
HAL Id: hal-02289207
https://laas.hal.science/hal-02289207

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reinforcement-Learning-Based Approach to Enhance
Exhaustive Protein Loop Sampling

Amélie Barozet, Kevin Molloy, Marc Vaisset, Thierry Simeon, Juan Cortés

To cite this version:
Amélie Barozet, Kevin Molloy, Marc Vaisset, Thierry Simeon, Juan Cortés. A Reinforcement-
Learning-Based Approach to Enhance Exhaustive Protein Loop Sampling. Bioinformatics, 2020, 36
(4), pp.1099-1106. �10.1093/bioinformatics/btz684�. �hal-02289207�

https://laas.hal.science/hal-02289207
https://hal.archives-ouvertes.fr

A Reinforcement-Learning-Based Approach to
Enhance Exhaustive Protein Loop Sampling
Amélie Barozet 1,2,∗, Kevin Molloy 3, Marc Vaisset 1, Thierry Siméon 1 and Juan
Cortés 1,∗

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2Sanofi recherche & développement, Integrated Drug Discovery, Molecular Design Sciences, 13 quai Jules Guesde, BP 14, 94403
Vitry-sur-Seine Cedex, France
3James Madison University, Harrisonburg, Virginia, USA

∗To whom correspondence should be addressed.

Abstract

Motivation: Loop portions in proteins are involved in many molecular interaction processes. They often exhibit a high
degree of flexibility, which can be essential for their function. However, molecular modeling approaches usually represent
loops using a single conformation. Although this conformation may correspond to a (meta-)stable state, it does not always
provide a realistic representation.
Results: In this paper, we propose a method to exhaustively sample the conformational space of protein loops. It
exploits structural information encoded in a large library of three-residue fragments, and enforces loop-closure using a
closed-form inverse kinematics solver. A novel reinforcement-learning-based approach is applied to accelerate sampling
while preserving diversity. The performance of our method is showcased on benchmark datasets involving 9-, 12- and
15-residue loops. In addition, more detailed results presented for streptavidin illustrate the ability of the method to
exhaustively sample the conformational space of loops presenting several meta-stable conformations.
Availability: We are developing a software package called MoMA (for Molecular Motion Algorithms), which includes
modeling tools and algorithms to sample conformations and transition paths of biomolecules, including the application
described in this work. The binaries can be provided upon request and a web application will also be implemented in
the short future.
Contact: abarozet@laas.fr, jcortes@laas.fr

1 Introduction
Determining structural and dynamic properties of proteins,
which are essential to understand their functional roles,
remains a challenging goal. Obtaining this valuable
information experimentally is expensive and nontrivial. High-
resolution structural information can be elucidated via
biophysical techniques such as X-ray crystallography and
nuclear magnetic resonance (NMR). Given the great value
placed on this data, large databases of protein structures
have been assembled and organized, for example, in the
Protein Data Bank (PDB) (Berman et al., 2000) and the
Structural Classification of Proteins (SCOP) (Fox et al., 2014).
For the large majority of proteins within these databases, a
single structure is recorded. However, proteins are dynamic
molecules, some of which exhibit small fluctuations around a
stable conformation while others can undergo larger structural
rearrangements to participate in critical functions (Boehr
et al., 2009). In particular, loop regions may exhibit high
flexibility even in very stable proteins (Shehu et al., 2006). This
flexibility makes it difficult to investigate protein loops using
traditional techniques, resulting in many “solved” protein

structures within the PDB and SCOP omitting data for these
regions (Petoukhov et al., 2002; Brandt et al., 2008). When
loop information is included, it typically represents a single
conformation, which does not adequately characterize the
(local) structural diversity of the protein (Shehu et al., 2006;
Marks et al., 2018).

This paper deals with computational methods for the
structural characterization of protein loops, which are
an essential complement to experimental techniques. The
addressed problem can be formulated as follows: given a
protein structure with the loop region omitted, generate an
ensemble of feasible loop configurations while leaving the
remainder of the protein rigid. Figure 1 illustrates a cartoon
representation of a protein. The end points of the loop,
shown as red spheres, are treated as anchors. A successfully
generated loop connects these two anchors while satisfying a
set of structural constraints (correct bond geometry, no atom
overlaps, …). Numerous methods have been proposed over
the years to address this problem. Early methods, including
ours (Cortés et al., 2004), were mainly based on geometric and
numerical approaches (Shenkin et al., 1987; Wedemeyer and
Scheraga, 1999; Canutescu and Dunbrack, 2003), whereas most
recent methods tend to exploit structural knowledge (Messih

Fig. 1. A loop region of a protein is illustrated between two stationary anchors
(spheres). On the right, a more detailed picture highlights the tripeptides of the
loop in alternating colors.

et al., 2015; Karami et al., 2018) or a combination of these
approaches (Lee et al., 2010; Stein and Kortemme, 2013; Tang
et al., 2014; López-Blanco et al., 2016; Marks et al., 2017).
Making a concise and meaningful survey of available methods
is not an easy task, and goes beyond the aims of this paper. The
interested reader can refer to a survey by Shehu and Kavraki
(2012).

Many of the aforementioned methods were aimed to
predict the most probable conformations of the loop.
Thus, sampling is focused on a reduced region of the
conformational space. This can be an advantage to efficiently
model loops presenting a well-defined and relatively stable
structure. However, such loop predictors usually fail when
modeling conformationally diverse loops (Marks et al., 2018).
More exhaustive sampling is important for an accurate
characterization of the conformational energy landscape,
enabling the identification of multiple low-energy basins.
Moreover, sampling outside the most probable regions is
mandatory to investigate loop conformational transitions.

The goal of the method presented in this paper, called
MoMA-LoopSampler, is not focused on the prediction of a
single structure for a loop, but is aimed at a more thorough
exploration of the loop’s conformational space. The proposed
method employs a hybrid approach to loop modeling that
constructs candidate loops utilizing an extensive structural
database of small protein fragments and a closed-form inverse
kinematics (IK) solver. The loop is divided into a set
of consecutive three-residue fragments. All but one of the
fragments are iteratively sampled from the database, where
each sample is slightly perturbed in order to increase the size
of the explored loop configuration space. The last fragment is
completed by closing the kinematic chain utilizing an IK solver.
MoMA-LoopSampler varies the assignments of which fragment
is solved by IK to further increase the sampled space. As each
fragment is placed in the candidate loop, collision detection
and forward reference checking are performed to prune the
search space.

This paper also investigates a more advanced version of the
sampler that incorporates a reinforcement-learning-based (RL-
based) heuristic. For each fragment within the loop, similar
structural pieces are clustered in a low-dimensional projection.
Clusters that lead to successfully closed loops are sampled
from more frequently. The results illustrate that the RL-
based approach preserves loop diversity while improving the
performance (number of conformations generated as a function
of time) for most of the tested proteins.

In addition, MoMA-LoopSampler proved capable of
sampling the two stable states of a loop from the streptavidin
protein, as well as intermediate states. Drawing on

these results, one can envision the application of MoMA-
LoopSampler to investigate the energy landscape of a loop.

The remainder of this paper is organized as follows.
Section 2 (Methods) describes the details of the MoMA-
LoopSampler method. Section 3 (Results And Discussion)
showcases the ability of both the learning and non-learning
approaches to generate a set of diverse loops, and also applies
MoMA-LoopSampler to several loop prediction benchmark
datasets. A summary of these results along with potential
future work are discussed in Section 4 (Conclusion).

2 Methods
The MoMA-LoopSampler method operates in two modes.
The first mode, referred to as the basic method, utilizes a
structural database combined with a technique from robotics
to generate loop samples. The second mode builds upon the
first by employing a low-dimensional projection to organize
the information extracted from the structural database. A
RL-based heuristic (HRL) is then utilized to speed up future
sampling.

2.1 Protein representation

Proteins are represented using an all-atom model where the
degrees of freedom are the backbone dihedral angles φ, ψ, ω.
Bond lengths and bond angles are held constant as per the
idealized model (Engh and Huber, 1991). The loop portion
of each protein is decomposed into a set of n tripeptides
(continuous segments of a protein comprised of 3 amino acid
residues). Each tripeptide is represented by 3 sets of φ, ψ,
ω angles, referred to as a tripeptide “state” throughout the
paper. Loops where the number of residues is not divisible by
3 can also be handled by including additional residues at either
side of the loop and by restraining the dihedral angles of these
residues. However, for the sake of simplicity, we only explain
the case of loops with a number of residues divisible by 3.
Sampling of φ, ψ, ω angles is performed through the selection
of tripeptide states from an appropriate database. Initially, the
side-chains of the loop are omitted in the model. They can be
added once a closed conformation of the backbone has been
found.

2.2 MoMA-LoopSampler without HRL

2.2.1 Loop construction
Algorithm 1 showcases the basic MoMA-LoopSampler. To
facilitate using samples from the structural database for each
tripeptide in the loop, a set of building plans are constructed
(function ConstructLoopPlans, line 2). A plan corresponds
to one possible order in which the tripeptides of the loop
can be assembled. At each iteration, the function SelectPlan
(line 4) randomly picks a plan that the recursive function
BuildLoopPos will follow to build a conformation, starting from
the tripeptide with index 1 in the plan (line 5). Among the
numerous possibilities, our implementation only considers a
subset of n possible plans, where n is the number of tripeptides
in the loop. Plan number p assembles the loop starting from
tripeptide 1 to p − 1, then from the end of the loop working
backwards from tripeptide n to p + 1. The method attempts
to close the loop by utilizing inverse kinematics for the last

2

tripeptide, p. This technique allows all of the positions within
the loop to be sampled from the database.

C contains the working conformation of the protein.
Initially, Cinit includes all the atoms for the non-loop
portion of the protein. Once a plan is selected in line 4,
tripeptides in the loop are recursively assembled employing
a backtracking method. For each tripeptide in the loop, the
function SampleTripeptide utilizes the amino acid sequence
of the tripeptide to access the structural database and
randomly sample a tripeptide state (line 11). The nine
corresponding angles are then slightly perturbed to enable
MoMA-LoopSampler to sample the loop conformational space
more finely (function PerturbState, line 12). Function
InstallTripeptide (line 13) then installs the sampled and
perturbed tripeptide into the working conformation C and
checks that it respects all the required constraints (see
Section 2.2.3). If it does, the function BuildLoopPos is called
to continue building a conformation from the next tripeptide
in the plan (line 18). When the last tripeptide in the plan
is reached (line 16), loop closure is attempted (function
CloseLoop). If this is successful, the conformation is added
to the ensemble Ω (line 30). The method finishes when it
reaches an iteration limit or has sampled a pre-defined number
of successful loop conformations.

Due to the backtracking search, this method has
linear space complexity and exponential time complexity
O(maxattsn−1), where maxatts is the maximum number of
attempts to be made in each of the n− 1 tripeptide positions.
However, in practice, failures are detected early in the search
process, making this a practical approach. Additionally, a
timer (not shown in Algorithm 1) limits the total duration
of the BuildLoopPos procedure to prevent the algorithm from
getting trapped.

2.2.2 Tripeptide database
A database of tripeptide states, indexed by their corresponding
amino acid sequence, was constructed using the structures of
protein domains obtained from SCOP 2.06 (Fox et al., 2014).
The 95% ID filtered subset, consisting of PDB-style files for
28,011 domains, was utilized to build the structural database.
Secondary structure labels were assigned to each residue using
DSSP (Kabsch and Sander, 1983). The construction process is
summarized below, with details available in Section S1.2.

Each structure file was processed by passing a sliding
window of size 3 along the amino acid sequence. Each
resulting tripeptide state was added to the database if none
of its residues participate in an alpha-helix or a beta-strand.
Domain structures containing NMR data (multiple models)
were subject to filtering to eliminate redundancy.

MoMA-LoopSampler constructs loops by concatenating
tripeptides, for example t1 and t2, which creates a structure
with two implicit tripeptides, t3 and t4, straddling t1 and t2.
These implicit states are referred to as synthetic states, as
they were not directly extracted from the set of experimentally
solved structures. Employing concatenation enables broader
sampling of the conformational space (a goal of MoMA-
LoopSampler), although not strictly adhering to the statistical
distribution of states in the database. An analysis of synthetic
states was performed to further justify their use in MoMA-
LoopSampler (detailed in Section S1.3).

Algorithm 1: Build Loop

1 void BuildLoop(Cinit, Lstart, Lend)
2 Plans ← ConstructLoopPlans(Lstart, Lend)
3 for i← 1 to Iterations do
4 plan ← SelectPlan(Plans)
5 BuildLoopPos(plan, Cinit, 1)

6 bool BuildLoopPos(plan, C, postri)
7 attempts ← 0
8 success ← false
9 while attempts < maxatts and success = false do

10 attempts ← attempts +1
11 tripeptide ← SampleTripeptide(plan, postri)
12 tripeptide ← PerturbState(tripeptide)
13 C’, success ← InstallTripeptide(C, tripeptide)
14 if success then
15 if postri = plan.lastIndex then
16 success ← CloseLoop(plan, C’)

17 else
18 success ← BuildLoopPos(plan, C’, postri +1)

19 return success

20 bool CloseLoop(plan, C)
21 attempts ← 0
22 success ← false
23 while attempts < maxIK and success = false do
24 attempts ← attempts +1
25 tripeptideIK ← PerturbOmegas(plan, plan.lastIndex)
26 SolutionsIK ← SolveIK(C, tripeptideIK)
27 foreach solIK ∈ SolutionsIK do
28 C’, successsol ← InstallTripeptide(C, solIK)
29 if successsol then
30 Ω← Ω ∪ C’

31 success ← (success ∨ successsol)

32 if success then
33 return success

34 return success

2.2.3 Tripeptide placement constraints
When a tripeptide is appended to the loop being constructed
within C, its acceptance is subject to two constraints. First, a
common AI approach known as forward checking is employed
to help improve performance (Russell and Norvig, 2009). When
the tripeptide database is built, the maximum length of a
tripeptide from end to end is recorded for each amino-acid
sequence key. If the remaining distance between the two
working loop ends cannot be closed by installing the longest
tripeptides from the database, the current loop configuration
is considered invalid. This enables backtracking as early as
possible in the construction process.

