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Volume of sub-level sets of polynomials

Consider the sub-level set K := {x : g(x) ≤ 1} of a nonnegative homogeneous polynomial g. We show that its Lebesgue volume vol(K) can be approximated as closely as desired by solving a sequence of generalized eigenvalue problems with respect to a pair of Hankel matrices of increasing size, whose entries are obtained in closed form. An extension to the non-homogeneous case is also briefly described.

I. INTRODUCTION

Let g ∈ R[x] t be a nonnegative homogeneous polynomial of degree t with associated sub-level set

K := {x ∈ R n : g(x) ≤ 1 }. (1) 
We describe an efficient numerical scheme to approximate its Lebesgue volume vol(K) as closely as desired. In addition of being an interesting mathematical problem on its own, computing vol(K) has also a practical interest outside computational geometry. For instance, computing the volume of sub-level sets of polynomials can be helpful to compute the largest region of attraction in control problems as shown in Korda and Henrion [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF]. In the homogeneous case it also has a direct link with computing the integral exp(-g(x))dx, called an integral discriminant in Dolotin and Morozov [START_REF] Dolotin | Introduction to Non-Linear Algebra[END_REF] and Morozov and Shakirov [START_REF] Morozov | Introduction to integral discriminants[END_REF]. Indeed in [START_REF] Morozov | Introduction to integral discriminants[END_REF]:

vol(K) = 1 Γ(1 + n+t 2 ) R n exp(-g(x)) dx, (2) 
and to quote [START_REF] Morozov | Introduction to integral discriminants[END_REF], averaging with exponential weights is an important operation in statistical and quantum physics. However, and again quoting [START_REF] Morozov | Introduction to integral discriminants[END_REF], despite simply looking, [START_REF] Denkl | Orthogonal Polynomial in Several Variables[END_REF] remains terra incognita (sic). However, for special cases of homogeneous polynomials, the authors in [START_REF] Morozov | Introduction to integral discriminants[END_REF] have been able to obtain a closed form expression for (2) (hence equivalently for vol(K)) in terms of algebraic invariants of g. On the other hand, we prove that

vol(K) = lim d→∞ λ min (A d , B d ), (3) 
where λ min (A d , B d ) is the smallest generalized eigenvalue of a pair (A d , B d ) of given real Hankel matrices of size d + 1. In addition, all entries of both Hankel matrices are easy to obtain in closed-form and the Hankel matrix B d depends only on the degree of g. Therefore, in principle the integral (2) can be approximated efficiently and as closely as desired by (linear algebra) eigenvalue routines. To the best of our knowledge this result is quite new and even if we do not provide a closed form expression of [START_REF] Denkl | Orthogonal Polynomial in Several Variables[END_REF], this new *This work was supported by the European Research Council (ERC) under the ERC-Advanced Grant for the TAMING project 1 Jean B. Lasserre is with LAAS-CNRS and the Institute of Mathematics of Toulouse, France. lasserre@laas.fr characterization as a limit or eigenvalue problems brings new insights. a) Methodology: Computing (and even approximating) the Lebesgue volume of a convex body is hard (let alone non-convex bodies). Often the only possibility is to use (non deterministic) Monte Carlo type methods which provide an estimate with statistical guarantees. For a discussion on volume computation the interested reader is referred to [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] and the many references therein. However for basic semialgebraic sets K ⊂ [-1, 1] n , Henrion et al. [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] have provided a general methodology to approximate vol(K). It consists in solving a hierarchy (Q d ) d∈N of semidefinite programs 1 of increasing size, whose associated sequence of optimal values (ρ d ) d∈N is monotone non increasing and converges to vol(K). An optimal solution of Q d is a vector y ∈ R s(2d) (with s(d) = n+d n ) whose each coordinate y α , α ∈ N n 2d , approximates the α-moment of λ K , the restriction to K of the Lebesgue measure λ on R n (and therefore y 0 approximates vol(K) from above). An optimal solution of the dual semidefinite program Q * d provides the coefficients

