
HAL Id: hal-02277745
https://laas.hal.science/hal-02277745

Submitted on 3 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Volume of sub-level sets of polynomials
Jean B Lasserre

To cite this version:
Jean B Lasserre. Volume of sub-level sets of polynomials. 18th European Control Conference (ECC
2019), Jun 2019, Naples, Italy. pp.1975-1980, �10.23919/ECC.2019.8795995�. �hal-02277745�

https://laas.hal.science/hal-02277745
https://hal.archives-ouvertes.fr


Volume of sub-level sets of polynomials

Jean B. Lasserre1

Abstract— Consider the sub-level set K := {x : g(x) ≤ 1}
of a nonnegative homogeneous polynomial g. We show that
its Lebesgue volume vol(K) can be approximated as closely
as desired by solving a sequence of generalized eigenvalue
problems with respect to a pair of Hankel matrices of increasing
size, whose entries are obtained in closed form. An extension
to the non-homogeneous case is also briefly described.

I. INTRODUCTION

Let g ∈ R[x]t be a nonnegative homogeneous polynomial

of degree t with associated sub-level set

K := {x ∈ R
n : g(x) ≤ 1 }. (1)

We describe an efficient numerical scheme to approximate its

Lebesgue volume vol(K) as closely as desired. In addition

of being an interesting mathematical problem on its own,

computing vol(K) has also a practical interest outside com-

putational geometry. For instance, computing the volume of

sub-level sets of polynomials can be helpful to compute the

largest region of attraction in control problems as shown in

Korda and Henrion [4]. In the homogeneous case it also has

a direct link with computing the integral
∫

exp(−g(x))dx,

called an integral discriminant in Dolotin and Morozov [3]

and Morozov and Shakirov [14]. Indeed in [14]:

vol(K) =
1

Γ(1 + n+t
2 )

∫

Rn

exp(−g(x)) dx, (2)

and to quote [14], averaging with exponential weights is

an important operation in statistical and quantum physics.

However, and again quoting [14], despite simply looking, (2)

remains terra incognita (sic). However, for special cases of

homogeneous polynomials, the authors in [14] have been

able to obtain a closed form expression for (2) (hence

equivalently for vol(K)) in terms of algebraic invariants of

g. On the other hand, we prove that

vol(K) = lim
d→∞

λmin(Ad,Bd), (3)

where λmin(Ad,Bd) is the smallest generalized eigenvalue

of a pair (Ad,Bd) of given real Hankel matrices of size

d + 1. In addition, all entries of both Hankel matrices are

easy to obtain in closed-form and the Hankel matrix Bd

depends only on the degree of g. Therefore, in principle the

integral (2) can be approximated efficiently and as closely

as desired by (linear algebra) eigenvalue routines. To the

best of our knowledge this result is quite new and even if

we do not provide a closed form expression of (2), this new
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characterization as a limit or eigenvalue problems brings new

insights.
a) Methodology: Computing (and even approximating)

the Lebesgue volume of a convex body is hard (let alone

non-convex bodies). Often the only possibility is to use

(non deterministic) Monte Carlo type methods which provide

an estimate with statistical guarantees. For a discussion on

volume computation the interested reader is referred to [5]

and the many references therein. However for basic semi-

algebraic sets K ⊂ [−1, 1]n, Henrion et al. [5] have provided

a general methodology to approximate vol(K). It consists

in solving a hierarchy (Qd)d∈N of semidefinite programs1

of increasing size, whose associated sequence of optimal

values (ρd)d∈N is monotone non increasing and converges

to vol(K). An optimal solution of Qd is a vector y ∈
R

s(2d) (with s(d) =
(

n+d
n

)