To avoid steric clashes in the final structure, the second
constraint checks that the installed tripeptide’s backbone
atoms do not penetrate any of the van der Waals spheres
in C. In MoMA-LoopSampler, the Cβ atoms are placed
simultaneously with the backbone, since their positions are
fully determined from the backbone dihedral angles. In order
to eliminate conformations that do not leave room for side-
chains, the van der Waals radii for the Cβ atoms are artificially

3

increased during the collision detection process. The radii are
set depending on the type (and thus size) of the associated
side-chains, as originally proposed by Levitt (Levitt, 1976).

Another feature of MoMA-LoopSampler is the ability to
add a constraint on the position of an atom. Although this
feature is not showcased in the results presented below, it may
be interesting if an atom needs to contact another residue, or
if its position has been experimentally determined.

2.2.4 Loop closure
The function CloseLoop (Algorithm 1) attempts to close the
loop by computing the dihedral angles of the last tripeptide
(all the other tripeptides are held fixed during this process).
This process is detailed in Section S1.4. Briefly, the three ω
angles are randomly sampled utilizing a Gaussian distribution
centered around 0 or π (function PerturbOmegas, line 25). The
six remaining φ and ψ angles of the backbone are solved via
an in-house inverse kinematics (IK) solver (Cortés et al., 2004)
(function SolveIK, line 26). With 6 degrees of freedom, this
problem can be solved in closed-form, and may yield up to
16 solutions. All collision-free solutions are recorded, and the
resulting conformations are added to Ω. If no collision free
solution is found, the process (ω sampling followed by IK) is
repeated until a solution is found, or the maximum number of
attempts, maxIK is reached. In the latter case, backtracking
is employed and the construction continues. Validation of
conformations for the closing tripeptides, which are also
“synthetic states”, and their relationship to loop quality, are
detailed in Section S1.5.

2.3 MoMA-LoopSampler with HRL

2.3.1 Objectives and principle
The loop construction method detailed so far effectively
discretizes the conformational space of the loop by sampling
from the structural database. For small loops (≤ 9 residues),
an exhaustive search of all combinations can be completed
within a few hours. However, larger loops present a
formidable challenge, as computational requirements increase
exponentially. In this section, a new method is proposed
which utilizes a RL-based strategy (HRL) to improve the
naive sampling strategy presented in Algorithm 1. The
goal of utilizing HRL for short loops is to provide a more
efficient and exhaustive characterization of the loop. For longer
loops, especially in highly constrained environments, HRL can
quickly prune infeasible areas of the search space, resulting in
a more computationally efficient search.

2.3.2 Learning approach
A new approach that incorporates HRL is shown in
Algorithm 2. For each loop plan, a learning tree is built
(function ConstructRLTrees, line 3). This data structure
(presented in Section 2.3.3) records statistics about prior
tripeptide state selection and their associated participation
in successfully closed loops. On line 13, a new function is
used to sample a tripeptide state (SampleTripeptideRL). This
function uses statistics from the appropriate learning tree to
guide tripeptide sampling towards zones that have a higher
chance of generating successful conformations, or which have
not been explored yet. Details about tripeptide state selection
can be found in Section 2.3.4.

On line 16, the success or failure of the tripeptide
placement is recorded in the learning tree to update the
statistics about the tripeptide state’s ability to form a
successful loop (RecordSuccessPlacement). Similarly, on
line 22, the closure of the loop (or absence thereof) is recorded
(RecordSuccessClosure), updating the statistics of all the
tripeptide states used in the successfully generated loop.

Algorithm 2: Build Loop RL

1 void BuildLoopRL(Cinit, Lstart, Lend)
2 Plans ← ConstructLoopPlans(Lstart, Lend)
3 Trees ← ConstructRLTrees(Plans)
4 for i← 1 to Iterations do
5 plan ← SelectPlan(Plans)
6 tree ← SelectTree(Trees, plan)
7 BuildLoopPosRL(plan, Cinit, 1, tree)

8 bool BuildLoopPosRL(plan, C, postri, tree)
9 attempts ← 0

10 success ← false
11 while attempts < maxatts and success = false do
12 attempts ← attempts +1
13 tripeptide ← SampleTripeptideRL(plan, postri, tree)
14 tripeptide ← PerturbState(tripeptide)
15 C’, success ← InstallTripeptide(C, tripeptide)
16 tree ← RecordSuccessPlacement(tripeptide, tree, success)

if success then
17 if postri = plan.lastIndex then
18 success ← CloseLoop(plan, C’)

19 else
20 success ← BuildLoopPosRL(plan, C’, postri+1,

tree)

21 tree ← RecordSuccessClosure(tripeptide, tree,
success)

22 return success

2.3.3 Learning data structure
Tripeptides are projected into a space of low dimension m

and organized in a m-dimensional tree data structure (see
Section 2.3.5). This structure is called an octree when m = 3.
Herein, this m-dimensional tree data structure will be referred
to as a tree. For each tripeptide amino-acid sequence, all
corresponding states from the database are projected to
compute a bounding box B within the lower-dimensional space.
Box B is divided into 2m sub-boxes, or cells, by passing
orthogonal hyperplanes through its center. Each cell can
then be subdivided using the same method, creating a tree
structure. Final cells (those that are not subdivided) are called
leaves. Initially, all trees are of depth 1, containing 2m leaves.

This data structure groups together tripeptide states that
are close to one another in the chosen lower-dimensional
space. Each leaf holds statistics about the group of tripeptide
states it contains, namely their ability to form a closed loop
without collisions. A leaf is subdivided (and thus is no longer
a leaf) when the statistics about the states within it are
too heterogeneous, indicating very different behaviors with
respect to loop construction (see Section S1.6). This new
subdivision is aimed at separating the tripeptide states into

4

homogeneous groups with respect to their participation in
successfully constructed loops.

The complete data structure uses chained trees. Each
loop plan is associated with a chain of m-dimensional trees
organized as follows: the first tree (the root tree) contains the
possible states for the first tripeptide to be built in the plan.
Each leaf within the first tree points to another tree containing
the possible states for the second tripeptide to be built in the
plan, and so on until obtaining the tree for the penultimate
tripeptide.

As an example, assume that tripeptides 1 to k − 1 in the
plan have been sampled so far, and that we are sampling a
state for tripeptide k. For j from 1 to k − 1, let us call cj
the state chosen for tripeptide j, and Lj the leaf that holds
the statistics about the state cj . L1 is the leaf of the root
tree containing c1. L2 is the leaf of the tree pointed to by L1
containing c2, and so on. The statistics about the sampling
and placement of tripeptide k will be recorded in the tree Tk
pointed to by Lk−1.
Tk contains the states available in the database for

tripeptide k. This structure stores statistics about the ability of
these states to participate in forming a successful loop once the
states for tripeptides 1 to k− 1 have been chosen in leaves L1
to Lk−1, respectively. The statistics collected are: the number
of times a state it contains could be placed while respecting
all constraints (forward checking and collisions), the number
of times it could not be placed, and the number of successfully
closed loops containing tripeptide states within this leaf.

2.3.4 Tripeptide selection
When a state is sampled from the database for a given
tripeptide, the statistics about the previously sampled states
are used to guide the choice. The learning tree corresponding
to the current tripeptide is selected given the states of the
already placed tripeptides. A score is associated to each leaf of
the tree. For the tests presented here, the score S for leaf L is
set as:

S=

N ·Smax if at least one state in L has been used

to build a successfully closed loop

N ·min(Smax, T) otherwise, with T = max
(
Smin,

tn−k

a

)
In this formula, Smin and Smax are parameters setting lower

and upper limits on the score, respectively. N is the number of
tripeptide states in L, and a is the number of times a state from
L has been sampled. k is the position of the tripeptide in the
plan and n is the number of tripeptides in the loop. Finally, t is
a positive real number setting the learning rate. Lower values
of t lead to higher learning rate (i.e. to a greedier learning
process). It is an important parameter as it is determinant for
the diversity of the loop ensemble and the speed at which loops
will be generated (investigated in Section 3).

When sampling a state for a given tripeptide with
SampleTripeptideRL (Algorithm 2, line 13), a leaf is randomly
picked among all the tree’s leaves using the probabilities
corresponding to the normalized scores. Then, a state is chosen
from the selected leaf using uniform random sampling.

T acts as a threshold score. Ideally, the score of leaves
containing no working states (successful loop closures) should
be zero. In practice, it is impossible to guarantee that no state
in a leaf is able to lead to a successful loop, even when those
have all been tested (because of the small perturbations and

the fact that the tripeptide states sampled upstream may be
different from one attempt to another). Therefore, this method
maintains the score so that the leaf has a non-zero chance of
being explored even when it has failed to lead to a successful
loop closure. After each failed attempt, the threshold score
decreases until reaching a lower limit. However, as soon as
a state is found that leads to a successful loop, the score is
set back to its maximum value, which it maintains for the
remainder of the search.

Note that this scoring approach does not involve a
cumulative reward, characteristic of standard RL methods,
which is why it is referred to as a RL-based heuristic. Other
scoring approaches, possibly involving cumulative reward, can
be applied within our method. However, among the options we
tested, this score is the one that best preserved the diversity
among sampled conformations.

2.3.5 Tripeptide projection
Choosing an appropriate tripeptide state projection is of
crucial importance for HRL to be effective. The goal of the
tripeptide projection is to group similar states together so that
we can infer a state’s success from the results obtained by its
neighbors. If the projection is ill-chosen, it may group states
that yield heterogeneous outcomes with respect to loop closure,
in which case no correct assumption can be made of one state
even if we know the success of a neighboring state within the
projection.

Several options were investigated for the tripeptide state
projection (full list and empirical experiments shown in
Section S1.7). In this work, we selected the projection named
Position, which is the vector representing the relative position
of the N and C atoms at the two ends of the tripeptide. Thus,
it is a projection in dimension m = 3. Although none of the
investigated projections are clearly superior to others for all
systems, results show that Position is a reasonable choice given
its: low dimensionality, uniform distribution of tripeptides, and
ability to cluster states with respect to successful loop closure.

3 Results and discussion
We applied our loop modeling framework to a few benchmark
sets of proteins. We first present the results obtained without
activating HRL, showcasing the ability of basic MoMA-
LoopSampler to sample meta-stable conformations as well
as transition regions, and its computational efficiency. The
performance of HRL is then detailed.

3.1 Tests performed and visualization of results

3.1.1 “Native” loop
In all that follows, the “native” loop is the name given to
the conformation in the crystal structure, even though due
to the inherent flexibility of protein loops it may not be the
only (meta-)stable conformation the loop can adopt. Although
the ability to sample the native conformation is by no means
evidence that the method is capable of sampling all relevant
conformations, any exhaustive sampling must contain this
conformation, which is why distance to native is used as a
means to estimate the quality of the generated ensemble. We
define the RMSDmin of a loop ensemble as the lowest backbone
RMSD between a loop conformation from the ensemble and
the native conformation, after aligning the fixed portion of the
protein.

5

3.1.2 Test sets
The performance of our method was tested on three benchmark
sets of 9, 12, and 15-residue loops. The 9 and 12-residue test
sets are taken from the loops gathered by Jacobson et al., 2004,
and the 15 residue test set contains the 30 15-residue loops
used in the analysis by Zhao et al., 2011. The complete list of
loops utilized in these tests is available in the Supplementary
Material, Section S2.1 and Tables S1 to S3.

3.1.3 Test parameters
In all tests, the maxatts parameter was set to 10 for 9-residue
loops, 7 for 12-residue loops and 5 for 15-residue loops. The
maxIK parameter was set to 100, and the maximum time for
the BuildLoopPos and BuildLoopPosRL functions was set to
20 seconds. Two atoms separated by more than 3 bonds were
considered in collision if the distance between them was below
0.7 times the sum of their van der Waals radii (Bondi, 1964).

For runs performed with HRL, very low learning rate
results correspond to the results obtained with parameter t
(see Section 2.3.4) set to 15, low learning rate results with
t = 10, high learning rate results with t = 2, and very high
learning rate results with t = 1.

MoMA-LoopSampler also supports brute force exploration
(Section S1.1). It exhaustively explores the conformational
space by trying every possible combination of tripeptide
states from the database for each possible plan, obtaining
the full conformational space that is reachable by MoMA-
LoopSampler given the database utilized.

3.1.4 2D Loops projections
A convenient way to visualize the sampled regions in the
conformational space is to plot two-dimensional projections
based on two meaningful descriptors for each loop. The
generated plots can give insight into the density of the sampled
conformations in different regions. It is especially convenient
to compare the conformational ensembles obtained under two
different conditions.

The first dimension, d1 (x-axis), is the distance (Å) between
an atom located in the middle of the loop and a fixed atom
in the protein. The second dimension, d2 (y-axis), is the angle
(°) formed by three atoms at approximately one quarter, one
half, and three quarters of the loop sequence.

3.2 Results obtained without the RL-based heuristic

3.2.1 Comparison with prediction methods
Although loop prediction is not the primary purpose of MoMA-
LoopSampler, the ability to sample conformations found in
crystallographic structures is a requirement for any loop
sampling method. To assess the ability of MoMA-LoopSampler
to sample near-native conformations in reasonable time, we
compared its performance in this regard to that of the
sampling phase of DISGRO (Tang et al., 2014) and of the
updated version of RCD (Chys and Chacón, 2013; López-
Blanco et al., 2016) on benchmark sets of loops of length 9,
12 and 15 residues (see Section S2.2.2). Results show that due
to the stricter collision constraints enforced by our method,
MoMA-LoopSampler generates slightly fewer conformations
than other methods given the same computational budget.
However, MoMA-LoopSampler manages to more accurately
approximate the crystal conformations when the same number
of sampled conformations are considered.

Overall, these results suggest that ensembles generated by
MoMA-LoopSampler contain a lower proportion of unfavorable
conformations compared to ensembles generated by other
methods. Generating fewer conformations, but which are
more representative of the accessible conformational space,
is essential considering the costly downstream processing
steps of applications involving loop sampling (e.g. side-chain
placement, relaxation, scoring, clustering).