(p α ) α∈N n 2d of a polynomial p ∈ R[x]
2d which approximates on [-1, 1] and from above, the (indicator) function x → 1 K (x) = 1 if x ∈ K and 0 otherwise. In general the convergence ρ d → vol(K) is slow because of a Gibbs phenomenon2 when one approximates the indicator function 1 K by continuous functions. In [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] the authors have proposed a "trick" which accelerate drastically the convergence but at the price of loosing the monotone convergence ρ d ↓ vol(K). Another acceleration technique was provided in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] which still preserves monotone convergence. It uses the fact that moments of λ K satisfy linear equality constraints that follows from Stokes' theorem.

Recently, Jasour et al. [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF] have considered volume computation in the context of risk estimation in uncertain environments. They use an elegant 'trick" which reduces computing the n-dimensional volume vol(K) to computing φ([0, 1]) for a certain pushforward measure φ on the real line, whose moments are known. This results in solving the hierarchy of semidefinite programs proposed in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF], but now for measures on the real line as opposed to measures on R n . Solving the corresponding hierarchy of dual semidefinite programs amounts to approximate the indicator of an interval on the real line by polynomials of increasing degree, and whose coefficients minimize a linear criterion. On the one hand, it yields drastic computational savings as passing from R n to R is indeed a big and impressive progress. But on the other hand, the (monotone) convergence remains slow as one cannot one cannot apply the acceleration technique based on Stokes' theorem proposed e.g. in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] because the density of φ is not known explicitly. In the examples provided in §III-E for comparison, we can observe this typical (very) slow convergence. However as the problem is now onedimensional one may then solve many more steps of the resulting hierarchy of semidefinite programs provided that one works with a nice basis of polynomials (e.g. Chebyshev polynomials) to avoid numerical problems as much as possible. Interestingly, pushforward measures were also used in Magron et al. [START_REF] Magron | Semidefinite approximations of projections and polynomial images of semi-algebraic sets[END_REF] to compute the Lebesgue volume of f (K) for a polynomial mapping f : R n → R m , but in this case one has to compute moments of the measure in R n whose pushforward measure is the Lebesgue measure on f (K), and the resulting computation is still very expensive and limited to modest dimensions. b) Contribution: We provide a simple numerical scheme to approximate vol(K) from above with K as in (1) and when g is positive and homogeneous. We are inspired by the trick of using the pushforward measure in Jasour et al. [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF]. The novelty here is that by taking into account the specific nature (homogeneity) of g in (1) we can drastically simplify computations. Indeed, the hierarchy of semidefinite programs defined in [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF] can be replaced (and improved significantly) with computing a sequence of scalars (τ d ) d∈N , where each τ d is the generalized minimum eigenvalue of two known Hankel matrices of size d + 1, whose entries are obtained exactly in closed-form with no numerical error. Therefore there is no semidefinite program to solve. Moreover, if one uses the basis of orthonormal polynomials w.r.t. the pushforward measure, then τ d is now the minimum eigenvalue of a single real symmetric matrix of size d.

II. NOTATION AND DEFINITIONS

Let R[x] denote the ring of polynomials in the variables

x = (x 1 , . . . , x n ) and R[x] t ⊂ R[x] denote the vector space of polynomials of degree at most t, hence of dimension s(d) = n+t n . Let Σ[x] ⊂ R[x]
denote the space of polynomials the are sums-of-squares (in short SOS polynomials) and let Σ

[x] d ⊂ R[x] 2d denote the space of SOS polynomials of degree at most 2d. With α ∈ N n and x ∈ R n , the notation x α stands for x α1 1 • • • x αn n . Also for every α ∈ N n , let |α| := i α i and N n d := {α ∈ N n : |α| ≤ d}. The support of a Borel measure µ on R n is the smallest closed set Ω such that µ(R n \ Ω) = 0. Denote by B(X)
the Borel σ-field associated with a topological space X, and M(X) the space of finite Borel measures on X.