) whose each coordinate yα,

α ∈ N
n
2d, approximates the α-moment of λK, the restriction

to K of the Lebesgue measure λ on R
n (and therefore y0

approximates vol(K) from above). An optimal solution of

the dual semidefinite program Q∗
d provides the coefficients

(pα)α∈Nn
2d

of a polynomial p ∈ R[x]2d which approximates

on [−1, 1] and from above, the (indicator) function x 7→
1K(x) = 1 if x ∈ K and 0 otherwise. In general the

convergence ρd → vol(K) is slow because of a Gibbs

phenomenon2 when one approximates the indicator function

1K by continuous functions. In [5] the authors have proposed

a “trick” which accelerate drastically the convergence but

at the price of loosing the monotone convergence ρd ↓
vol(K). Another acceleration technique was provided in [10]

which still preserves monotone convergence. It uses the fact

that moments of λK satisfy linear equality constraints that

follows from Stokes’ theorem.

Recently, Jasour et al. [6] have considered volume compu-

tation in the context of risk estimation in uncertain environ-

ments. They use an elegant ‘trick” which reduces computing

the n-dimensional volume vol(K) to computing φ([0, 1]) for

a certain pushforward measure φ on the real line, whose

moments are known. This results in solving the hierarchy of

semidefinite programs proposed in [5], but now for measures

on the real line as opposed to measures on R
n. Solving

the corresponding hierarchy of dual semidefinite programs

amounts to approximate the indicator of an interval on the

real line by polynomials of increasing degree, and whose

1A semidefinite program (SDP) is a conic convex optimization problem
with a remarkable modeling power. It can be solved efficiently (in time
polynomial in its input size) up to arbitrary precision fixed in advance; see
e.g. Anjos and Lasserre [1]

2The Gibbs’ phenomenon appears at a jump discontinuity when one
approximates a piecewise C1 function with a continuous function, e.g. by
its Fourier series.



coefficients minimize a linear criterion. On the one hand,

it yields drastic computational savings as passing from R
n

to R is indeed a big and impressive progress. But on the

other hand, the (monotone) convergence remains slow as one

cannot one cannot apply the acceleration technique based on

Stokes’ theorem proposed e.g. in [10] because the density

of φ is not known explicitly. In the examples provided in

§III-E for comparison, we can observe this typical (very)

slow convergence. However as the problem is now one-

dimensional one may then solve many more steps of the

resulting hierarchy of semidefinite programs provided that

one works with a nice basis of polynomials (e.g. Chebyshev

polynomials) to avoid numerical problems as much as pos-

sible. Interestingly, pushforward measures were also used in

Magron et al. [13] to compute the Lebesgue volume of f(K)
for a polynomial mapping f : Rn → R

m, but in this case

one has to compute moments of the measure in R
n whose

pushforward measure is the Lebesgue measure on f(K), and

the resulting computation is still very expensive and limited

to modest dimensions.

b) Contribution: We provide a simple numerical

scheme to approximate vol(K) from above with K as

in (1) and when g is positive and homogeneous. We are

inspired by the trick of using the pushforward measure in

Jasour et al. [6]. The novelty here is that by taking into

account the specific nature (homogeneity) of g in (1) we

can drastically simplify computations. Indeed, the hierarchy

of semidefinite programs defined in [6] can be replaced

(and improved significantly) with computing a sequence of

scalars (τd)d∈N, where each τd is the generalized minimum

eigenvalue of two known Hankel matrices of size d + 1,

whose entries are obtained exactly in closed-form with no

numerical error. Therefore there is no semidefinite program

to solve. Moreover, if one uses the basis of orthonormal

polynomials w.r.t. the pushforward measure, then τd is now

the minimum eigenvalue of a single real symmetric matrix

of size d.

II. NOTATION AND DEFINITIONS

Let R[x] denote the ring of polynomials in the variables

x = (x1, . . . , xn) and R[x]t ⊂ R[x] denote the vector space

of polynomials of degree at most t, hence of dimension

s(d) =
(

n+t
n

)

. Let Σ[x] ⊂ R[x] denote the space of poly-

nomials the are sums-of-squares (in short SOS polynomials)

and let Σ[x]d ⊂ R[x]2d denote the space of SOS polynomials

of degree at most 2d. With α ∈ N
n and x ∈ R

n, the

notation xα stands for xα1

1 · · ·xαn
n . Also for every α ∈ N

n,

let |α| :=
∑

i αi and N
n
d := {α ∈ N

n : |α| ≤ d}.