3.2.2 Application to a multi-state loop
We demonstrate the exhaustive sampling ability of MoMA-
LoopSampler by generating relevant loop conformations using
the streptavidin protein. Streptavidin is a homotetramer
protein that strongly binds biotin. Each monomer exhibits a
biotin binding site and a flexible loop L (between residues 44
and 52) that stabilizes the complex by “closing” upon binding.
Two conformations are known for L: “open” and “closed”.
Sampling loop conformations from several structures of the
protein with MoMA-LoopSampler, we intend to explain the
presence of the conformation in the crystal structure, and to
determine which of the known conformations are accessible to
the loop.

We extracted three high-resolution structures of
streptavidin from the PDB: 2F01 (Le Trong et al., 2006),
3RY1 (Le Trong et al., 2011) and 3RY2 (Le Trong et al.,
2011). 2F01 and 3RY2 both contain two subunits in the
asymmetric unit, whereas 3RY1 contains four subunits. The
subunits from 2F01 and 3RY2 are all bound to a ligand
(either biotin or epi-biotin), with their L loops in the “closed”
conformation. The subunits from 3RY1 are all unbound,
however, one of them shows L in the “closed” conformation,
while the others have L in the “open” conformation.

We separated all the subunits and used MoMA-
LoopSampler to perform a brute force exploration of L’s
conformational space from the different subunits of the
three starting crystallographic structures, after removing the
ligand (if present). After side-chain placement, the sampled
conformations were relaxed and their energy was estimated
using Amber (see Section S2.3.1). They were then projected in
2D space (see Section 3.1.4) and showcased in Figure 2.

The projected conformations adopt an overall triangular
shape in which the “closed” conformations are projected in
the lower left vertex, while the “open” conformations are more
diverse and are projected on the opposite side of the triangle.
Combining MoMA-LoopSampler with the energy calculation
creates landscapes that are consistent with (and justify) the
conformations adopted in the crystals, and can predict how
flexible the loop is.

Whichever the employed scaffold, the crystallographic
conformation is always found in a low-energy basin. Starting
from the protein conformations extracted from crystal
structures of the complex, both the “open” and “closed”
conformations appear to be in low-energy basins, suggesting
that both conformations are accessible to the loop when the
ligand is removed. Employing MoMA-LoopSampler allows us
not only to identify both stable conformations, but also to
visualize the topography of the landscape modeled by the
energy function, including the transition region connecting the
two basins.

The landscape is different when the starting structure
for the protein is extracted from a crystal formed without

6

Fig. 2. 2D projections of conformations
sampled using MoMA-LoopSampler in brute
force mode for a loop in streptavidin, from
eight starting X-ray protein structures. The
first dimension, d1 (x-axis), is the distance
(Å) between an atom located in the middle
of the loop and a fixed atom in the protein.
The second dimension, d2 (y-axis), is the
angle (°) formed by three atoms: an atom
at approximately one quarter, one half, and
three quarters of the way down of the loop.
The conformations from the crystallographic
structures are shown in black. For each
system, the loop with the lowest energy was
identified and each conformation was then
colored according to the difference between
its energy and this lowest energy.

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

80

∆E (kcal/mol)

ligand. In the case of 3RY1 (A), the area around the “open”
conformation could not be sampled, and only the “closed”
conformation is projected into an energy basin. This suggests
that the loop environment is more constrained sterically, and
that it strongly stabilizes this “closed” conformation. Although
a prediction method might have predicted that the loop
would adopt this unexpected conformation, employing MoMA-
LoopSampler allows us to reconstruct the whole landscape and
to confirm that the loop is stabilized in that position.

From the other three scaffolds extracted for the unbound
protein, the landscape shows a large basin around the “open”
conformation, predicting that the loop will be rather flexible
and adopt an “open”-like conformation.

Very similar landscapes were obtained using MoMA-
LoopSampler with different learning rates for HRL (Section
S2.5). However, landscapes generated using DISGRO (Tang
et al., 2014) and RCD+ (López-Blanco et al., 2016) as
sampling methods (Section S2.3.3) present major differences.
Results clearly show that the ensembles generated using
MoMA-LoopSampler, which are better filtered, allow a much
finer analysis of the landscapes.

In addition to analyzing the energy landscape of a loop,
MoMA-LoopSampler can be used to sample intermediate
states between two stable conformations. For example, in the
cases in which the “open” and “closed” basins are both present
and of low energy. This could then enable the analysis of the
docking mechanism of streptavidin and biotin in great detail.
Nevertheless, the analysis of conformational transitions goes
beyond the scope of this paper.

3.3 Performance of the RL-based heuristic

Results of MoMA-LoopSampler with HRL are described and
compared to results obtained utilizing the basic method. We
analyze the benefits of using HRL, as well as the potential
downfalls, mainly in terms of loop diversity. Four tests were
performed in the basic mode, as well as four tests in HRL
mode, using different learning rates (see Section 3.1.3). In each
of these overall eight tests, 9-residue loops were sampled for 2
hours, 12-residue loops for 4 hours and 15-residue loops for 6
hours.

3.3.1 Number of conformations sampled
The main interest of HRL is that it enables faster generation
of loop conformations, as shown by the higher densities in

Figure 3. In the basic mode, around 20,000 conformations for
9-residue loops and 35,000 conformations for 12- and 15-residue
loops were generated on average during the allotted sampling
time. In HRL mode, (depending on the learning rate), between
26,000 and 38,000 samples of 9-residue loops and between
34,000 and 53,000 samples of 12- and 15-residue loops were
generated. The very high learning rate generates 127% more
conformations on average compared to the basic mode, but
this percentage is highly variable across loop systems. Loop 73,
which is located in a very constrained environment, constitutes
an extreme case in which activating HRL can multiply by over
41 the number of conformations sampled over 6 hours. Loops
68, 21 and 85 are other very successful examples, for which
HRL multiplies by 12, 5.4 and 5.2 the number of sampled
conformations, respectively. However, for a few loops, HRL
was found to actually decrease by up to 12% the number of
sampled conformations. This is actually due to the overhead
of the learning process itself: each time a loop is sampled,
statistics are updated and the learning trees are maintained.
In a few cases, the time saved during conformation sampling
itself (especially for very low or low learning rates) is not high-
enough to compensate for the time lost in maintaining the
learning data structures.

Overall, employing higher learning rates tends to produce
a higher number of conformations. However, also due to the
overhead of maintaining a very large tree, or to the nature of
the sampled loop, there are several exceptions to that trend.
These are illustrated and discussed in Section S2.4.1.

3.3.2 Effect of HRL on the quality of the ensemble
The RMSDmin per loop is shown in Figure 4 for the different
learning rates and for the sampling performed without HRL.
HRL runs generate conformations as close to native as runs
utilizing the basic mode (or even closer) for 9 and 12-
residue loops. However, the effect of on longer loops is more
ambiguous.

The effect of HRL on the time needed to sample close to
the native loop is analyzed in Section S2.4.2 of Supplementary
Material. Briefly, results show that HRL modifies the
probability to sample tripeptides compared to the basic mode,
possibly resulting in slightly longer times to approximate the
native loop. However, this also suggests that using appropriate
weights for the different cells of the learning tree directly

7

No learning Very low learning rate Very high learning rate

15 20 15 20 15 20

0

50

100

150

(a)

No learning Very low learning rate Very high learning rate

10 15 10 15 10 15

50

100

150

(b)

No learning Very low learning rate Very high learning rate

20 25 20 25 20 25

50

100

150

(c)

No learning Very low learning rate Very high learning rate

20 25 30 20 25 30 20 25 30

50

100

150

(d)

0 1 2 3

RMSD to native (A°)

Fig. 3. 2D projections of the sampled loops at different learning rates. Each
conformation is represented by a point colored according to its RMSD to native,
or in grey if this distance is above 3 Å. The first dimension (x-axis), is the
distance (Å) between an atom located in the middle of the loop and a fixed
atom in the protein. The second dimension (y-axis), is the angle (°) formed by
three atoms: an atom at approximately one quarter, one half, and three quarters
of the way down of the loop. (a) Loop 21, (b) Loop 26, (c) Loop 40, (d) Loop
68.

influences the ensemble generated, which may be desirable if
one needs to sample with certain distribution guarantees.

As the sampling progresses, the method learns which cells
in the tree have not led to successful loop conformations so far,
and progressively reduces the probability of sampling inside
them. If the algorithm learns too fast, this may happen even
though the states explored in the cell are not adequately
representative. Therefore, a careful parameterization of HRL
is crucial to get an exhaustive sampling. We explored the
diversity of the ensembles sampled with different learning rates
in order to determine if all areas of conformational space are
adequately covered. Figure 3 shows the 2D projections of the
loop samples obtained by employing various learning rates
on four different systems. The most obvious observation is
that all projections corresponding to the same system look
similar, in the sense that they have the same overall shape.
Even with a very high learning rate, there does not seem
to be major areas of conformational space that are ignored.
However, some sparse areas of the 2D projection space may
no longer be sampled. For example, in Figure 3(c), the area
at the top left-hand corner is void of conformations with the
very high learning rate. The same observation can be made for
the top-most region of Figure 3(b).

A very striking observation is that the 2D projection plots
are denser at higher learning rates. This is a natural result
of sampling more conformations in the same amount of time.
However, the distribution of points within these projections
indicates that in HRL mode, MoMA-LoopSampler samples the
conformational space with a higher resolution than in the basic
mode. HRL provides greater diversity in sampled areas. When
the area around the native loop gets explored more densely, the
native loop can be found with better accuracy. This is clearly
the case for loops 21 and 68 (Figures 3(a)(d) and 4).

Looking at the evolution of sampling as a function of time
(Section S2.4.4), two effects ofHRL come to light. The first one
is that the number of sampled conformations increases, and so
does the coverage of the conformational space. The second
is that some regions of the space suddenly get “unlocked”.
This is particularly clear for the very high learning rate, where
some areas are first ignored due to poor results in the region,
but sampling in the region becomes probable again after one
successful conformation is found in the vicinity.

The results provided here suggest that HRL allows for a
much faster conformational sampling, although the generated
ensembles may lose diversity if the learning process is too
greedy. It is therefore of crucial importance to limit learning
rates to preserve the diversity enabled by the tripeptide
database.

4 Conclusion
This paper has introduced MoMA-LoopSampler, a new
method that employs local sequence-dependent structural
knowledge and geometric techniques combined with a
reinforcement-learning-based heuristic to exhaustively and
efficiently sample protein loop conformations. The results show
that this new method performs similarly to (or better than)
existing computational methods in terms of computational
efficiency and that the ensemble of sampled loop conformations
includes those found in experimental structures (the “native”
state of the loop). The implemented reinforcement-learning-
based approach allows MoMA-LoopSampler to accelerate
sampling while maintaining conformational diversity (avoiding
“over-learning”), and is scalable to large loop regions (15
residues). This work has also shown that MoMA-LoopSampler
enables modeling loops present in several low-energy basins,
thus being a useful tool when investigating energy landscapes
and studying conformational transitions.

Further enhancements to the method include improving the
learning component to limit its memory requirements. Another
area to investigate is adjusting the scores of leaves within
the learning structure so that the distribution of sampled
conformations corresponds to the distribution of tripeptide
states present in the database. Database adjustments may also
improve the quality of the results. For example, filtering the
database to only keep one representative among very similar
tripeptides would speed up the sampling, and adding the states
of similar sequences to the states of rare tripeptide sequences
may allow the sampling of conformations currently inaccessible
due to a potential lack of data.

Finally, building relevant loop ensembles requires both
a sampling and a scoring components. While MoMA-
LoopSampler is aimed at providing a diverse ensemble of
possible conformations, it does not evaluate the sampled

8

Fig. 4. RMSDmin of MoMA-LoopSampler on
each loop ensemble. Diamonds correspond to the
results obtained for each learning rate. Error bars
show the RMSDmin range obtained by the four
tests performed without HRL. A data point above
the error bar shows that the corresponding run with
HRL misses some closer-to-native conformations
that can be sampled when turning HRL off. A
data point below the error bar indicates that the
corresponding run found conformations that are
even closer to native than the runs without learning
did.

loops or estimate their likelihood. Designing an appropriate
scoring function, or integrating existing ones into MoMA-
LoopSampler, constitutes an interesting direction for future
work.

Funding
The French National Association of Research and Technology
(ANRT) is gratefully acknowledged for supporting A.B.
(contract 2016/0239). This work used the HPC resources of the
CALMIP supercomputing center (allocation 2016-P16032).

5 References
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,

Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000). The
Protein Data Bank. Nucleic Acids Res., 28(1), 235–242.

Boehr, D. D., Nussinov, R., and Wright, P. E. (2009). The role of
dynamic conformational ensembles in biomolecular recognition.
Nat. Chem. Biol., 5(11), 789–796.

Bondi, A. (1964). van der Waals Volumes and Radii. J. Phys.
Chem., 68(3), 441–451.

Brandt, B. W., Heringa, J., and Leunissen, J. A. M. (2008).
SEQATOMS: a web tool for identifying missing regions in
pdb in sequence context. Nucleic Acids Res., 36(suppl_2),
W255–W259.

Canutescu, A. A. and Dunbrack, R. L. (2003). Cyclic coordinate
descent: A robotics algorithm for protein loop closure. Protein
Sci., 12(5), 963–972.

Chys, P. and Chacón, P. (2013). Random Coordinate Descent
with Spinor-matrices and Geometric Filters for Efficient Loop
Closure. J. Chem. Theory Comput., 9(3), 1821–1829.

Cortés, J., Siméon, T., Remaud-Siméon, M., and Tran, V. (2004).
Geometric algorithms for the conformational analysis of long
protein loops. J. Comput. Chem., 25(7), 956–967.

Engh, R. A. and Huber, R. (1991). Accurate bond and angle
parameters for X-ray protein structure refinement. Acta
Crystallogr., Sect. A.: Found. Adv., 47(4), 392–400.

Fox, N. K., Brenner, S. E., and Chandonia, J.-M. (2014). SCOPe:
Structural Classification of Proteins–extended, integrating
SCOP and ASTRAL data and classification of new structures.
Nucleic Acids Res., 42(D1), D304–D309.

Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig,
B., Shaw, D. E., and Friesner, R. A. (2004). A hierarchical
approach to all-atom protein loop prediction. Proteins, 55(2),
351–367.