Given two real symmetric matrices A, C ∈ R n×n denote by λ min (A, C) the smallest generalized eigenvalue with respect to the pair (A, C), that is, the smallest scalar θ such that Ax = θ Cx for some non zero vector x ∈ R n . When C is the identity matrix then λ min (A, C) is just the smallest eigenvalue of A. Computing λ min (A, C) can be done via a pure and efficient linear algebra routine. The notation A 0 (resp. A ≻ 0) stands for A is positive semidefinite (resp. positive definite).

Moment matrix: Given a real sequence φ = (φ α ) α∈N n , let M d (φ) denote the multivariate (Hankel-type) moment matrix defined by

M d (φ)(α, β) = φ α+β for all α, β ∈ N n d . For instance, in the univariate case n = 1, with d = 2, M 2 is the Hankel matrix M 2 (φ) =   φ 0 φ 1 φ 2 φ 1 φ 2 φ 3 φ 2 φ 3 φ 4   . If φ = (φ j ) j∈N is the moment sequence of a Borel measure φ on R then M d (φ) 0 for all d = 0, 1, . . .. Conversely, if M d (φ) 0 for all d ∈ N,
then φ is the moment sequence of some finite Borel measure φ on R. The converse result is not true anymore in the multivariate case.

Let φ, ν be two finite Borel measures on R. The notation φ ≤ ν stands for φ(B) ≤ ν(B) for all B ∈ B(R).

Lemma 2.1: Let φ, ν be two finite Borel measures on R with all moments φ = (φ j ) j∈N and ν = (ν j ) j∈N finite. Then φ ≤ ν if and only if

M d (φ) M d (ν), ∀d = 0, 1, . . . Proof: Only if part: φ ≤ ν implies that ν -φ with associated sequence ν -φ = (ν j -φ j )
j∈N is a finite Borel measure on R, and therefore:

M d (ν) -M d (φ) = M d (ν -φ) 0, d ∈ N, i.e., M d (ν) M d (φ) for all d ∈ N. If part: If M d (φ) M d (ν) for all d ∈ N then the sequence ν -φ = (ν j -φ j ) j∈N satisfies M d (φ -ν) 0 for all d ∈ N.
Therefore, the moment sequence νφ = (ν j -φ j ) j∈N of the possibly signed measure ν -φ is in fact the moment sequence of a finite Borel (positive) measure on R, and therefore ν ≥ φ.

Localizing matrix: Given a real sequence φ = (φ α ) α∈N n and a polynomial x → p(x) := γ p γ x γ , let M d (p φ) denote the real symmetric matrix defined by:

M d (p φ)(α, β) = γ p γ φ α+β+γ , α, β ∈ N n d .
For instance, with n = 1, d = 2 and x → p(x) = x(1 -x):

M 2 (p φ) =   φ 1 -φ 2 φ 2 -φ 3 φ 3 -φ 4 φ 2 -φ 3 φ 3 -φ 4 φ 4 -φ 5 φ 3 -φ 4 φ 4 -φ 5 φ 5 -φ 6   , also a Hankel matrix. Lemma 2.2: Let x → p(x) = x(1 -x). (i) If a real finite sequence φ = (φ j ) j≤2d satisfies M d (φ) 0 and M d-1 (p φ) 0, then there is a measure µ on [0, 1] whose moments µ = (µ j ) j≤2d match φ. (ii) If a real sequence φ = (φ j ) j∈N satisfies M d (φ) 0 and M d (p φ)
0 for all d, then there is a measure µ on [0, 1] whose moments µ = (µ j ) j∈N match φ. See for instance Lasserre [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF] and the many references therein.

