Sparse Noncommutative Polynomial Optimization - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Mathematical Programming, Series A Année : 2020

Sparse Noncommutative Polynomial Optimization

Igor Klep
  • Fonction : Auteur
  • PersonId : 908938
Victor Magron
Janez Povh
  • Fonction : Auteur
  • PersonId : 964171

Résumé

This article focuses on optimization of polynomials in noncommuting variables, while taking into account sparsity in the input data. A converging hierarchy of semidefinite relaxations for eigenvalue and trace optimization is provided. This hierarchy is a noncommutative analogue of results due to Lasserre [SIAM J. Optim. 17(3) (2006), pp. 822--843] and Waki et al. [SIAM J. Optim. 17(1) (2006), pp. 218--242]. The Gelfand-Naimark-Segal (GNS) construction is applied to extract optimizers if flatness and irreducibility conditions are satisfied. Among the main techniques used are amalgamation results from operator algebra. The theoretical results are utilized to compute lower bounds on minimal eigenvalue and trace of noncommutative polynomials from the literature.

Dates et versions

hal-02278767 , version 1 (04-09-2019)

Identifiants

Citer

Igor Klep, Victor Magron, Janez Povh. Sparse Noncommutative Polynomial Optimization. Mathematical Programming, Series A, 2020, ⟨10.1007/s10107-020-01610-1⟩. ⟨hal-02278767⟩
73 Consultations
0 Téléchargements

Altmetric

Partager

More