Kabsch, W. and Sander, C. (1983). Dictionary of protein
secondary structure: Pattern recognition of hydrogen-bonded
and geometrical features. Biopolymers, 22(12), 2577–2637.

Karami, Y., Guyon, F., De Vries, S., and Tufféry, P. (2018).
Dareus-loop: Accurate loop modeling using fragments from
remote or unrelated proteins. Sci. Rep., 8(1), 13673.

Le Trong, I., Aubert, D. G. L., Thomas, N. R., and Stenkamp,
R. E. (2006). The high-resolution structure of (+)-epi-biotin

bound to streptavidin. Acta Crystallogr., Sect. D: Biol.
Crystallogr., 62(Pt 6), 576–581.

Le Trong, I., Wang, Z., Hyre, D. E., Lybrand, T. P., Stayton,
P. S., and Stenkamp, R. E. (2011). Streptavidin and its biotin
complex at atomic resolution. Acta Crystallogr., Sect. D: Biol.
Crystallogr., 67(Pt 9), 813–821.

Lee, J., Lee, D., Park, H., Coutsias, E. A., and Seok, C.
(2010). Protein Loop Modeling by Using Fragment Assembly
and Analytical Loop Closure. Proteins, 78(16), 3428–3436.

Levitt, M. (1976). A simplified representation of protein
conformations for rapid simulation of protein folding. J. Mol.
Biol., 104(1), 59–107.

López-Blanco, J. R., Canosa-Valls, A. J., Li, Y., and Chacón, P.
(2016). RCD+: Fast loop modeling server. Nucleic Acids Res.,
44(W1), W395–W400.

Marks, C., Nowak, J., Klostermann, S., Georges, G., Dunbar, J.,
Shi, J., Kelm, S., and Deane, C. M. (2017). Sphinx: Merging
knowledge-based and ab initio approaches to improve protein
loop prediction. Bioinformatics, 33(9), 1346–1353.

Marks, C., Shi, J., Deane, C. M., and Valencia, A. (2018).
Predicting loop conformational ensembles. Bioinformatics,
34(6), 949–956.

Messih, M. A., Lepore, R., and Tramontano, A. (2015). LoopIng:
a Template-Based Tool for Predicting the Structure of Protein
Loops. Bioinformatics, 31(23), 3767–3772.

Petoukhov, M. V., Eady, N. A. J., Brown, K. A., and Svergun,
D. I. (2002). Addition of missing loops and domains to protein
models by x-ray solution scattering. Biophys. J., 83(6), 3113–
3125.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A
Modern Approach. Prentice Hall Press, 3rd edition.

Shehu, A. and Kavraki, L. E. (2012). Modeling Structures and
Motions of Loops in Protein Molecules. Entropy, 14(12), 252–
290.

Shehu, A., Clementi, C., and Kavraki, L. E. (2006). Modeling
protein conformational ensembles: From missing loops to
equilibrium fluctuations. Proteins, 65(1), 164–179.

Shenkin, P. S., Yarmush, D. L., Fine, R. M., Wang, H. J.,
and Levinthal, C. (1987). Predicting antibody hypervariable
loop conformation. I. Ensembles of random conformations for
ringlike structures. Biopolymers, 26(12), 2053–2085.

Stein, A. and Kortemme, T. (2013). Improvements to robotics-
inspired conformational sampling in rosetta. PLoS One, 8(5),
e63090.

Tang, K., Zhang, J., and Liang, J. (2014). Fast Protein Loop
Sampling and Structure Prediction Using Distance-Guided
Sequential Chain-Growth Monte Carlo Method. PLoS Comput.
Biol., 10(4), e1003539.

Wedemeyer, W. J. and Scheraga, H. A. (1999). Exact analytical
loop closure in proteins using polynomial equations. J.
Comput. Chem., 20(8), 819–844.

Zhao, S., Zhu, K., Li, J., and Friesner, R. A. (2011). Progress in
Super Long Loop Prediction. Proteins, 79(10), 2920–2935.

9

Supplementary Material

A Reinforcement-Learning-Based Approach to
Enhance Exhaustive Protein Loop Sampling
Amélie Barozet 1,2,∗, Kevin Molloy 3, Marc Vaisset 1, Thierry Siméon 1 and
Juan Cortés 1,∗

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2Sanofi recherche & développement, Integrated Drug Discovery, Molecular Design Sciences, 13 quai Jules Guesde, BP 14, 94403
Vitry-sur-Seine Cedex, France
3James Madison University, Harrisonburg, Virginia, USA

∗To whom correspondence should be addressed.

S1 Methods: details and analysis

S1.1 MoMA-LoopSampler in Brute Force mode

Algorithm S1.1 shows the Brute Force version of MoMA-
LoopSampler. When the conformational space of the loop is
restricted, it captures the full conformational ensemble that
can be generated by MoMA-LoopSampler.

Since the construction method perturbs the sampled
tripeptides, every brute force search in our tests is carried
out three times to obtain a set of loop conformations
that is representative of the conformational space reachable
by MoMA-LoopSampler. The reinforcement-learning-based
heuristic (HRL) can also be used to obtain the final learning
tree and analyze the distribution of the solutions.

S1.2 Tripeptide database construction

A database of tripeptide states was constructed using the
structures of protein domains obtained from SCOP 2.06 (Fox
et al., 2014). This collection contains 244,326 domains,
extracted from 77,439 PDB entries. The 95% ID filtered
subset of the domains, consisting of PDB-style files for
28,011 domains, was utilized to build the structural database.
DSSP (Kabsch and Sander, 1983) is employed to assign
secondary structure labels to each residue in these files.

Each structure file was processed by passing a sliding
window of size 3 along the amino acid sequence. Each resulting
tripeptide was added to the database if all of its 3 residues have
a DSSP code of T, S, B, G or no code (which corresponds to an
unclassified structural type). In other words, no portion of the
tripeptide participates in an alpha-helix or beta-strand. The
tripeptide state, which corresponds to its 9 backbone dihedral
angles (3 sets of φ, ψ, and ω) was recorded in the database
and indexed by its corresponding amino acid sequence.

A slightly different treatment was applied when the
provided domain structure file originated from NMR data. For
each structural file that contained more than one model, a
distance filter was applied to corresponding tripeptides in each
model to avoid redundancy in the database. A tripeptide state
was considered sufficiently distant from another tripeptide
state, and was thus added to the database, if it met at least
one of the two following criteria: the RMSD on ω, φ and ψ

Algorithm S1.1: Build Loop Brute Force

1 BuildAllLoops(Cinit, Lstart, Lend)
2 Plans ← ConstructLoopPlans(Lstart, Lend)
3 Trees ← ConstructRLTrees(Plans)
4 foreach plan ∈ Plans do
5 tree ← SelectTree(Trees, plan)
6 BuildLoopsPosBF(plan, tree, Cinit, 1)

7 int BuildLoopsPosBF(plan, tree, C, postri)
8 nbsols ← 0
9 Tripeptides ← GetAllTripeptidesStates(plan, postri)

10 foreach tripeptide ∈ Tripeptides do
11 tripeptide ← PerturbState(tripeptide)
12 C’, success ← InstallTripeptide(C, tripeptide)
13 tree ← RecordSuccessPlacement(tripeptide, tree, success)

if success then
14 if postri = plan.lastIndex then
15 success ← CloseLoop(plan, C’)
16 tree ← RecordSuccessClosure(tripeptide, tree, success)

17 else
18 nbclosed ← BuildLoopsPosBF(plan, C’, postri +1)
19 nbsols ← nbsols + nbclosed
20 tree ← RecordSuccessClosureNb(tripeptide, tree, nbclosed)

21 return nbsols

angles is above 0.3 radians, or one of the nine dihedral angles
differs by more than 1 radian.

S1.3 Tripeptide database analysis

S1.3.1 Motivation
Employing a database of protein configurations to discretize
the conformational space capitalizes on the prior knowledge
that the backbone dihedral angles only occupy a limited range
of values, which are dependent on their neighboring amino
acids. The technique of sampling from databases has been
utilized in many structural biology problems, including loop
sampling and de novo structure prediction.

While the success of these applications may show this
approach has merit, we extend this idea by validating the

resulting tripeptide states that are formed by joining two
tripeptides into a structure. Note that these tripeptides may
be concatenated in one direction or in another, so that both
directions have to be tested. Figure S1 shows two tripeptide
sequences (MVK and PGT) that have been extracted from
our database and joined together to construct a larger protein
structure. The red lines highlight new tripeptides that are
formed from the overlaps. We refer to the states of these
tripeptides as synthetic states, since they were not sampled
from the database, and thus, their structural validity is
unknown.

We propose validating these synthetic states to strengthen
the theoretical basis for our proposed approach. This
validation occurs as follows. For each pair (i, j) of tripeptides
in the database, we extract 4 synthetic states (as shown in
Figure S1), formed by the concatenations ij and ji. Next,
for each synthetic states, we search the database using the
resulting amino acid keys. For the example in Figure S1, these
keys would be VKP, KPG, GTM, and TMV respectively. If we
are able to locate a state in the database that is similar, we
label the synthetic state as valid. Given that our database is
built from a small subset of the protein universe, we can not
say anything about synthetic states for which we do not find
a similar neighbor.

In this work, similarity is measured as the root mean square
deviation (RMSD) of the 3 sets of φ, ψ and ω backbone
dihedral angles that define each tripeptide state. Similarity
is established when the RMSD is less than some threshold ε.

Fig. S1. Synthetic tripeptide states creation by sampling two states from the
database. The four red lines represent the 4 synthetic tripeptide states extracted.

S1.3.2 Results
The database validation analysis was performed with a
threshold of 0.5 radians for the dihedral RMSD. To speed
up the process, only 1 out of 1,000 synthetic states were
randomly selected and tested for a close neighbor. This
represents around 9.5 billion synthetic states tested. On
average, 85 % of synthetic states had a close neighbor
in the database. Figure S2 gives more precise results by
sequence. Unsurprisingly for a database of tripeptides involved
in coils, sequences containing glycines are the most populated.
However, sequences containing rarer amino acids like cysteines,
histidines, methionines and tryptophans contain much fewer
states. The distribution of synthetic states with a close
neighbor in the database shows that sequences containing these
amino acids are also the ones for which the proportion of
synthetic tripeptides with a close neighbor in the database are
the lowest. This may point to a lack of data for these relatively
rare sequences. This fact is also supported by Figure S2(d), in
which sequences with few representatives in the database are
also the ones for which the average distance of synthetic states
to the database is the highest.

Cases in which the absence of close neighbors for a synthetic
state is not due to lack of data, but to their very low probability
to exist in physiological conditions, do not constitute an

important issue if one wants to exhaustively sample the
conformational space. Generating loops with such states does
not prevent any acceptable conformations from being sampled.
Conversely, it might be an issue if one’s goal is to preserve the
distribution of structural preferences encoded in the database
when generating a loop ensemble. Nevertheless, generating
statistically-meaningful conformational ensembles goes beyond
the scope of this paper.

This analysis contributes to the validation of the method
consisting in concatenating the tripeptides to build the loop.
Indeed, most synthetic states without a close neighbor in the
database actually coincide with a rare tripeptide sequence
for which data is insufficient. However, the results reveal
a limitation of the method, which is the availability of
experimental data for rare sequences. Future improvements
of MoMA-LoopSampler will therefore include enriching the
database with additional states, potentially sharing states
across similar sequences.

S1.4 Loop closure

In this section, we provide details for the method CloseLoop
(Algorithm 1, line 20).

PerturbOmegas (line 25) samples the three ω angles by first
selecting their cis or trans configuration. The probability to
generate a cis ω angle is taken as the frequency of this event
in the database for the corresponding residue. According to
the selected configuration, the angle is then sampled around
the value 0 or π with a Gaussian distribution whose standard
deviation follows that observed in the database for this type
of residue.

An in-house inverse kinematics (IK) solver (Cortés et al.,
2004) is used to solve the six remaining φ and ψ angles of
the backbone. However, the design of MoMA-LoopSampler
allows for other inverse kinematics solvers to be employed
(e.g. Manocha and Canny, 1994; Dinner, 2000; Coutsias et al.,
2004). Solving this problem may yield up to 16 potential
solutions.

The IK solution yields tripeptide states that may not
exist within the structural database. Section S1.5 describes
a study showing that for the loops with a very low energy
after relaxation, the IK solved tripeptide generally has a close
structural neighbor within the database (Figure S3). This
analysis also shows that upon loop relaxation, the distance of
the final tripeptide to the database tends to lower, suggesting
that the final tripeptide acts as a buffer that “absorbs” the
rigidity of the other tripeptides by being more “lenient” on the
distance to the database, and thus more flexible (Figure S4).
Therefore, setting a threshold on the distance of the final
tripeptide to the database may lead to the generation of higher
quality loops, but care has to be taken in order not to be too
restrictive on accepted loop conformations.