Pushforward measure: Let K ⊂ R n be a Borel set and λ a probability measure on K. Given a measurable mapping f : K → R p , the pushforward measure of λ on R p w.r.t. f is denoted by #λ and satisfies:

#λ(B) := λ(f -1 (B)), ∀B ∈ B(R p ).
In particular, its moments are given by:

#λ α := R p z α #λ(dz) = K f (x) α λ(dx), (4) 
for all α ∈ N p .

A version of Stokes' theorem

Let Ω ⊂ R n be an open subset with boundary ∂Ω and let x → X(x) be a given vector field. Then under suitable smoothness assumptions,

Ω Div(X)f (x) dx + Ω X, ∇f (x) dx = ∂Ω n x , X f (x) dσ, (5) 
where n x is the outward pointing normal to Ω at x ∈ ∂Ω, and σ is the (n -1)-dimensional Hausdorff measure on the boundary ∂Ω; see e.g. Taylor [15, Proposition 3.2, p. 128].

III. MAIN RESULT

Let B := [-1, 1] n and K ⊂ B be as in ( 1) with ∂K ⊂ {x : g(x) = 1}. Let λ be the Lebesgue measure on B normalized to a probability measure so that vol(K) = 2 n λ(K). Let g in (1) be a nonnegative and homogeneous polynomial of degree t. That is, g(λx) = λ t g(x) for all λ ∈ R, x ∈ R n . Let b g := max{g(x) : x ∈ B} and notice that as g is nonnegative with g(0) = 0, g(B) = [0, b g ].

A. Reduction to the real line

We next follow an elegant idea of Jasour et al. [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF], adapted to the present context. It reduces the computation of vol(K) (in R n ) to a certain volume computation in R, by using a particular pushforward measure of the Lebesgue measure λ on B.

Let #λ be the pushforward on the positive half line of λ, by the polynomial mapping g :

B → [0, b g ]. The support of #λ is the interval I := [0, b g ] ⊂ R.
Then in view of (4):

#λ k := I z k #λ(dz) = B g(x) k λ(dx), (6) 
for all k = 0, 1, . . . All scalars (#λ k ) k∈N can be obtained in closed form as g is a polynomial and λ is the (normalized) Lebesgue measure on B. Namely, writing the expansion

x → g(x) k = α∈N n kd g kα x α ,
for some coefficients (g kα ), one obtains:

#λ k = 2 -n α∈N n kd g kα n i=1 (1 -(-1) αi+1 ) α i + 1 , (7) 
for k = 0, 1, . . .. Next observe that 2 -n vol(K) = #λ(g(K)) and note that g(K) = [0, 1]. Therefore following the recipe introduced in Henrion et al. [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF], and with S :

= [0, 1] ⊂ [0, b g ]: #λ(S) = max φ∈M(S) { φ(S) : φ ≤ #λ }. (8) 
Let φ * be the mesure on the real line which is the restriction to S of the pushforward measure #λ, i.e.,

φ * (B) := #λ(B ∩ S), ∀B ∈ B(R). (9) 
Then φ * is the unique optimal solution of ( 8) and therefore φ * (S) = #λ(S) ; see e.g. Henrion et al. [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF]. Then to approximate φ * (S) from above, one may solve the hierarchy of semidefinite relaxations:

ρ d = max φ { φ 0 : 0 M d (φ) M d (#λ) M d-1 (x(1 -x) φ) 0 }, (10) 
where φ = (φ j ) j≤2d , M d (#λ) is the (Hankel) moment matrix (with moments up to order 2d) associated with the pushforward measure #λ, and

M d (φ) (resp. M d-1 (z(1 - z) φ))
is the Hankel moment (resp. localizing) matrix (with moments up to order 2d) associated with the sequence φ and the polynomial x → p(x) = x(1-x); see §II. Indeed ( 10) is a relaxation of ( 8) and the sequence (ρ d ) d∈N is monotone non increasing and converges to φ * (S) = #λ(S) from above; see e.g. [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF]. The dual of ( 10) is the semidefinite program