The support of a Borel measure µ on R
n is the smallest

closed set Ω such that µ(Rn \ Ω) = 0. Denote by B(X)
the Borel σ-field associated with a topological space X, and

M(X) the space of finite Borel measures on X.

Given two real symmetric matrices A,C ∈ R
n×n denote

by λmin(A,C) the smallest generalized eigenvalue with

respect to the pair (A,C), that is, the smallest scalar θ such

that Ax = θCx for some non zero vector x ∈ R
n. When

C is the identity matrix then λmin(A,C) is just the smallest

eigenvalue of A. Computing λmin(A,C) can be done via a

pure and efficient linear algebra routine. The notation A � 0
(resp. A ≻ 0) stands for A is positive semidefinite (resp.

positive definite).

Moment matrix: Given a real sequence φ = (φα)α∈Nn ,

let Md(φ) denote the multivariate (Hankel-type) moment

matrix defined by Md(φ)(α, β) = φα+β for all α, β ∈ N
n
d .

For instance, in the univariate case n = 1, with d = 2, M2

is the Hankel matrix

M2(φ) =





φ0 φ1 φ2
φ1 φ2 φ3
φ2 φ3 φ4



 .

If φ = (φj)j∈N is the moment sequence of a Borel measure

φ on R then Md(φ) � 0 for all d = 0, 1, . . .. Conversely, if

Md(φ) � 0 for all d ∈ N, then φ is the moment sequence

of some finite Borel measure φ on R. The converse result is

not true anymore in the multivariate case.

Let φ, ν be two finite Borel measures on R. The notation

φ ≤ ν stands for φ(B) ≤ ν(B) for all B ∈ B(R).
Lemma 2.1: Let φ, ν be two finite Borel measures on R

with all moments φ = (φj)j∈N and ν = (νj)j∈N finite. Then

φ ≤ ν if and only if

Md(φ) � Md(ν), ∀d = 0, 1, . . .
Proof: Only if part: φ ≤ ν implies that ν − φ with

associated sequence ν − φ = (νj − φj)j∈N is a finite Borel

measure on R, and therefore:

Md(ν)−Md(φ) = Md(ν − φ) � 0, d ∈ N,

i.e., Md(ν) � Md(φ) for all d ∈ N.

If part: If Md(φ) � Md(ν) for all d ∈ N then the

sequence ν − φ = (νj − φj)j∈N satisfies Md(φ − ν) � 0
for all d ∈ N. Therefore, the moment sequence ν − φ =
(νj −φj)j∈N of the possibly signed measure ν−φ is in fact

the moment sequence of a finite Borel (positive) measure on

R, and therefore ν ≥ φ.

Localizing matrix: Given a real sequence φ = (φα)α∈Nn

and a polynomial x 7→ p(x) :=
∑

γ pγx
γ , let Md(pφ)

denote the real symmetric matrix defined by:

Md(pφ)(α, β) =
∑

γ

pγ φα+β+γ , α, β ∈ N
n
d .

For instance, with n = 1, d = 2 and x 7→ p(x) = x(1 − x):

M2(pφ) =





φ1 − φ2 φ2 − φ3 φ3 − φ4
φ2 − φ3 φ3 − φ4 φ4 − φ5
φ3 − φ4 φ4 − φ5 φ5 − φ6



 ,

also a Hankel matrix.

Lemma 2.2: Let x 7→ p(x) = x(1 − x).
(i) If a real finite sequence φ = (φj)j≤2d satisfies

Md(φ) � 0 and Md−1(pφ) � 0, then there is a measure µ
on [0, 1] whose moments µ = (µj)j≤2d match φ.

(ii) If a real sequence φ = (φj)j∈N satisfies Md(φ) � 0
and Md(pφ) � 0 for all d, then there is a measure µ on

[0, 1] whose moments µ = (µj)j∈N match φ.