S1.5 IK-solved tripeptide: distance to database and loop
quality

The last tripeptide used to close the loop is the only tripeptide
of the generated conformation that has not been sampled from
the database. We define the distance between this tripeptide
and another tripeptide state in the database as the angular
root-mean-squared deviation of their nine backbone dihedral
angles. The distance of the last tripeptide to the database
is defined as the lowest distance between this tripeptide and

2

(a) (b)

AL
A

AR
G

AS
N

AS
P

CY
S

GL
U

GL
N

GL
Y

HI
S

IL
E

LE
U

LY
S

M
ET PH
E

PR
O

SE
R

TH
R

TR
P

TY
R

VA
L

ALA
ARG
ASN
ASP
CYS
GLU
GLN
GLY
HIS
ILE

LEU
LYS
MET
PHE
PRO
SER
THR
TRP
TYR
VAL

State Distribution in DB

2500

5000

7500

10000

12500

15000

17500

20000

AL
A

AR
G

AS
N

AS
P

CY
S

GL
U

GL
N

GL
Y

HI
S

IL
E

LE
U

LY
S

M
ET PH
E

PR
O

SE
R

TH
R

TR
P

TY
R

VA
L

ALA
ARG
ASN
ASP
CYS
GLU
GLN
GLY
HIS
ILE

LEU
LYS
MET
PHE
PRO
SER
THR
TRP
TYR
VAL

Synthetic Distribution

2

4

6

8

1e7

(c) (d)

AL
A

AR
G

AS
N

AS
P

CY
S

GL
U

GL
N

GL
Y

HI
S

IL
E

LE
U

LY
S

M
ET PH
E

PR
O

SE
R

TH
R

TR
P

TY
R

VA
L

ALA
ARG
ASN
ASP
CYS
GLU
GLN
GLY
HIS
ILE

LEU
LYS
MET
PHE
PRO
SER
THR
TRP
TYR
VAL

Synthetics Found

0.4

0.5

0.6

0.7

0.8

0.9

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

● ●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●
●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●
● ●

●

● ●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

● ●

● ●
●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●
●

●

●
●

●

●

●

●●
●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

1.0

0 500 1000 1500 2000 2500

Number of tripeptides in DB for sequence

A
ve

ra
ge

 d
ih

ed
ra

l R
M

S
D

25
50
75Percentage of

synthetic states within
0.5 dihedral RMSD
of database

Fig. S2. Each tripeptide state in the database in projected into a 20 by 20 map based on its first two amino acid residues. (a) The top left heatmap shows the
distribution of tripeptides using this projection for the SCOP 95% similarity database filtered to exclude states that participate within a secondary structure element.
This database contains 2.2 million states. (b) The top right plot is the distribution of synthetic states created by concatenating tripeptide pairs in the database
(approximately 9.5 billion states). (c) The bottom left plot shows for each of the synthetic states created, what percentage of these had close structural neighbors
in the original database (neighbor distance < 0.5 dihedral RMSD). (d) The bottom right plot shows for each tripeptide sequence the average dihedral RMSD to
database obtained for the tested synthetic states depending on the number of actual states in the database.

a tripeptide in the database having the same amino-acid
sequence.

For two loop systems, we performed brute force searches
of loop conformations with side-chain placement. We then
measured the distance to the database for the closing
tripeptide of each sampled conformation and recorded the
energy of each loop using Amber. The generated loops were
then relaxed using Amber and their energy after relaxation
was measured. The distance to database of the relaxed closing
tripeptide was calculated again.

Figure S3 shows the relationship between the energy of
generated loops and the distance of their closing tripeptide to
the database. We see clear positive correlation between energy
and the distance of the closing tripeptide to the database
before relaxation. After relaxation, the profile changes a lot.
Although the correlation is still present, it is mainly apparent
for low energy loops. Setting a threshold on the distance to
database for the closing tripeptide would thus have to be done
very carefully.

Figure S4 shows the distribution of the distance to database
differences after minus before relaxation for the closing
tripeptide. Results show that the distribution is skewed to
negative values, indicating a tendency to lower the distance

of the closing tripeptide to the database upon relaxation.
This suggests that, by being unconstrained with regard to the
database, the closing tripeptide acts as a buffer that absorbs
the rigidity of the other tripeptides. Relaxation causes the
other tripeptides to relax and the closing tripeptide to move
closer to states in the database.

Setting a threshold on the distance of the closing tripeptide
to the database should be done with a high tolerance since even
loops with closing tripeptides far from the database may have
a low energy. Moreover, looking at Figure S3(d), we can see
that even after relaxation, a loop with a closing tripeptide at
distance 1 radian of any tripeptide in the database may be
relatively good compared to the generated loop ensemble.

S1.6 Learning mode: leaf subdivision

A leaf in the learning structure can be split if the results
obtained for the tripeptide states it contains become too
heterogeneous with regard to construction success. The
states contained in a leaf should be similar enough to have
comparable levels of placement and subsequent loop closing
success. When the results show otherwise, the leaf is split
around its center. Since each placement event (successful

3

−2700

−2600

−2500

−2400

−2300

0.4 0.8 1.2 1.6

Dist. to database before relaxation (rad)

E
n

e
rg

y
 b

e
fo

re
 r

e
la

x
a

ti
o
n
 (

k
c
a

l/
m

o
l)

(a)

−1400

−1300

−1200

−1100

−1000

0.5 1.0 1.5

Dist. to database before relaxation (rad)

E
n

e
rg

y
 b

e
fo

re
 r

e
la

x
a

ti
o
n
 (

k
c
a

l/
m

o
l)

(b)

−2740

−2720

−2700

−2680

0.5 1.0 1.5

Dist. to database after relaxation (rad)

E
n
e
rg

y
 a

ft
e
r

re
la

x
a
ti
o
n

 (
k
c
a

l/
m

o
l)

(c)

−3100

−3080

−3060

−3040

0.0 0.5 1.0 1.5

Dist. to database after relaxation (rad)

E
n
e
rg

y
 a

ft
e
r

re
la

x
a
ti
o
n

 (
k
c
a

l/
m

o
l)

(d)

Fig. S3. Amber energy vs. distance to database for the closing tripeptide. (a) and (c) are the graphs for loop 45 (9 residues) while graphs (b) and (d) are the graphs
for loop 31 (9 residues). (a) and (b) show the energy and distance before relaxation while (c) and (d) show the energy and distance to database after relaxation.

0

100

200

300

400

500

−0.6 −0.3 0.0 0.3

Dist. difference
(after − before) relaxation (rad)

C
o
u
n
t

(a)

0

500

1000

1500

−0.5 0.0 0.5

Dist. difference
(after − before) relaxation (rad)

C
o
u
n
t

(b)

Fig. S4. Histogram of distance to database difference after and before relaxation. Negative values indicate that the distance to database lowered upon relaxation.
(a) Loop 45. (b) Loop 31.

placement of a tripeptide, steric clash, loop closure) is recorded
along with its corresponding tripeptide state, it is easy to
recompute the statistics in each of the 2m newly created child
leaves in case the leaf splits.

Each child leaf obtained after a split is assigned a new tree
corresponding to the next position in the plan. Consequently,
the statistics from the formerly pointed to tree are also

distributed among the newly created trees and their leaves.
After this process, the scores of all newly created leaves
obtained after the subdivision are the same as what would
have been obtained if the tree had utilized this structure from
the beginning of the sampling process.

Typically, a leaf split can happen when a state leads to a
steric clash between 25% and 75% of the time. Splitting can

4

Fig. S5. Frames attached to the beginning and the end of a tripeptide. R1,
R2 and R3 designate the first, second and third residues of the tripeptide,
respectively. The x-, y- and z- axes are represented in red, green and blue,
respectively. Only backbone atoms are represented for clarity. The C atom of the
preceding residue and the N atom of the following residue are also visible.

help isolate the states that are responsible for steric clashes,
while regrouping the states that lead to a successful placement.
Another criterion for splitting the leaf is based on the frequency
of forming a closed loop.

S1.7 Learning mode: comparison of tripeptide projections

S1.7.1 Principle
This analysis is aimed at comparing options for tripeptide
state projections in the learning process. These options are
compared on their ability to evenly distribute states in space
and to cluster tripeptides states according to their success in
forming closed loops.

S1.7.2 Definitions
The definitions of the different tripeptide state projections are
based on the tripeptide geometry corresponding to the nine
dihedral angles constituting the state. We associate a reference
frame to the beginning and the end of each tripeptide. The
frame associated to the beginning of a tripeptide is centered
on the N atom of the first residue, while the frame associated
to the end is centered on the C atom of the last residue (see
Figure S5). The length of a tripeptide is defined as the distance
between the first and the last atom of the tripeptide backbone.

Several options were tested for tripeptide state projection.
They mostly involve the relative position or orientation
of the two ends of the tripeptide. For the orientation,
several representations were tested. More precisely, the tested
tripeptide state projections are (with the associated dimension
m in parentheses):

Position (m = 3): The vector of the translational part of
the transformation between the beginning and the end of the
tripeptide (as defined by the associated frames).

Euler angles (m = 3): The vector of the Euler angles of the
rotational part of the transformation between the beginning
and the end of the tripeptide.

Euler angles and length (m = 4): The vector containing
the three Euler angles of the rotational part of the
transformation between the beginning and the end of the
tripeptide and the length of the tripeptide.

Quaternion (m = 4): The quaternion representing the
rotational part of the transformation between the beginning
and the end of the tripeptide.

Quaternion and length (m = 5): The vector containing
the quaternion representing the rotational part of the
transformation between the beginning and the end of the
tripeptide, and the length of the tripeptide.

Axis-angle (m = 4): The axis-angle representation of the
rotational part of the transformation between the beginning
and the end of the tripeptide.

Axis-angle and length (m = 5): The axis-angle
representation of the rotational part of the transformation
between the beginning and the end of the tripeptide, and the
length of the tripeptide.

S1.7.3 Performance of the different projections
A good projection should provide a good distribution of
the tripeptide states in space, and more importantly group
together tripeptide states that are almost interchangeable in
the loop building process. For example, if two states are very
close to one another in the projection space and one is in a
collision when placed, then the other should have a strong
likelihood to be in collision as well.

A high value of the dimension m would result in a data
structure that has very high memory requirements. This would
likely result in leaves with too few tripeptides, which is not
desirable. Indeed, when a tripeptide state is sampled, its
results are exploited to make predictions about the success of
all its neighbors in the leaf. If the neighbors are not numerous,
HRL will not be very effective.

We ran brute force searches for six loop systems using each
of the different projections. We compare the first level of the
octrees in all the runs performed, in terms of distribution of
tripeptides and success probability of each cell. The first level
of the octrees corresponds to the cells obtained after dividing
the bounding box containing all tripeptide states once in each
dimension. The number of cells at this level is thus 2m where
m is the dimension of the projection. Our method employs
several loop construction plans for each loop system (one per
tripeptide in the loop, corresponding to a plan ending with
this tripeptide). There are therefore 3 plans for the 9-residue
loops, and 4 plans for 12-residue loops.

The success probability of a cell is defined as the number
of successful combinations of tripeptides using a state from
this cell, divided by the theoretical number of tripeptide
combinations that use a state from this cell. Ideally, a
good projection should distribute the tripeptides as uniformly
as possible among the cells, while clearly separating states
that work (i.e. that can be used to build a successful loop
conformation) from those that cannot lead to a successful loop
conformation. Another criterion to consider is the dimension
of the projection. A projection with a higher dimension will
have higher memory requirements.

Figure S17 (at the end of this document) shows the results
for the first levels of all loop systems, for each of their
loop construction plan employed. Looking at the different
heatmaps, it is clear that no projection performs consistently
better than all others. However, we will try to analyze the
differences in the results. First, looking at the 3-dimensional
projections position and Euler angles: tripeptide distribution

5

seems to be rather good in both cases, with very few
empty cells. However, the distribution of solutions is more
heterogeneous with position. Indeed, with this projection,
more of the first level cells are void of working solutions. This
is particularly striking for 1dim-12 (A213-A224) (loop 55), for
the three last plans. Euler angles is not able to gather the
solutions into only a few cells, whereas position concentrates
the solutions into two or three cells. The same observation can
be made for the other systems. Position therefore seems to
be a better predictor of tripeptide success in building a loop
than Euler angles. Comparing the 4-dimensional projections is
more delicate. Indeed, axis-angle, Euler angles and length and
quaternion behave differently between the different systems. It
seems that Euler angles and length better gathers the solutions
for 1dim-12 (A213-A224) (loop 55) than other projections,
but on 153l-12 (A98-A109) (loop 61), quaternion is the
one that better gathers solutions, while axis-angle gathers
solutions relatively well in all the cases. For the distribution
of tripeptides, the same observation can be made. The
quality of the distribution differs depending on the tripeptide
sequence. However, 4-dimensional projections do not seem to
perform better than position. For most systems and most
loop plans, there are more than 8 cells left with solutions. Of
course those cells contain fewer tripeptide states on average,
which is why comparing 3-dimensional and 4-dimensional
projections is delicate. In 5-dimensional projections, the
distribution of tripeptides results in an undesirable sparsity,
where the solutions are unsurprisingly found where tripeptides
are located. Therefore these do not stand out from all the
projections either.

This comparison is only possible on first level cells with
these plots. Many other levels are left to explore and each
projection is likely to better separate working and non working
states in lower levels. With our analysis, we decided to retain
a 3-dimensional projection in order to limit the size of the
learning tree in memory. In light of the results, we thus selected
position as the tripeptide projection for our tests.

S2 Results

S2.1 Loop systems

The performance of MoMA-LoopSampler was tested on three
benchmark sets of 9-residue loops, 12-residue loops and 15-
residue loops. The 9-residue test set is a subset of the loops
gathered by Jacobson and colleagues (Jacobson et al., 2004).
2alp-139 and 8ruc-79 were removed because they are not
included in the set by Soto and co-workers (Soto et al., 2008).
1ivd-244 and 1pda-108, which were excluded from the modified
Fiser set by DePristo and colleagues for either poor quality
or missing side-chain atoms and gaps, were also removed
(DePristo et al., 2003). Finally, 4gcr-94 was removed because
it only contains 3 turn residues surrounded by β-sheet and α-
helix residues, and is not strictly speaking a loop. Thus, the
9-residue test set involves 53 loops. The 12 residue test set
contains the ten 12-residue loops gathered by Jacobson and
colleagues (Jacobson et al., 2004), and the 15 residue test set
contains the 30 15-residue loops used in the analysis by Zhao
et al., 2011. The full lists of loop systems used in this work are
provided in Tables S1-S3.