ρ * d = max p∈R[x] 2d { p d#λ : p -1 = σ + ψ x(1 -x) p, σ ∈ Σ[x] d ; ψ ∈ Σ[x] d-1 },
and if K has nonempty interior then ρ * d = ρ d . This is the approach advocated by Jasour et al. [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF] and indeed this reduction of the initial (Lebesgue) volume com-

putation in R n vol(K) = max φ∈M(K) { φ(K) : φ ≤ λ } (11) 
to instead compute #λ([0, 1]) (in R) by solving ( 8) is quite interesting as it yields drastic computational savings; in fact, solving the multivariate analogues for (11) of the univariate semidefinite relaxations (10) for ( 8), becomes rapidly impossible even for moderate d, except for problems of modest dimension (say e.g. n ≤ 4). However, even in the one-dimensional case the convergence ρ d ↓ #λ(S) as d → ∞, is very slow in general and numerical problems are expected for large values of d. To partially remedy this problem the authors of [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF] suggest to express moment and localizing matrices in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] in the Chebyshev basis (as opposed to the standard monomial basis). This allows to solve a larger number of relaxations but it does not change the typical slow convergence. The trick based on Stokes' theorem used in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] cannot be used here because the dominating (or reference) measure #λ in [START_REF] Lasserre | Level sets and non Gaussian integrals of positively homogeneous functions[END_REF] is not the Lebesgue measure λ anymore (as in [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]). On the other hand the trick to accelerate convergence used in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] can still be used, that is, in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] one now maximizes

L φ (x(1 -x)) = φ 1 -φ 2 instead of φ 0 . If φ d = (φ d j )
j≤2d is an optimal solution of (10) then φ d 0 → #λ(S) as d increases but one looses the monotone convergence from above.

B. Stokes helps

We show that in the particular case where g is positive and homogeneous then one can avoid solving the hierarchy [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] and instead solve a hierarchy of simple generalized eigenvalue problems with no semidefinite program to solve and with a much faster convergence.

Let φ * be the Borel measure on R defined in ( 9) with moments φ * = (φ * j ) j∈N . In particular φ * 0 = φ * (S) = #λ(S) = vol(K). Define M * d to be the Hankel (moment) matrix with entries:

M * d (k, ℓ) := n n + (k + ℓ -2) t , k, ℓ = 1, 2, . . . , d + 1 (12) Similarly, define M * d,x(1-x)
to be the Hankel matrix with entries:

M * d,x(1-x) (k, ℓ) := n n + (k + ℓ -1) t - n n + (k + ℓ) t , (13) 
for all k, ℓ = 1, 2, . . . , d + 1.

Theorem 3.1: For each d ∈ N, let M * d be as in ( 12) and let M d (#λ) be the Hankel moment matrix associated with #λ (hence with sequence of moments as in ( 7)). Then :

vol(K) = φ * 0 = lim d→∞ λ min (M d (#λ), M * d ), (14) 
i.e., φ * 0 is the limit of a sequence of minimum generalized eigenvalues for the pairs (M d (#λ), M * d )), d ∈ N. For a proof the interested reader is referred to Lasserre [START_REF] Lasserre | Volume of sub-level sets of homogeneous polynomials[END_REF].

C. A convergent hierarchy of upper bounds

Therefore to approximate vol(K) from above, one proceeds as follows. Start with d = 1 and then

• Compute all moments of #λ up to order 2d by [START_REF] Lasserre | Volume of sub-level sets of homogeneous polynomials[END_REF].

