 processor at
2.67GHz.

Results show a significant improvement of the performance of both algorithms
thanks to the integrations of the proposed techniques. However, one can clearly see
that the metric and the sampling technique have a more notable effect on one or the
other planner. Results for the PRM algorithm shows that the sampling method has
a great influence on its performance. Its integration indeed improves CPU time by
two orders of magnitude for both environments. On the other hand, one can see that
for the slots environment CPU times are slighlty worse with the use of the metric.
This can be explained by the difference of computing time between our quasi-metric
and the euclidean distance. This is also observed in one case for the RRT algorithm
(SRMU vs. SREU). For the RRT algorithm, results show that the influence of the
metric is more important. This was to be expected since RRT-based algorithms are
known to be very sensitive to the metric. One can see that the number of iterations
is significantly reduced, meaning that the search is better guided. The improvement
produced by the sampling technique is also very significant for the slots environment
but less noticeable for the boxes environment. This can be explained by the fact that,
in RRT-based algorithms, the sampled states are not tested for connections but used
to define a direction for extension. A new state is then generated according to that
direction. One can see that, for the boxes environment, about half of these states are
not connectible regardless of the sampling method. Finally note that flying times
are given for the raw, non-smoothed trajectories, which explains the rather large
difference of path quality between PRM and RRT results.

5 Experiment

We also performed some preliminary experimental validation of the planning al-
gorithms in the Aerial Robotics Testbed from LAAS-CNRS (see Fig. 9) to show
that the planned trajectories using the steering method of Section 2 can actually be
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Fig. 9 Experimental set-up with the MikroKopter quadrotor and example of planned trajectory

executed by a real quadrotor. The arena consists of an indoor flight volume with
a ground area of 6 by 3 meters surrounded by a safety net at a height of 4 meters
and monitored by an Optitrack system. The quadrotor is a MikroKopter equipped
with an accelerometer and a gyroscope. As controller, we implemented the geo-
metric tracking control algorithm proposed by [15]. These first experiments were
performed in a simple environment constrained by only 3 cylindrical obstacles (see
Fig. 9). Trajectories were planned using the decoupled approach presented in Sec-
tion 3. These first results show the ability of the quadrotor to follow correctly the
planned trajectory, although some tracking error was observed for high speed. See
[2] for more details on the experimental set-up and results.

6 Conclusion

In this chapter, we have presented a new approach for planning kino-dynamically
feasible motions of quadrotor-like aerial robots. The approach relies on a com-
putationally efficient method for generating local trajectories that interpolate two
given states (position, velocity and acceleration) with a fourth-order spline respect-
ing bounds on the derivatives up to snap. This local trajectory planner can be used
in a decoupled approach, or applied directly as a steering method within sampling-
based motion planners for solving more constrained problems. We also proposed
two techniques to enhance the performance of kinodymanic motion planners based
on directed variants of the RRT and PRM algorithms : a quasi-metric in the state
space that accurately estimates the cost-to-go between two states and an incremental
sampling technique that notably increases the probability of generating connectible
states. Simulation results show that the integration of these techniques significantly
improves the performance of the PRM-based and RRT-based planners, particularly
for solving very constrained problems. While our first experiments performed with
a real quadrotor indicate the ability to correctly follow the planned trajectory, fur-
ther experimental work as well as improvements in the implemented techniques for
localization and control remain to be done to reduce the tracking error observed
at high speed and to better demonstrate the ability to execute more agile maneu-
vers in constrained environments. As future work, it would also be interesting to



15

investigate the integration of the techniques presented in this chapter within optimal
sampling-based planners like T-RRT* [6] to compute minimal-time trajectories or
solutions optimizing a cost function, for example in order to maximize the clearance
to obstacles.
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