Table S1. 9-residue Test Set

Loop number Corresponding PDB numbering
1 3pte-09 (A107-A115)
2 1xyz-09 (A795-A803)
3 1lkk-09 (A193-A201)
4 1mla-09 (A194-A202)
5 2ayh-09 (A169-A177)
6 1arb-09 (A90-A98)
7 1mrp-09 (A284-A292)
8 1cse-09 (E95-E103)
9 1tca-09 (A217-A225)
10 2eng-09 (A172-A180)
11 1xyz-09 (A568-A576)
12 1aba-09 (A69-A77)
13 1nif-09 (A266-A274)
14 1arp-09 (A127-A135)
15 1noa-09 (A99-A107)
16 1lkk-09 (A142-A150)
17 1xif-09 (A59-A67)
18 1rhs-09 (A216-A224)
19 1fus-09 (A91-A99)
20 1php-09 (A91-A99)
21 2cpl-09 (A24-A32)
22 1nls-09 (A131-A139)
23 1xnb-09 (A133-A141)
24 1btl-09 (A102-A110)
25 1mrj-09 (A92-A100)
26 1gpr-09 (A63-A71)
27 1csh-09 (A252-A260)
28 1sgp-09 (E109-E117)
29 3pte-09 (A78-A86)
30 1isu-09 (A30-A38)
31 1noa-09 (A9-A17)
32 2hbg-09 (A18-A26)
33 1nfp-09 (A12-A20)
34 1pgs-09 (A117-A125)
35 1tca-09 (A170-A178)
36 1ptf-09 (A10-A18)
37 1npk-09 (A102-A110)
38 3pte-09 (A215-A223)
39 1ra9-09 (A142-A150)
40 1mrk-09 (A53-A61)
41 1wer-09 (A942-A950)
42 3tgl-09 (A56-A64)
43 2sil-09 (A183-A191)
44 1amp-09 (A57-A65)
45 1aac-09 (A58-A66)
46 1arb-09 (A168-A176)
47 1fus-09 (A31-A39)
48 1byb-09 (A246-A254)
49 1xnb-09 (A116-A124)
50 1ede-09 (A257-A265)
51 1aru-09 (A36-A44)
52 1onc-09 (A70-A78)
53 1noa-09 (A76-A84)

Table S2. 12-residue Test Set

Loop number Corresponding PDB numbering
54 1arb-12 (A74-A85)
55 1dim-12 (A213-A224)
56 1xyz-12 (A813-A824)
57 1bkf-12 (A9-A20)
58 2ayh-12 (A21-A32)
59 1akz-12 (A181-A192)
60 1luc-12 (A158-A169)
61 153l-12 (A98-A109)
62 1cex-12 (A40-A51)
63 1ixh-12 (A160-A171)

S2.2 Sampling efficiency of basic MoMA-LoopSampler

S2.2.1 Distance to native loop
To test the ability of MoMA-LoopSampler to sample loop
configurations close to the native state, we ran a series of tests
on each test dataset. The run time for each test was determined

6

Table S3. 15-residue Test Set

Loop number Corresponding PDB numbering
64 2v3v-15 (A382-A396)
65 1qqf-15 (A1112-A1126)
66 1h4a-15 (X19-X33)
67 2aeb-15 (B156-B170)
68 3a3p-15 (A286-A300)
69 1wui-15 (L454-L468)
70 1qaz-15 (A298-A312)
71 3css-15 (A95-A109)
72 3a64-15 (A350-A364)
73 2o2k-15 (A1220-A1234)
74 1ju3-15 (A486-A500)
75 2h3l-15 (A1339-A1353)
76 2cjp-15 (A58-A72)
77 1ryo-15 (A172-A186)
78 1ah7-15 (A157-A171)
79 1s95-15 (A477-A491)
80 1ra0-15 (A361-A375)
81 1wb4-15 (A1033-A1047)
82 1y12-15 (A10-A24)
83 3f1l-15 (A99-A113)
84 2pkf-15 (A26-A40)
85 2oit-15 (A290-A304)
86 2dsj-15 (A354-A368)
87 1bhe-15 (A121-A135)
88 3ea1-15 (A136-A150)
89 2b0t-15 (A701-A715)
90 1ra0-15 (A283-A297)
91 1zhx-15 (A392-A406)
92 3bb7-15 (A231-A245)
93 3bf7-15 (A49-A63)

by the loop length being sampled: 2 hours for 9-residue loops,
4 hours for 12-residue loops, and 6 hours for 15-residue loops.
Each experiment was repeated 4 times. 1

Figure S6 gives the distribution of the lowest RMSD to the
native loop for both the best and worst of the four executions.
In all four tests, at least one conformation within 2 Å of native
(using backbone RMSD as a distance metric) was sampled for
each of the 9- and 12-residue loops, and between 23 and 26
of the 15-residue loops. Decreasing the threshold to test for a
sample within 1 Å of the native state, the results are still very
good for 9- and 12-residue loops: with 51 9-residue loops (out
of 53) and 9 12-residue loops (out of 10). For the 15-residue
loops however, this number drops to 9 loops (over all four tests,
this was achieved for 11 loops). The fact that these results
vary from one test to another suggests that the sampling time
is not sufficient for some 15-residue loops. With such a loop
length, the number of possible conformations may be very large
when the loop environment is not strongly constrained, and
thus, the sampling time must be adapted to the size of the
conformational space.

The times observed to sample a loop within 1 or 2 Å of the
native are reported in Table S4. Computational requirements
increase with loop length. Given that the native loop is one of
many valid conformations, the relatively high variance in the
time to generate a nearby configuration for long loops is not
surprising. This is due to the stochasticity of the method. The
variation of RMSDmin for 15-residue loops suggests that the
provided sampling time is not adequate to perform a sufficient
sampling of the loop’s conformational space.

1 Computing times reported throughout the paper correspond
to runs on a single core of a 2.30 GHz Intel® Xeon® E5-2695
v3 processor.

Fig. S6. Cumulative distribution of the lowest backbone RMSD to native among
sampled conformations for the 93 loops in our test sets. Since sampling was
performed four times, (a) shows the distribution of the best of the four results
for each loop, while (b) shows the distribution of the worst of the four results.

These results show that MoMA-LoopSampler can construct
loop ensembles for the 9 and 12-residue cases that include the
native state with high precision, while 15-residue loops still
present a formidable challenge, due to the high dimensionality
of the search space possibly coupled with a less constrained
environment.

S2.2.2 Comparison of MoMA-LoopSampler with loop
prediction methods

We compare the sampling performance of MoMA-
LoopSampler to that of DISGRO (Tang et al., 2014)
and of the updated version of RCD (Chys and Chacón, 2013;
López-Blanco et al., 2016). Note that, based on the results
from references (Soto et al., 2008) and (Tang et al., 2014),
DISGRO performs better than earlier loop closure or loop
prediction methods such as CCD (Canutescu and Dunbrack,
2003), Wriggling (Cahill et al., 2003), PLOP-build (Jacobson
et al., 2004), LOOPYbb (Xiang et al., 2002), Random
Tweak (Shenkin et al., 1987), or Direct Tweak (Xiang et al.,
2002; Xiang, 2006). Therefore, we do not compare directly to
these older methods.

Source code for DISGRO was obtained from http://tanto.
bioe.uic.edu/DiSGro/download.html. The code had to be
slightly modified to output exactly the required number of
clash-free conformations (instead of the subset of clash-free
conformations among a required number of closed ones), and

7

Table S4. Time needed to generate a conformation within 1 or 2 Å of the native loop. Statistics
are calculated on all the runs for which such a distance was reached. MoMA-LoopSampler
sampled a loop within 2 Å of native in at least one of the four tests for all 9- and 12-residue
loops and 28 15-residue loops. It sampled a loop within 1 Å of native in at least one of the
four tests for 51 9-residue loops, 9 12-residue loops and 11 15-residue loops.

Test Set
Time to reach...

2 Å to native 1 Å to native

Min Median Mean Max Min Median Mean Max

9 residues 0.3 sec 4.5 sec 21.4 sec 11.8 min 1.0 sec 28.6 sec 4.1 min 1.7 h
12 residues 0.89 sec 23.4 sec 2.5 min 28.9 min 3.26 sec 5.6 min 16.5 min 2.2 h
15 residues 2.84 sec 19.6 min 1 h 5.9 h 4 min 1 h 1.6 h 5.1 h

conformations were generated without side-chains. Binaries for
RCD version 1.40 were downloaded from http://chaconlab.
org/modeling/rcd/rcd-download. MoMA-LoopSampler uses
stricter constraints than DISGRO and RCD, in particular for
steric clash detection. Therefore, in order to more adequately
compare running times, we also tested a variant of MoMA-
LoopSampler (Soft MoMA-LoopSampler) that uses collision
constraints comparable to that of DISGRO and RCD. This
variant uses a van der Waals scaling factor of 0.6 (instead of 0.7
for the other tests), does not use enlarged Cβ atoms, and uses
a lower maxIK. These changes are expected to lower the quality
of the ensemble and its exhaustiveness, but also to considerably
decrease sampling time, allowing a more straightforward time
comparison with DISGRO and RCD. The computational time
and ability to generate near-native loops are compared, using
the same computational resources for all four methods.

Difference between the sampling methods

Different sets of constraints are enforced by the three sampling
methods. Concerning collisions, DISGRO employ an energy
function that makes steric clashes unlikely. The maximum
allowed ratio between non-bonded atom pair distances and the
sum of their van der Waals radii (called van der Waals scaling
factor) was set to 0.6 in DISGRO (value found in the source
code) and to 0.5 for intra-loop backbone collisions in RCD.
Collisions with the rest of the protein are handled differently
in RCD: this method uses a grid and considers that there is a
collision if an atom of the loop is placed in a non-empty cell.
This collision detection method is much faster but also less
accurate than considering the actual distance between atoms.
In MoMA-LoopSampler, steric clash avoidance is a crucial
component: backbone atoms and the Cβ atoms (with enlarged
volumes to account for side-chain placement) of the sampled
loops are placed without major steric clash among themselves
or with the rest of the protein. While the van der Waals scaling
factor was set to 0.6 in the more collision-tolerant version of
MoMA-LoopSampler (Soft MoMA-LoopSampler), we set this
cutoff at 0.7 to test the basic and HRL MoMA-LoopSampler.

Structural knowledge is included in all three methods.
Although RCD can be considered an ab initio method,
it samples dihedral angles following neighbor-dependent
Ramachandran probability distributions. DISGRO includes a
stronger knowledge-based component, with a more complex
dihedral angle sampling that follows distributions extracted
from a structural database. Finally, MoMA-LoopSampler is

strongly dependent on structural knowledge, since it directly
uses fragments from experimentally-solved protein structures.

Results

Among 5000 sampled conformations, RMSDmin obtained by
MoMA-LoopSampler are much lower than that obtained by
the other methods for 9- and 12-residue loops (Figure S7(a)).
Soft MoMA-LoopSampler also obtains RMSDmin lower than
DISGRO and RCD, but higher than the basic version of MoMA-
LoopSampler. For the 15-residue loops, RMSDmin obtained
on 5,000 sampled conformations are comparable for the four
methods. However, looking at 100,000 sampled conformations
for these longer loops, MoMA-LoopSampler obtains a much
lower RMSDmin (Figure S7(b)). Note that the RMSDmins
obtained for DISGRO on the 15-residue loop test set are
lower than the ones the authors report for 100,000 sampled
conformations on the same test set (Tang et al., 2014).

Generating 100,000 conformations instead of 5,000 lowered
the RMSDmin for all the methods (Figure S9). However,
this decrease varies from one method to another. It is very
limited for MoMA-LoopSampler on the 9- and 12-residue
loops, while being considerable for other methods. Note that
despite this, the RMSDmin obtained by MoMA-LoopSampler
on these loops is still much lower compared to the other tested
methods. The 15-residue loops show the opposite trend: the
decrease in RMSDmin is much larger for MoMA-LoopSampler
and its “soft” version than for the other methods on 15-residue
loops, resulting in a lower RMSDmin for MoMA-LoopSampler
compared to RCD and DISGRO.

Concerning running times, MoMA-LoopSampler and its
soft version are much less sensitive to the length of the loop
than the other two methods. The soft version of MoMA-
LoopSampler is slightly slower than other methods on 9-residue
loops but faster than DISGRO for 12- and 15-residue loops. We
note that the running times obtained for DISGRO are higher
that those reported in Tang et al., 2014. In some tests, DISGRO

got blocked during the sampling process, in which case we
started the run again. These failed sampling attempts are not
counted in the running times we report. The basic version of
MoMA-LoopSampler is unsurprisingly slower than the other
methods, due to the stronger constraints it enforces. Overall,
results show that the “soft” version of MoMA-LoopSampler
has running times comparable to that of other methods
and provides slightly lower RMSDmin. The basic version of
MoMA-LoopSampler on the other hand, trades computational
efficiency off for better filtering of sampled ensembles.

8

 9−residue loops 12−residue loops 15−residue loops

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

0

1

2

3

4
R

M
S

D
m

in
 (

A°
)

(a) 5,000 sampled conformations.

 9−residue loops 12−residue loops 15−residue loops

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

0

1

2

3

4

R
M

S
D

m
in

 (
A°

)

(b) 100,000 sampled conformations.

Fig. S7. Minimum distance to native (RMSDmin) obtained among sampled conformations, without side-chains.

0.03
0.01

0.29

0.04

0.09

0.02

0.28

0.05

0.23

0.03

0.38

0.06

 9−residue loops 12−residue loops 15−residue loops

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

0.0

0.1

0.2

0.3

0.4

R
u
n
n
in

g
 t
im

e
 (

s
)

Fig. S8. Median time per sampled conformation (estimated on 5000 sampled
conformations, without side-chain placement). Computations were performed
using a single core of a 2.30 GHz Intel® Xeon® E5-2695 v3 processor.

Discussion

The difference in the collision constraints enforced by the
different methods can help to explain two major observations
in the results: (1) MoMA-LoopSampler (especially the basic
version) is less sensitive to loop length than RCD and
DISGRO, from a running time point of view; (2) while MoMA-
LoopSampler obtains a much lower RMSDmin than other
methods for 9- and 12-residue loops on ensembles of 5,000
conformations, a higher number of sampled conformations is
necessary for 15-residue loops to observe a difference.

To explain the first point, we hypothesize that MoMA-
LoopSampler is more sensitive to the environment of the loop,

 9−residue loops 12−residue loops 15−residue loops

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

D
iS

G
ro

R
C
D

M
oM

A
−L

oopSam
ple

r

Sof
t M

oM
A−L

oo
pS

am
pl
er

−2

−1

0

∆
 R

M
S

D
m

in
 (

A°
)

Fig. S9. Difference in RMSDmin obtained when generating a larger number of
conformations (100,000 conformations instead of 5,000).

and whether it is constrained or not, than to the length
of the loop. First, an essential component of the method
consists in checking that the distance between the two working
loop ends can be covered by the tripeptides left to place.
Making this verification after a tripeptide is added facilitates
the closing of long loops. Second, shorter loops generally
have a more constrained environment than longer loops. As
previously mentioned, MoMA-LoopSampler is more intolerant
to collisions compared to other methods. Therefore, generating
a conformation for a loop in a more constrained environment
is a problem with a difficulty comparable to that of sampling
a longer unconstrained loop for MoMA-LoopSampler, which

9

explains why median running times per conformation vary
little with loop length.