• Compute τ d := λ min (M d (#λ), M * d ) • set d = d + 1 and repeat.
This produces the required monotone sequence of upper bounds (τ d ) d∈N on φ * 0 , which converges to φ * 0 = 2 -n vol(K) as d increases. Next, from the proof in [START_REF] Lasserre | Volume of sub-level sets of homogeneous polynomials[END_REF] it turns out that

φ * 0 M * d (resp. φ * 0 M * d,x(1-x)
) is the moment (resp. localizing) matrix associated with the measure φ * on [0, 1]. Recall that:

τ d := λ min (M d (#λ), M * d ) = max { τ : τ M * d M d (#λ) }, (15) 
The following result shows that τ d ≤ ρ d . Proposition 3.2: For each d ∈ N, let ρ d (resp. τ d ) be as in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] (resp. ( 15)). Then ρ d ≥ τ d .

Proof: Consider the sequence µ = (µ j ) j≤2d defined by:

µ j = τ d n n + jt , j ≤ 2d, so that µ 0 = τ d and τ d M * d = M d (µ). Then from (15), 0 M d (µ) M d (#λ). Similarly τ d M d-1,x(1-x) = M d-1 (x(1 -x) µ) 0.
In other words, the sequence µ is a feasible solution of [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF], which implies µ 0 (= τ d ) ≤ ρ d . Hence the above eigenvalue procedure (which involves no semidefinite program) provides a monotone sequence of upper bounds on φ * 0 = vol(K) that is always better than the corresponding sequence of upper bounds (ρ d ) d∈N obtained by solving the hierarchy of semidefinite relaxations [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] proposed in [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF]. Notice also that the matrix M * d depends only on the degree of g and not on g itself.

Remark 3.3: (i) Alternatively one may also use an orthonormal basis associated with the sequence of moments (n/(n + jt) j∈N . In this case the new moment matrix M * d expressed in this basis is the identity matrix and τ d is now the minimum eigenvalue of the new moment Md (#λ) expressed in this basis. Notice that the orthonormal basis does not depend on g (only on its degree).

(ii) Another possibility is to simply use the basis of Chebyshev polynomials. Then computing τ d (still a generalized eigenvalue problem) involves matrices with much better numerical conditioning.

D. Some comments

a) The moments of #λ: Theoretically the (off line) computation of moments of the pushforward measure #λ is not difficult since they can be obtained in closed form via [START_REF] Lasserre | Volume of sub-level sets of homogeneous polynomials[END_REF]. However, in practice such computation can be demanding if g has relatively high degree and/or n is large. Indeed, g k is a homogeneous polynomial of degree tk in n variables, with possibly many non zero coefficients out of potentially n-1+tk tk in the monomial basis. Therefore for large values of d, some care is needed to obtain M d (#λ) efficiently and accurately; see Remark 3.3.

b) The box B: As for the method in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF], the smaller is the box B that contains K, the better is the efficiency of the method. The smallest box is B := n i=1 [w i , w i ], with: w i := max {x i : x ∈ K}; w i := min {x i : x ∈ K} (16) for all i = 1, . . . , n. But of course upper bounds on w i (resp. lower bounds on w i ) are also fine, and in particular those obtained by solving the first semidefinite relaxation of the Moment-SOS hierarchy described in [START_REF] Lasserre | The Moment-SOS hierarchy[END_REF], applied to the above polynomial optimization problems. c) A variant: One may also consider a variant which consists of using g := g 1/p with p integer in lieu of g. Indeed K = {x : g ≤ 1} = {x : g ≤ 1}. However the function g which is homogeneous of degree t/p is not a polynomial any more and therefore the moments (#λ k ) k∈N in [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF] are not available in closed form. On the other hand as the integral (6) deals with Lebesgue measure on a box, it can be approximated by using Monte-Carlo methods or by Gauss cubatures. Surprisingly, it turns out that this variant can be quite efficient (especially with p = kt, k ∈ N, which makes g homogeneous of degree 1/k).

E. Some numerical examples a) The Euclidean ball:

To compare τ d computed in [START_REF] Taylor | Partial Differential Equations: Theory[END_REF] with ρ d computed in solving the semidefinite program [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] proposed in [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF], we have considered a favorable case for [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF]. We chose K to be the Euclidean unit ball {x : x ≤ 1} with Lebesgue volume π n/2 /Γ(1 + n/2) and the ball B that contains K is the smallest one, i.e., B = [-1, 1] n . Indeed, the smaller is the ball B, the better are the upper bounds ρ d in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF].