See for instance Lasserre [11] and the many references

therein.



Pushforward measure: Let K ⊂ R
n be a Borel set and λ

a probability measure on K. Given a measurable mapping

f : K → R
p, the pushforward measure of λ on R

p w.r.t. f
is denoted by #λ and satisfies:

#λ(B) := λ(f−1(B)), ∀B ∈ B(Rp).

In particular, its moments are given by:

#λα :=

∫

Rp

zα #λ(dz) =

∫

K

f(x)α λ(dx), (4)

for all α ∈ N
p.

A version of Stokes’ theorem

Let Ω ⊂ R
n be an open subset with boundary ∂Ω and

let x 7→ X(x) be a given vector field. Then under suitable

smoothness assumptions,
∫

Ω

Div(X)f(x) dx +

∫

Ω

〈X,∇f(x)〉 dx

=

∫

∂Ω

〈~nx,X〉f(x) dσ, (5)

where ~nx is the outward pointing normal to Ω at x ∈ ∂Ω,

and σ is the (n− 1)-dimensional Hausdorff measure on the

boundary ∂Ω; see e.g. Taylor [15, Proposition 3.2, p. 128].

III. MAIN RESULT

Let B := [−1, 1]n and K ⊂ B be as in (1) with

∂K ⊂ {x : g(x) = 1}. Let λ be the Lebesgue measure

on B normalized to a probability measure so that vol(K) =
2nλ(K). Let g in (1) be a nonnegative and homogeneous

polynomial of degree t. That is, g(λx) = λtg(x) for all

λ ∈ R, x ∈ R
n. Let bg := max{g(x) : x ∈ B} and notice

that as g is nonnegative with g(0) = 0, g(B) = [0, bg].

A. Reduction to the real line

We next follow an elegant idea of Jasour et al. [6], adapted

to the present context. It reduces the computation of vol(K)
(in R

n) to a certain volume computation in R, by using a

particular pushforward measure of the Lebesgue measure λ
on B.

Let #λ be the pushforward on the positive half line of λ,

by the polynomial mapping g : B → [0, bg]. The support of

#λ is the interval I := [0, bg] ⊂ R. Then in view of (4):

#λk :=

∫

I

zk #λ(dz) =

∫

B

g(x)k λ(dx), (6)

for all k = 0, 1, . . . All scalars (#λk)k∈N can be obtained in

closed form as g is a polynomial and λ is the (normalized)

Lebesgue measure on B. Namely, writing the expansion

x 7→ g(x)k =
∑

α∈Nn
kd

gkα xα,

for some coefficients (gkα), one obtains:

#λk = 2−n
∑

α∈Nn
kd

gkα

(

n
∏

i=1

(1 − (−1)αi+1)

αi + 1

)

, (7)

for k = 0, 1, . . .. Next observe that 2−nvol(K) = #λ(g(K))
and note that g(K) = [0, 1]. Therefore following the recipe

introduced in Henrion et al. [5], and with S := [0, 1] ⊂
[0, bg]:

#λ(S) = max
φ∈M(S)

{φ(S) : φ ≤ #λ }. (8)

Let φ∗ be the mesure on the real line which is the restriction

to S of the pushforward measure #λ, i.e.,

φ∗(B) := #λ(B ∩ S), ∀B ∈ B(R). (9)

Then φ∗ is the unique optimal solution of (8) and therefore

φ∗(S) = #λ(S) ; see e.g. Henrion et al. [5]. Then to

approximate φ∗(S) from above, one may solve the hierarchy

of semidefinite relaxations:

ρd = max
φ

{φ0 : 0 � Md(φ) � Md(#λ)

Md−1(x(1 − x)φ) � 0 },
(10)

where φ = (φj)j≤2d, Md(#λ) is the (Hankel) moment

matrix (with moments up to order 2d) associated with the

pushforward measure #λ, and Md(φ) (resp. Md−1(z(1 −
z)φ)) is the Hankel moment (resp. localizing) matrix (with

moments up to order 2d) associated with the sequence φ and

the polynomial x 7→ p(x) = x(1−x); see §II. Indeed (10) is a

relaxation of (8) and the sequence (ρd)d∈N is monotone non

increasing and converges to φ∗(S) = #λ(S) from above;

see e.g. [5]. The dual of (10) is the semidefinite program

ρ∗d = max
p∈R[x]2d

{

∫

p d#λ : p− 1 = σ + ψ x(1 − x)

p, σ ∈ Σ[x]d; ψ ∈ Σ[x]d−1 },

and if K has nonempty interior then ρ∗d = ρd.