To explain the second point, a similar reasoning can be
conducted. MoMA-LoopSampler only samples the accessible
conformational space by carefully avoiding collisions in
generated conformations. Therefore, it finds the native
conformations using fewer samples than other methods. With
more constrained environments, 9- and 12- residue loops
have a resulting conformational space that is particularly
reduced, which is why MoMA-LoopSampler finds the native
conformation very early into the search. Longer loops
are usually more flexible, and a larger portion of the
conformational space is allowed. Therefore, methods that
are overall more tolerant to collisions sample fewer bad-
quality conformations in proportion. For these loops, more
conformations need to be sampled to achieve a better coverage
of the conformational space. The benefit in RMSDmin
for MoMA-LoopSampler is thus logically observable when
sampling a higher number of conformations (100,000) for
15-residue loops (Figure S7(b)).

In simpler terms, this means that MoMA-LoopSampler
better explores the conformational space, performing an
exhaustive exploration using fewer samples than other
methods. The difference in RMSDmin observed after
generating larger ensembles further supports this idea.
Indeed, 5,000 samples from MoMA-LoopSampler are enough
to explore the conformational space of 9- and 12-residue
loops, explaining why the RMSDmin barely decreases when
generating a much larger number of conformations. For
other methods, the RMSDmin considerably decreases upon
generating more conformations, showing that these methods
keep discovering relevant conformations among the extra
conformations. Conversely, for 15-residue loops, the difference
in RMSDmin obtained upon generating 100,000 conformations
instead of 5,000 is considerable for all four methods, with
MoMA-LoopSampler and Soft MoMA-LoopSampler showing
a much larger decrease than RCD and DISGRO. This confirms
(1) that 5,000 conformations are not enough to cover the much
larger conformational space of these longer loops, and (2) that
MoMA-LoopSampler performs a more efficient exploration,
discovering relevant conformations using fewer samples than
RCD and DISGRO.

Obtaining an ensemble of conformations of good quality is
essential considering the costly downstream processing steps
of applications involving loop sampling, in particular in the
context of stable states prediction. These steps include side-
chain addition, relaxation, scoring, clustering or filtering, and
can be extremely time-consuming. In that regard, generating
fewer conformations, but which are more representative of
the ensemble overall, is perfectly satisfactory. This suggests
that MoMA-LoopSampler is a good candidate for the sampling
stage of many structural bioinformatics applications, including
stable states prediction, since it obtains the same RMSDmin
as other methods (or a lower one) without needing to sample
as many conformations as these methods do.

S2.3 Application to a multi-state loop: complements

S2.3.1 Post-processing of streptavidin loop
conformations

Several experimentally-determined structures were gathered
for streptavidin and sampling for the flexible loop was

performed from each of them. For all the conformations
obtained after three rounds of brute force search, side-chain
placement was attempted with an in-house method using
continuous rotamers from BASILISK (Harder et al., 2010).
Only conformations for which side-chains could be placed
without steric clash were retained and relaxed using energy
minimization protocols from Amber 16 (Case et al., 2005,
2016). This represents 5338 conformations from scaffold 2F01
chain A, 3825 from 2F01 chain B, 4042 from 3RY1 chain A,
1304 from 3RY1 chain B, 702 from 3RY1 chain C, 2820 from
3RY1 chain D, 5320 from 3RY2 chain A and 3611 from 3RY2
chain B. No constraints were applied for the relaxation, so that
both backbone and side-chain movements were allowed. Bond
length, bond angles and dihedral angles were all free to move.
The relaxation took 133 s per loop on average. The first 250
cycles used steepest descent minimization, while the remaining
cycles applied conjugate gradient. The maximum number of
cycles was set to 500 and the minimization was considered to
have converged when the root-mean-square of the cartesian
elements of the gradient was lower than 0.1 kcal/(mol·Å).
Energy was calculated using the ff14SBonlysc force field and a
simple Generalized Born implicit solvent model (igb = 1 and
the mbondi radii sets, as recommended in the Amber manual).

S2.3.2 Detailed analysis of the energy landscape of
streptavidin’s flexible loop

The projection plots show major differences depending on
the starting structure. Sometimes, both the “open” and
“closed” conformations appear to be in low-energy basins
(2F01-A, 2F01-B, 3RY2-A, 3RY1-B and 3RY1-C). Other
projection plots show only one low-energy basin, around
the crystallographic conformations (3RY2-B, 3RY1-A and
3RY1-D). The energies were calculated without a ligand,
showing the strong influence of the local structure around
the loop. In the case of 2F01-A, 2F01-B, and 3RY2-A,
the environment surrounding the loop allows it to adopt
both conformations, but the presence of the ligand probably
stabilizes the loop in one of the two basins. Energy barriers of
different heights separate the “closed” and “open” basins. In
3RY2-B, it seems that only the “closed” conformation is stable,
suggesting that the environment of the loop also changes
(due to crystal packing or ligand binding), and stabilizes
this conformation. A profile similar to that of 3RY2-B is
found for 3RY1-A, although this subunit is unbound in
the crystallographic structure. This is an indication of the
conformational changes that occur around the loop in the
crystal structure. For 3RY1-D, the “open” conformation is in
a large low energy basin. A few low energy conformations
are found in the “closed” loop region but a large, high
energy barrier separates the two regions. In the case of
3RY1-B and 3RY1-C, the conformational space appears
tighter. The loop environment is probably more constrained
sterically. Nevertheless, both energy basins are found, with
a lower energy barrier separating them, and a much lower
energy minimum for the “open” basin, explaining the “open”
conformation adopted by these subunits in the crystal.

S2.3.3 Landscapes obtained using other sampling
methods

The protocol for modeling and visualizing the energy landscape
of streptavidin (Section 3.2.2) was repeated using DISGRO

10

Fig. S10. 2D projections of conformations
sampled using DISGRO for a loop in the
streptavidin protein, from eight starting X-ray
crystallography protein structures. The first
dimension, d1 (x-axis), is the distance (Å)
between an atom located in the middle of
the loop and a fixed atom in the protein. The
second dimension, d2 (y-axis), is the angle
(degrees) formed by three atoms: an atom
at approximately one quarter, one half, and
three quarters of the way down of the loop.
The conformations from the crystallographic
structures are shown in black. For each
system, the loop with the lowest energy was
identified and each conformation was then
colored according to the difference between
its energy and this lowest energy.

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

80

∆E (kcal/mol)

Fig. S11. 2D projections of conformations
sampled using RCD+ for a loop in the
streptavidin protein, from eight starting X-ray
crystallography protein structures. The first
dimension, d1 (x-axis), is the distance (Å)
between an atom located in the middle of
the loop and a fixed atom in the protein. The
second dimension, d2 (y-axis), is the angle
(degrees) formed by three atoms: an atom
at approximately one quarter, one half, and
three quarters of the way down of the loop.
The conformations from the crystallographic
structures are shown in black. For each
system, the loop with the lowest energy was
identified and each conformation was then
colored according to the difference between
its energy and this lowest energy.

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

10 20 30 10 20 30 10 20 30 10 20 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

80

∆E (kcal/mol)

and RCD+ (López-Blanco et al., 2016) as sampling methods.
RCD+ is a web server that performs loop modeling using RCD
as a first sampling step and then performs side-chain placement
and refinement. For each scaffold, DISGRO and RCD+ were
employed to sample the same number of conformations as
sampled using MoMA-LoopSampler in brute force mode. Side-
chain placement was activated for DISGRO. The sampled
conformations were relaxed and projected in 2D. The resulting
landscapes are shown in Figures S10 and S11.

The landscapes are very different from those obtained using
MoMA-LoopSampler. Although some common features can be
observed (such as the basin around the “open” conformations
from scaffolds 3RY1 B, C and D), the landscapes are
much rougher and harder to interpret. They are also more
spread than landscapes obtained when sampling with MoMA-
LoopSampler. The fact that these methods are more collision-
tolerant may explain these observations. Indeed, many
statistically unlikely conformations are generated, perturbing
the analysis of the landscape. By creating a better filtered
ensemble, MoMA-LoopSampler clarifies the analysis of energy
landscapes for this loop.

S2.4 Effects of HRL on the generated ensembles

S2.4.1 Influence of learning rate over the number of
sampled conformations

Figure S12 shows that the higher the learning rate, the larger
the number of conformations sampled. This is true for many

9 res. loops
(after 2 hours)

12 res. loops
(after 4 hours)

15 res. loops
(after 6 hours)

Ve
ry

 lo
w

Lo
w

H
ig
h

Ve
ry

 h
ig
h

Ve
ry

 lo
w

Lo
w

H
ig
h

Ve
ry

 h
ig
h

Ve
ry

 lo
w

Lo
w

H
ig
h

Ve
ry

 h
ig
h

0

25

50

75

Learning rate

In
c
re

a
s
e
 o

f
c
o
n
fo

rm
a
ti
o
n
s
 s

a
m

p
le

d
 (

%
)

Fig. S12. Median percentage of increase in number of conformations sampled in
HRL modes compared to the basic mode across loop systems.

systems such as loops 14 and 68 (Figure S13), which show
very different sampling speed depending on the learning rate.
However, the effect of HRL depends on both the length of the
loop and the loop/protein system itself. While most 9- and 12-
residue loops (and a few 15-residue loops) exhibit this expected
behavior, for other loops (and for many 15-residue loops),
only runs performed with high and very high learning rates
are capable of generating a larger number of conformations
(e.g. loop 61). As mentioned in the main paper, activating
HRL with a very low or low learning rate can even reduce

11

Loop 68 Loop 73 Loop 76

Loop 14 Loop 42 Loop 61

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 0 1 2 0 1 2 3 4

0

50

100

0

30

60

90

120

0

10

20

30

0

2

4

6

0

1

2

3

4

0

20

40

60

80

Time (h)

S
a

m
p

le
d

 c
o

n
fo

rm
a

ti
o

n
s
 (

x
 1

0
3
)

Learning rate

No learning Very low Low High Very high

Fig. S13. Number of conformations sampled as a function of time for different
learning rates for a few representative loops.

the number of sampled conformations, compared to the basic
mode. This is mainly observed for 15-residue loops, such as
loop 76. Loop 42 illustrates yet another case: all learning rates
generate loops at comparable speed, but still much faster than
MoMA-LoopSampler in basic mode does.

Loops 68 and 73 also illustrate an interesting phenomenon.
The curves for high and very high learning rates show some
plateaus spanning 10 minutes or more, which are due to the
overhead of maintaining a very large learning tree, whose
dimensionality grows exponentially in the length of the loop.

S2.4.2 Time needed to sample near-native
conformations

The cumulative distribution of the time necessary to generate
the first conformation within 1 Å RMSD to native, with or
without learning, is shown Figure S14. Although these values
are generally of the same order of magnitude for runs with
or without learning, some observations can still be made.
Looking at results loop by loop, we observe that for 9-residue
loops, using HRL may considerably delay the sampling of
a conformation that is close to native. A possible reason is
that introducing HRL modifies the probability for selecting
tripeptides. While in the basic mode, MoMA-LoopSampler
picks tripeptide states at each step with a uniform distribution,
the HRL mode offers MoMA-LoopSampler the possibility to
adjust the sampling of states so that a suitable distribution is
obtained. Considering the tree used by HRL to organize the
tripeptides, MoMA-LoopSampler in the basic mode chooses
each cell with a distribution that is directly proportional to the
number of tripeptides it contains. Conversely, in the learning
mode, MoMA-LoopSampler samples each cell according to
their score. The score is currently set so as to sample effectively
as many diverse conformations as possible, but other strategies
may be contemplated in order to obtain a loop ensemble
that follows the density of the tripeptide database for each
tripeptide position. Such an ensemble could provide a more
statistically accurate representation of the loop conformational
space, which would be interesting to analyze entropic effects.

Fig. S14. Cumulative distribution of the time needed to sampled a conformation
within 1 Å of the native for the 93 loops in our test sets. Four distributions were
calculated: one using the shortest time of the four tests in basic mode for each
loop, one using the longest time of the four tests in basic mode for each loop,
one using the shortest time of the four tests in HRL mode for each loop, and
finally one using the longest time of the four tests in HRL mode for each loop.

S2.4.3 Effect of HRL on RMSDmin

Main results and discussions regarding the effect of HRL on
the value of RMSDmin for the loop test-sets are presented in
the manuscript. As a complement to these results, Table S5
gives the mean and median values obtained for RMSDmin.

S2.4.4 Evolution of sampling in time
We also show the evolution of the distribution of sampled loops
with HRL activated in Figure S15. These heatmaps, shown
in the same two-dimensional projection, showcase the density
of the sampled loops in the first and the last ten minutes of
the exploration. Two effects are observed when comparing the
beginning and the end of the sampling process:

(1) The first effect of learning is that the number of
sampled conformations increases, and the coverage of the
conformational space improves. In other words, the projection
of sampled loop conformations in 2D appears to be more
homogeneous and continuous. The effect is similar to that

12

Fig. S15. Evolution of the distribution of sampled loops due to HRL. The plots show heatmaps of two-dimensional projections of the sampled loops for different
learning rates, during the first and the last ten minutes of sampling. The x-axis gives the first projection descriptor d1 (in Å), while the y-axis gives the second
projection descriptor, d2 (in degrees). (a) Loop 21, (b) Loop 26, (c) Loop 40, (d) Loop 68.

Table S5. RMSDmin obtained for different learning rates.