Start with n = 2, g = x 2 = x 2 1 + x 2 2 , and B = [-1, 1] 2 , so that vol(K) = π. Then: We next provide results for the same problem but now in larger dimensions n = 8, 9 in Table III 

M * 1 = 1 1/2 1/2 1/3 ; M 1 (#λ) = 1 2/3 2/
K c := {x ∈ R 2 : x 4 1 + x 4 2 -c x 2 1 x 2 2 }, c ∈ [0, 2)
, where c is fixed, and we consider the values c = 0, 1, 1.5. In Table V we display results for τ d computed in [START_REF] Taylor | Partial Differential Equations: Theory[END_REF], and for the optimal value ρ d of the semidefinite relaxations described in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] for solving [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF] (which also include Stokes constraints to accelerate convergence). The box B was chosen according to (16) and the bounds w i = -w i are tight.

As one can see in Table V, with d = 8, ρ d and τ d are very close to each other (and close to vol(K) which is not known exactly). Also, remarkably, with d = 1 the bound τ d is already quite good since the relative error between τ 1 and τ 8 is about 0.36%, 0.07%, and 1.58% respectively.

Again it is important to emphasize that for the same index d, in [START_REF] Taylor | Partial Differential Equations: Theory[END_REF] we solve a generalized eigenvalue problem with two Hankel matrices of size d + 1 (independently of the number of variables n), whereas to obtain ρ d in [START_REF] Lasserre | Computing Gaussian & exponential measures of semialgebraic sets[END_REF] 

TABLE V n = 2, τ d VERSUS ρ d FOR c = 0, 1, 1.5
Finally, we have also considered the variant in §III-D(c) which consists of using the homogeneous function g = g 1/kt of degree 1/k in lieu of g. In Table VI 

IV. EXTENSION TO THE NON-HOMOGENEOUS CASE

' Let K ⊂ R n (with K ⊂ (-1, 1) n possibly after rescaling) be defined by:

K := {x ∈ R n : 0 ≤ g(x) ≤ 1 }, (17) 
where g ∈ R[x] t is not necessarily homogeneous. Write

x → g(x) = So one has replaced the n-dimensional Lebesgue volume computation λ(K) with the t-dimensional volume computation #λ(S), which is potentially interesting whenever t ≪ n. Then one may use homogeneity of the g k 's to include additional linear moment equality constraints on φ (again from an application of Stokes' theorem). Those additional constraints are crucial to accelerate the otherwise slow convergence of the SDP-relaxations associated with solving (18). However, this time we cannot reduce the initial problem to an eigenvalue problem as in the homogeneous case. For more details the interested reader is referred to [START_REF] Lasserre | Volume of sub-level sets of homogeneous polynomials[END_REF].

V. CONCLUSION

We have presented a new methodology to approximate as closely as desired the Lebesgue volume of the sub-level set {x : g(x) ≤ 1} of a positive homogeneous n-variate polynomial g. The novelty with respect to [START_REF] Jasour | Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments[END_REF] is that by using Stokes' theorem and exploiting the homogeneity of g, we are able to reduce the problem to solving a hierarchy of generalized eigenvalue problems for Hankel matrices of increasing size, with no optimization involved. The efficiency of the proposed extension to the non-homogeneous case remains to be validated, a topic of further investigation.
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  k (x), ∀x ∈ R n ,where each g k ∈ R[x] k is homogeneous of degree k, and consider the mappingG : B → R t , x → G(x) = (g k (x)) t k=1 ∈ R t , x ∈ R n . Let #λ ∈ M(R t )be the pushforward of the Lebesgue probability measure λ on B. It support is G(B) and as before all moments of #λ can be obtained easily in closed-form. In addition G(K) = {z ∈ G(B) : 0 ≤ t k=1 z t ≤ 1 } =: S. Then: 2 n vol(K) = #λ(S) = sup φ∈M(S) {φ(S) : φ ≤ #λ }. (18)