This is the approach advocated by Jasour et al. [6] and

indeed this reduction of the initial (Lebesgue) volume com-

putation in R
n

vol(K) = max
φ∈M(K)

{φ(K) : φ ≤ λ } (11)

to instead compute #λ([0, 1]) (in R) by solving (8) is

quite interesting as it yields drastic computational savings;

in fact, solving the multivariate analogues for (11) of the

univariate semidefinite relaxations (10) for (8), becomes

rapidly impossible even for moderate d, except for problems

of modest dimension (say e.g. n ≤ 4).

However, even in the one-dimensional case the conver-

gence ρd ↓ #λ(S) as d → ∞, is very slow in general

and numerical problems are expected for large values of d.

To partially remedy this problem the authors of [6] suggest

to express moment and localizing matrices in (10) in the

Chebyshev basis (as opposed to the standard monomial

basis). This allows to solve a larger number of relaxations

but it does not change the typical slow convergence. The

trick based on Stokes’ theorem used in [10] cannot be used

here because the dominating (or reference) measure #λ in

(8) is not the Lebesgue measure λ anymore (as in (11)). On

the other hand the trick to accelerate convergence used in

[5] can still be used, that is, in (10) one now maximizes



Lφ(x(1−x)) = φ1 −φ2 instead of φ0. If φd = (φdj )j≤2d is

an optimal solution of (10) then φd0 → #λ(S) as d increases

but one looses the monotone convergence from above.

B. Stokes helps

We show that in the particular case where g is positive

and homogeneous then one can avoid solving the hierarchy

(10) and instead solve a hierarchy of simple generalized

eigenvalue problems with no semidefinite program to solve

and with a much faster convergence.

Let φ∗ be the Borel measure on R defined in (9) with

moments φ∗ = (φ∗j )j∈N. In particular

φ∗0 = φ∗(S) = #λ(S) = vol(K).

Define M∗
d to be the Hankel (moment) matrix with entries:

M∗
d(k, ℓ) :=

n

n+ (k + ℓ− 2) t
, k, ℓ = 1, 2, . . . , d+ 1

(12)

Similarly, define M∗
d,x(1−x) to be the Hankel matrix with

entries:

M∗
d,x(1−x)(k, ℓ) :=

n

n+ (k + ℓ− 1) t
−

n

n+ (k + ℓ) t
,

(13)

for all k, ℓ = 1, 2, . . . , d+ 1.

Theorem 3.1: For each d ∈ N, let M∗
d be as in (12) and

let Md(#λ) be the Hankel moment matrix associated with

#λ (hence with sequence of moments as in (7)). Then :

vol(K) = φ∗0 = lim
d→∞

λmin(Md(#λ),M
∗
d), (14)

i.e., φ∗0 is the limit of a sequence of minimum generalized

eigenvalues for the pairs (Md(#λ),M
∗
d)), d ∈ N.

For a proof the interested reader is referred to Lasserre [7].

C. A convergent hierarchy of upper bounds

Therefore to approximate vol(K) from above, one pro-

ceeds as follows. Start with d = 1 and then

• Compute all moments of #λ up to order 2d by (7).

• Compute τd := λmin(Md(#λ),M
∗
d)

• set d = d+ 1 and repeat.