Length Basic
mode

HRL mode learning rate

V. low Low High V. high

9 res. Mean (Å) 0.49 0.48 0.47 0.46 0.46
Median (Å) 0.43 0.41 0.41 0.39 0.41
SD (Å) 0.21 0.21 0.21 0.20 0.19

12 res. Mean (Å) 0.73 0.67 0.73 0.67 0.75
Median (Å) 0.67 0.60 0.64 0.55 0.69
SD (Å) 0.26 0.20 0.30 0.32 0.26

15 res. Mean (Å) 1.50 1.52 1.48 1.48 1.50
Median (Å) 1.45 1.45 1.43 1.42 1.44
SD (Å) 0.62 0.68 0.70 0.67 0.73

observed for the different learning rates. Indeed, the algorithm
progressively stops exploring the regions of space where it does
not find any solution. The probability to sample a tripeptide
in a cell from which all attempts have failed so far decreases
with running time. Consequently, the success rate becomes

higher since MoMA-LoopSampler focuses on the vicinity of
regions that are successful. This is very clear in Figure S15(d),
for very low and low learning rates. It can also be observed
for other systems, although to a lesser degree. The ability of
HRL to quickly identify areas where no solution exists depends
on the positions of solutions in the conformational space and
how they cluster, on the projection chosen to organize the
tripeptide states, and on the learning rate.

(2) The second effect is the sudden discovery of
whole regions of the conformational space. As previously
mentioned, the probability to explore a region invariably found
unsuccessful so far decreases based on the the number of
attempts and the learning rate. If the number of attempts
is too low (the learning process is too greedy), MoMA-
LoopSampler can fail to explore some regions in which a
few successful conformations could have been found. However,
these regions may suddenly get “unlocked” after a closed loop
is finally sampled. One successful conformation is necessary
and sufficient to set the score of the cell leading to sampling in
that region back to its maximum. This is the case for the region

13

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

80

∆E (kcal/mol)

(a) Basic mode

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

∆E (kcal/mol)

(b) HRL mode with very low learning rate.

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

80

∆E (kcal/mol)

(c) HRL mode with low learning rate

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

80

∆E (kcal/mol)

(d) HRL mode with high learning rate

3RY1 A (unbound) 3RY1 B (unbound) 3RY1 C (unbound) 3RY1 D (unbound)

2F01 A (bound) 2F01 B (bound) 3RY2 A (bound) 3RY2 B (bound)

15 20 25 30 15 20 25 30 15 20 25 30 15 20 25 30

20

30

40

50

60

70

20

30

40

50

60

70

d1

d
2

0

20

40

60

80

∆E (kcal/mol)

(e) HRL mode with very high learning rate
Fig. S16. 2D projections of conformations sampled using MoMA-LoopSampler at different learning rates for a loop in the streptavidin protein, from eight starting
X-ray protein structures. The first dimension, d1 (x-axis), is the distance (Å) between an atom located in the middle of the loop and a fixed atom in the protein.
The second dimension, d2 (y-axis), is the angle (degrees) formed by three atoms: an atom at approximately one quarter, one half, and three quarters of the way
down of the loop. The conformations from the crystallographic structures are shown in black. For each system, the loop with the lowest energy was identified and
each conformation was then colored according to the difference between its energy and this lowest energy.

of the conformational space that is projected in the bottom
right-hand corner of the heatmaps shown in Figure S15(a) at
a very high learning rate. This phenomenon is also observed
for other systems in Figure S15, albeit on smaller regions of the
projection plot. This is a warning that learning is already too
greedy. In theory, learning should only stop exploring regions
when enough exploration has been made and the probability to
find a successful loop conformation in that region is negligible.
In practice, this can never be determined with certainty, as
long as the full region has not been explored. For HRL to have
the desired behavior, a trade-off has to be found in order to
enable faster exploration while not risking to lose large and/or
relevant areas of the conformational space.

These results also show that the distribution of sampled
conformations may be different depending on the learning
rate and the running time: beyond the observation that
the conformational space obtained is more continuous, the
density observed in the heatmaps evolves between the different
conditions. The samples appear to be more uniformly
distributed when HRL is involved. Another interesting
observation is that, for all these four systems, some

consequences of learning become visible very early in the
sampling process, within the first 10 minutes.

S2.5 Energy landscape of a multi-state loop at different
learning rates

The protocol for modeling and visualizing the energy landscape
of streptavidin (Section 3.2.2) was repeated using different
learning rates. For each scaffold, MoMA-LoopSampler in basic
mode and in four different HRL modes was employed to sample
the same number of conformations as sampled using brute
force. The sampled conformations were relaxed and projected
in 2D. The resulting landscapes are visible in Figure S16.

The landscapes look very similar for all levels of learning,
showing that HRL parameterization overall preserves sampling
diversity for this loop system. Only slight differences are
observed when applying HRL with a very high learning rate.
In the landscape built from scaffold 2F01 A, the basin around
the “open” conformation is not as clearly apparent as for less
greedy HRL levels.

14

References
Cahill, S., Cahill, M., and Cahill, K. (2003). On the kinematics of protein folding. J. Comput. Chem., 24(11), 1364–1370.

Canutescu, A. A. and Dunbrack, R. L. (2003). Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein
Sci., 12(5), 963–972.

Case, D., Betz, R., Cerutti, D., T.E. Cheatham I., Darden, T., Duke, R., Giese, T., Gohlke, H., Goetz, A., Homeyer, N., Izadi,
S., Janowski, P., Kaus, J., A. Kovalenko, T. L., LeGrand, S., Li, P., C.Lin, Luchko, T., Luo, R., Madej, B., Mermelstein,
D., Merz, K., Monard, G., Nguyen, H., Nguyen, H., I.Omelyan, Onufriev, A., Roe, D., Roitberg, A., Sagui, C., Simmerling,
C., Botello-Smith, W., Swails, J., Walker, R., Wang, J., Wolf, R., Wu, X., Xiao, L., and Kollman, P. (2016). Amber 2016,
University of California, San Francisco.

Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., and
Woods, R. J. (2005). The Amber biomolecular simulation programs. J. Comput. Chem., 26(16), 1668–1688.

Chys, P. and Chacón, P. (2013). Random Coordinate Descent with Spinor-matrices and Geometric Filters for Efficient Loop
Closure. J. Chem. Theory Comput., 9(3), 1821–1829.

Cortés, J., Siméon, T., Remaud-Siméon, M., and Tran, V. (2004). Geometric algorithms for the conformational analysis of
long protein loops. J. Comput. Chem., 25(7), 956–967.

Coutsias, E., Seok, C., Jacobson, M., and Dill, K. (2004). A kinematic view of loop closure. J. Comput. Chem., 25(4), 510–528.

DePristo, M. A., de Bakker, P. I. W., Lovell, S. C., and Blundell, T. L. (2003). Ab initio construction of polypeptide fragments:
Efficient generation of accurate, representative ensembles. Proteins, 51(1), 41–55.

Dinner, A. R. (2000). Local deformations of polymers with nonplanar rigid main-chain internal coordinates. J. Comput. Chem.,
21(13), 1132–1144.

Fox, N. K., Brenner, S. E., and Chandonia, J.-M. (2014). SCOPe: Structural Classification of ProteinsâŁ”extended, integrating
SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res., 42(D1), D304–D309.

Harder, T., Boomsma, W., Paluszewski, M., Frellsen, J., Johansson, K. E., and Hamelryck, T. (2010). Beyond rotamers: a
generative, probabilistic model of side chains in proteins. BMC Bioinf., 11(1), 306.

Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., and Friesner, R. A. (2004). A hierarchical
approach to all-atom protein loop prediction. Proteins, 55(2), 351–367.

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and
geometrical features. Biopolymers, 22(12), 2577–2637.

López-Blanco, J. R., Canosa-Valls, A. J., Li, Y., and Chacón, P. (2016). RCD+: Fast loop modeling server. Nucleic Acids
Res., 44(W1), W395–W400.

Manocha, D. and Canny, J. F. (1994). Efficient inverse kinematics for general 6r manipulators. IEEE Trans. Robot. Autom.,
10(5), 648–657.

Shenkin, P. S., Yarmush, D. L., Fine, R. M., Wang, H. J., and Levinthal, C. (1987). Predicting antibody hypervariable loop
conformation. I. Ensembles of random conformations for ringlike structures. Biopolymers, 26(12), 2053–2085.

Soto, C. S., Fasnacht, M., Zhu, J., Forrest, L., and Honig, B. (2008). Loop modeling: Sampling, filtering, and scoring. Proteins,
70(3), 834–843.

Tang, K., Zhang, J., and Liang, J. (2014). Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided
Sequential Chain-Growth Monte Carlo Method. PLoS Comput. Biol., 10(4), e1003539.

Xiang, Z. (2006). Advances in Homology Protein Structure Modeling. Curr. Protein Pept. Sci., 7(3), 217–227.

Xiang, Z., Soto, C. S., and Honig, B. (2002). Evaluating conformational free energies: the colony energy and its application to
the problem of loop prediction. Proc. Natl. Acad. Sci. U. S. A., 99(11), 7432–7437.

Zhao, S., Zhu, K., Li, J., and Friesner, R. A. (2011). Progress in Super Long Loop Prediction. Proteins, 79(10), 2920–2935.

15

Appendix: heatmaps comparing tripeptide projections
Following are the figures mentioned in Section S1.7 comparing the different tripeptide state projections.

Fig. S17. Comparison of projections. Several different projections were tested for HRL. The following heatmaps show the ability of each projection to distribute
tripeptides and to regroup states that succeed in creating a closed loop together. The results are presented for 6 different systems. For each system, the heatmaps
of the learning trees corresponding to the different loop plans are shown. A loop plan is designated by the position of the last tripeptide used to close the loop
(IK position). The first of the two heatmaps for a given learning tree gives the distribution of tripeptides in the top level cells of the root tree. The second shows
the success probability of the leaf, meaning the number of successful loop conformations that start with a state from this leaf divided by the theoretical number of
tripeptide combinations starting with a state from this leaf.

Tripeptide dist.

1noa-09 (A9-A17)

0

0.6

IK position : 0

Success prob.

IK position : 1 IK position : 2
0

2.43E-02

Tripeptide dist.

1xnb-09 (A133-A141)

0

0.32

IK position : 0

Success prob.

IK position : 1 IK position : 2
0

1.05E-02

Tripeptide dist.

3pte-09 (A215-A223)

0

0.41

IK position : 0

Success prob.

IK position : 1 IK position : 2
0

8.74E-03

Tripeptide dist.
153l-12 (A98-A109)

0

0.31

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0

2.10E-03

Tripeptide dist.
1dim-12 (A213-A224)

0

0.33

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0

1.28E-04

Tripeptide dist.
1xyz-12 (A813-A824)

0

0.61

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0

1.14E-05

Fig. S17((a)): Position

16

Tripeptide dist.

1noa-09 (A9-A17)

0

0.45

IK position : 0

Success prob.

IK position : 1 IK position : 2
0

2.15E-02

Tripeptide dist.

1xnb-09 (A133-A141)

0

0.19

IK position : 0

Success prob.

IK position : 1 IK position : 2
0

8.22E-03

Tripeptide dist.

3pte-09 (A215-A223)

0

0.33

IK position : 0

Success prob.

IK position : 1 IK position : 2
0

7.57E-03

Tripeptide dist.
153l-12 (A98-A109)

0

0.2

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0

1.28E-03

Tripeptide dist.
1dim-12 (A213-A224)

0

0.24

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0

2.42E-04

Tripeptide dist.
1xyz-12 (A813-A824)

0

0.27

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0

1.36E-05

Fig. S17((b)): Euler angles

Tripeptide dist.
1noa-09 (A9-A17)

0
0.41

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
3.24E-02

Tripeptide dist.
1xnb-09 (A133-A141)

0
0.12

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
2.35E-02

Tripeptide dist.
3pte-09 (A215-A223)

0
0.26

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
2.06E-02

Tripeptide dist.
153l-12 (A98-A109)

0
0.15

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
1.76E-03

Tripeptide dist.
1dim-12 (A213-A224)

0
0.19

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
3.98E-04

Tripeptide dist.
1xyz-12 (A813-A824)

0
0.17

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
2.20E-05

Fig. S17((c)): Euler angles and length

17

Tripeptide dist.
1noa-09 (A9-A17)

0
0.25

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
2.51E-02

Tripeptide dist.
1xnb-09 (A133-A141)

0
0.17

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
7.88E-03

Tripeptide dist.
3pte-09 (A215-A223)

0
0.42

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
1.38E-02

Tripeptide dist.
153l-12 (A98-A109)

0
0.2

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
1.60E-03

Tripeptide dist.
1dim-12 (A213-A224)

0
0.3

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
3.03E-04

Tripeptide dist.
1xyz-12 (A813-A824)

0
0.39

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
1.96E-05

Fig. S17((d)): Quaternion

Tripeptide dist.
1noa-09 (A9-A17)

0
0.23

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
6.71E-02

Tripeptide dist.
1xnb-09 (A133-A141)

0
0.12

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
1.21E-02

Tripeptide dist.
3pte-09 (A215-A223)

0
0.35

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
2.20E-02

Tripeptide dist. 153l-12 (A98-A109)
00.12

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 02.53E-03

Tripeptide dist. 1dim-12 (A213-A224)
00.27

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 04.11E-04

Tripeptide dist. 1xyz-12 (A813-A824)
00.23

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 06.06E-05

Fig. S17((e)): Quaternion and length

18

Tripeptide dist.
1noa-09 (A9-A17)

0
0.33

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
2.45E-02

Tripeptide dist.
1xnb-09 (A133-A141)

0
0.19

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
6.52E-03

Tripeptide dist.
3pte-09 (A215-A223)

0
0.43

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
1.38E-02

Tripeptide dist.
153l-12 (A98-A109)

0
0.18

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
3.11E-03

Tripeptide dist.
1dim-12 (A213-A224)

0
0.31

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
4.09E-04

Tripeptide dist.
1xyz-12 (A813-A824)

0
0.44

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 0
2.52E-05

Fig. S17((f)): Axis-angle

Tripeptide dist.
1noa-09 (A9-A17)

0
0.31

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
5.44E-02

Tripeptide dist.
1xnb-09 (A133-A141)

0
0.12

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
6.52E-03

Tripeptide dist.
3pte-09 (A215-A223)

0
0.35

IK position : 0
Success prob.

IK position : 1 IK position : 2 0
1.90E-02

Tripeptide dist. 153l-12 (A98-A109)
00.11

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 03.77E-03

Tripeptide dist. 1dim-12 (A213-A224)
00.27

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 04.02E-04

Tripeptide dist. 1xyz-12 (A813-A824)
00.27

IK position : 0
Success prob.

IK position : 1 IK position : 2 IK position : 3 04.84E-05

Fig. S17((g)): Axis-angle and length

19