TABLE I n

 I 3 28/45 This yields 4•τ 1 ≈ 3.20 which is already a good upper bound on π whereas 4 • ρ 1 = 4. Next with d = 2 we obtain 4 • τ 2 ≈ 3.1440 while 4 • ρ 2 = 3.8928. Hence 4τ 2 already provides a very good upper bound on π with only moments of order 4. To appreciate the difference in speed of convergence between ρ d and τ d , Table I displays both values τ d and ρ d in the case of n = 4 variables and d = 1, . . . , 5. While the convergence τ d → 4.9348 is quite fast with a relative error of 0.03% at step d = 5, the convergence ρ d → 4.9348 is extremely slow as ρ 5 ≈ 8.499 only; see Figure 1. = 4, ρ * = 4.9348; ρ d VERSUS τ d

	d	d = 1	d = 2	d = 3	d = 4	d = 5
	ρ d	12.19	11.075	9.163	8.878	8.499
	τ d	6.839	5.309	5.001	4.945	4.936

  and TableIVrespectively. From inspection we can observe a fast and regular decrease in the value 2 n τ d as d increases, and similarly for the relative error.

	d	d = 2	d = 3	d = 4	d = 5	d = 6
	τ d	5.309	5.001	4.945	4.936	4.935
	error	7.58%	1.35%	0.22% 0.03%	0.004%

TABLE II n

 II = 4, ρ * = 4.9348; τ d AND RELATIVE ERROR

	d	d = 4 d = 5	d = 6	d = 7	d = 8
	2 n τ d	5.569	4.639	4.272	4.133	4.083
	error	37%	14%	5.26%	1.83%	0.60%

TABLE III n

 III = 8, ρ * = 4.0587; τ d AND RELATIVE ERROR

	d	d = 4	d = 5	d = 6	d = 7	d = 8
	2 n τ d	5.935	4.413	3.764	3.485	3.369
	error	79%	33.8%	14.1%	5.6%	2.15%

TABLE IV n

 IV = 9, ρ * = 3.298; τ d AND RELATIVE ERROR For n = 10 and d = 8, we have encountered numerical problems because the Hankel matrix M 8 (#λ) is illconditioned and then one should use another basis of polynomials in which to express the matrices M * 8 and M 8 (#λ); see Remark 3.3.

b) More examples: : With n = 2 consider the set:

  one can see that with only d = 1 and d = 2 one obtains very good approximations for k = 1, . . . , 4, significantly better than with the original polynomial g. VARIANT g = g 1/kt FOR c = 0, 1, 1.5

			c=0		
	k/c	k = 1	k = 2	k = 3	k = 4
	d = 1	3.7089	3.7098	3.7101	3.7102
	d = 2	3.7077	3.7080	3.7084	3.7087
			c=1		
		k = 1	k = 2	k = 3	k = 4
	d = 1	4.3136	4.3138	4.3136	4.3136
	d = 2	4.3123	4.3128	d = 4.3131	4.3133
			c=1.5		
		k = 1	k = 2	k = 3	k = 4
	d = 1	4.9477	4.9483	4.9489	4.9493
	d = 2	4.9476	4.9473	4.9473	4.9475
			TABLE VI	
	n = 2,			

A semidefinite program (SDP) is a conic convex optimization problem with a remarkable modeling power. It can be solved efficiently (in time polynomial in its input size) up to arbitrary precision fixed in advance; see e.g. Anjos and Lasserre[START_REF]Handbook of Semidefinite, Conic and Polynomial Optimization[END_REF] 

The Gibbs' phenomenon appears at a jump discontinuity when one approximates a piecewise C 1 function with a continuous function, e.g. by its Fourier series.