This produces the required monotone sequence of upper

bounds (τd)d∈N on φ∗0, which converges to φ∗0 = 2−nvol(K)
as d increases. Next, from the proof in [7] it turns out that

φ∗0M
∗
d (resp. φ∗0M

∗
d,x(1−x)) is the moment (resp. localizing)

matrix associated with the measure φ∗ on [0, 1]. Recall that:

τd := λmin(Md(#λ),M
∗
d)

= max { τ : τM∗
d � Md(#λ) }, (15)

The following result shows that τd ≤ ρd.

Proposition 3.2: For each d ∈ N, let ρd (resp. τd) be as

in (10) (resp. (15)). Then ρd ≥ τd.

Proof: Consider the sequence µ = (µj)j≤2d defined

by:

µj = τd
n

n+ jt
, j ≤ 2d,

so that µ0 = τd and τdM
∗
d = Md(µ). Then from (15),

0 � Md(µ) � Md(#λ). Similarly τd Md−1,x(1−x) =

Md−1(x(1−x)µ) � 0. In other words, the sequence µ is a

feasible solution of (10), which implies µ0 (= τd) ≤ ρd.

Hence the above eigenvalue procedure (which involves no

semidefinite program) provides a monotone sequence of

upper bounds on φ∗0 = vol(K) that is always better than the

corresponding sequence of upper bounds (ρd)d∈N obtained

by solving the hierarchy of semidefinite relaxations (10)

proposed in [6]. Notice also that the matrix M∗
d depends

only on the degree of g and not on g itself.

Remark 3.3: (i) Alternatively one may also use an or-

thonormal basis associated with the sequence of moments

(n/(n + jt)j∈N. In this case the new moment matrix M̂∗
d

expressed in this basis is the identity matrix and τd is now the

minimum eigenvalue of the new moment M̂d(#λ) expressed

in this basis. Notice that the orthonormal basis does not

depend on g (only on its degree).

(ii) Another possibility is to simply use the basis of

Chebyshev polynomials. Then computing τd (still a general-

ized eigenvalue problem) involves matrices with much better

numerical conditioning.

D. Some comments

a) The moments of #λ: Theoretically the (off line)

computation of moments of the pushforward measure #λ is

not difficult since they can be obtained in closed form via (7).

However, in practice such computation can be demanding if

g has relatively high degree and/or n is large. Indeed, gk

is a homogeneous polynomial of degree tk in n variables,

with possibly many non zero coefficients out of potentially
(

n−1+tk
tk

)

in the monomial basis. Therefore for large values

of d, some care is needed to obtain Md(#λ) efficiently and

accurately; see Remark 3.3.

b) The box B: As for the method in [5], the smaller is

the box B that contains K, the better is the efficiency of the

method. The smallest box is B :=
∏n

i=1[wi, wi], with:

wi := max {xi : x ∈ K}; wi := min {xi : x ∈ K} (16)

for all i = 1, . . . , n. But of course upper bounds on wi

(resp. lower bounds on wi) are also fine, and in particular

those obtained by solving the first semidefinite relaxation of

the Moment-SOS hierarchy described in [12], applied to the

above polynomial optimization problems.

c) A variant: One may also consider a variant which

consists of using g̃ := g1/p with p integer in lieu of g.

Indeed K = {x : g ≤ 1} = {x : g̃ ≤ 1}. However the

function g̃ which is homogeneous of degree t/p is not a

polynomial any more and therefore the moments (#λk)k∈N

in (6) are not available in closed form. On the other hand

as the integral (6) deals with Lebesgue measure on a box, it

can be approximated by using Monte-Carlo methods or by

Gauss cubatures. Surprisingly, it turns out that this variant

can be quite efficient (especially with p = kt, k ∈ N, which

makes g̃ homogeneous of degree 1/k).

E. Some numerical examples

a) The Euclidean ball: To compare τd computed in (15)

with ρd computed in solving the semidefinite program (10)



proposed in [6], we have considered a favorable case for (10).

We chose K to be the Euclidean unit ball {x : ‖x‖ ≤ 1}
with Lebesgue volume πn/2/Γ(1+n/2) and the ball B that

contains K is the smallest one, i.e., B = [−1, 1]n. Indeed,

the smaller is the ball B, the better are the upper bounds ρd
in (10).

Start with n = 2, g = ‖x‖2 = x21+x
2
2, and B = [−1, 1]2,

so that vol(K) = π. Then:

M∗
1 =

[

1 1/2
1/2 1/3

]

; M1(#λ) =

[

1 2/3
2/3 28/45

]

This yields 4·τ1 ≈ 3.20 which is already a good upper bound

on π whereas 4 · ρ1 = 4. Next with d = 2 we obtain 4 · τ2 ≈
3.1440 while 4 · ρ2 = 3.8928. Hence 4τ2 already provides a

very good upper bound on π with only moments of order 4.

To appreciate the difference in speed of convergence between

ρd and τd, Table I displays both values τd and ρd in the case

of n = 4 variables and d = 1, . . . , 5. While the convergence

τd → 4.9348 is quite fast with a relative error of 0.03% at

step d = 5, the convergence ρd → 4.9348 is extremely slow

as ρ5 ≈ 8.499 only; see Figure 1.

d d = 1 d = 2 d = 3 d = 4 d = 5
ρd 12.19 11.075 9.163 8.878 8.499
τd 6.839 5.309 5.001 4.945 4.936

TABLE I

n = 4, ρ∗ = 4.9348; ρd VERSUS τd

1 2 3 4 5 6 7

4

5

6

7

8

9

10

11

12

13

Fig. 1. n = 4; Comparing τd (red below) with ρd (blue above)

We next provide results for the same problem but now

in larger dimensions n = 8, 9 in Table III and Table IV

respectively. From inspection we can observe a fast and

regular decrease in the value 2nτd as d increases, and

similarly for the relative error.

d d = 2 d = 3 d = 4 d = 5 d = 6
τd 5.309 5.001 4.945 4.936 4.935

error 7.58% 1.35% 0.22% 0.03% 0.004%

TABLE II

n = 4, ρ∗ = 4.9348; τd AND RELATIVE ERROR

d d = 4 d = 5 d = 6 d = 7 d = 8
2nτd 5.569 4.639 4.272 4.133 4.083
error 37% 14% 5.26% 1.83% 0.60%

TABLE III

n = 8, ρ∗ = 4.0587; τd AND RELATIVE ERROR

d d = 4 d = 5 d = 6 d = 7 d = 8
2nτd 5.935 4.413 3.764 3.485 3.369
error 79% 33.8% 14.1% 5.6% 2.15%

TABLE IV

n = 9, ρ∗ = 3.298; τd AND RELATIVE ERROR

For n = 10 and d = 8, we have encountered numer-

ical problems because the Hankel matrix M8(#λ) is ill-

conditioned and then one should use another basis of poly-

nomials in which to express the matrices M∗
8 and M8(#λ);

see Remark 3.3.

b) More examples: : With n = 2 consider the set:

Kc := {x ∈ R
2 : x41 + x42 − c x21x

2
2 }, c ∈ [0, 2),

where c is fixed, and we consider the values c = 0, 1, 1.5. In

Table V we display results for τd computed in (15), and for

the optimal value ρd of the semidefinite relaxations described

in [10] for solving (11) (which also include Stokes con-

straints to accelerate convergence). The box B was chosen

according to (16) and the bounds wi = −wi are tight.

As one can see in Table V, with d = 8, ρd and τd are

very close to each other (and close to vol(K) which is not

known exactly). Also, remarkably, with d = 1 the bound τd
is already quite good since the relative error between τ1 and

τ8 is about 0.36%, 0.07%, and 1.58% respectively.

Again it is important to emphasize that for the same index

d, in (15) we solve a generalized eigenvalue problem with

two Hankel matrices of size d + 1 (independently of the

number of variables n), whereas to obtain ρd in [10] we need

solve a semidefinite program involving a moment matrix of

size
(

n+d
n

)

. (For relatively large d, the latter method in [10]

is possible only for small dimension n.)

c=0.0; vol(K) ≈ 3.708
d d = 1 d = 2 d = 4 d = 6 d = 8
τd 3.7221 3.7217 3.7151 3.7093 3.7087
ρd 5.4553 3.9402 3.7256 3.7092

c=1; vol(K) ≈ 4.313
d d = 1 d = 2 d = 4 d = 6 d = 8
τd 4.3164 4.3161 4.3158 4.3145 4.3134
ρd 4.6656 4.3571 4.3157 4.3131

c=1.5; vol(K) ≈ 4.947
d d = 1 d = 2 d = 4 d = 6 d = 8
τd 5.0315 5.0294 4.9838 4.9597 4.9519
ρd 6.0516 5.1260 4.9773 4.9494

TABLE V

n = 2, τd VERSUS ρd FOR c = 0, 1, 1.5

Finally, we have also considered the variant in §III-D(c)

which consists of using the homogeneous function g̃ = g1/kt

of degree 1/k in lieu of g. In Table VI one can see that with



only d = 1 and d = 2 one obtains very good approximations

for k = 1, . . . , 4, significantly better than with the original

polynomial g.

c=0

k/c k = 1 k = 2 k = 3 k = 4
d = 1 3.7089 3.7098 3.7101 3.7102
d = 2 3.7077 3.7080 3.7084 3.7087

c=1

k = 1 k = 2 k = 3 k = 4
d = 1 4.3136 4.3138 4.3136 4.3136
d = 2 4.3123 4.3128 d = 4.3131 4.3133

c=1.5

k = 1 k = 2 k = 3 k = 4
d = 1 4.9477 4.9483 4.9489 4.9493
d = 2 4.9476 4.9473 4.9473 4.9475

TABLE VI

n = 2, VARIANT g̃ = g1/kt FOR c = 0, 1, 1.5

IV. EXTENSION TO THE NON-HOMOGENEOUS CASE

‘ Let K ⊂ R
n (with K ⊂ (−1, 1)n possibly after re-

scaling) be defined by:

K := {x ∈ R
n : 0 ≤ g(x) ≤ 1 }, (17)

where g ∈ R[x]t is not necessarily homogeneous. Write

x 7→ g(x) =
t
∑

k=1

gk(x), ∀x ∈ R
n,

where each gk ∈ R[x]k is homogeneous of degree k, and

consider the mapping G : B → R
t,

x 7→ G(x) = (gk(x))
t
k=1 ∈ R

t, x ∈ R
n.

Let #λ ∈ M(Rt) be the pushforward of the Lebesgue

probability measure λ on B. It support is G(B) and as before

all moments of #λ can be obtained easily in closed-form. In

addition G(K) = {z ∈ G(B) : 0 ≤
∑t

k=1 zt ≤ 1 } =: S.

Then:

2n vol(K) = #λ(S) = sup
φ∈M(S)

{φ(S) : φ ≤ #λ }. (18)

So one has replaced the n-dimensional Lebesgue volume

computation λ(K) with the t-dimensional volume com-

putation #λ(S), which is potentially interesting whenever

t ≪ n. Then one may use homogeneity of the gk’s to

include additional linear moment equality constraints on

φ (again from an application of Stokes’ theorem). Those

additional constraints are crucial to accelerate the otherwise

slow convergence of the SDP-relaxations associated with

solving (18). However, this time we cannot reduce the initial

problem to an eigenvalue problem as in the homogeneous

case. For more details the interested reader is referred to

[7].

V. CONCLUSION

We have presented a new methodology to approximate

as closely as desired the Lebesgue volume of the sub-level

set {x : g(x) ≤ 1} of a positive homogeneous n-variate

polynomial g. The novelty with respect to [6] is that by

using Stokes’ theorem and exploiting the homogeneity of

g, we are able to reduce the problem to solving a hierarchy

of generalized eigenvalue problems for Hankel matrices of

increasing size, with no optimization involved. The efficiency

of the proposed extension to the non-homogeneous case

remains to be validated, a topic of further investigation.
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