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NONNEGATIVE FORMS WITH SUBLEVEL SETS

OF MINIMAL VOLUME

KHAZHGALI KOZHASOV AND JEAN BERNARD LASSERRE

Abstract. We show that the Euclidean ball has the smallest volume
among sublevel sets of nonnegative forms of bounded Bombieri norm as
well as among sublevel sets of sum of squares forms whose Gram matrix
has bounded Frobenius or nuclear (or, more generally, p-Schatten) norm.
These volume-minimizing properties of the Euclidean ball with respect
to its representation (as a sublevel set of a form of fixed even degree)
complement its numerous intrinsic geometric properties. We also provide
a probabilistic interpretation of the results.

Introduction

It is well-known that the unit Euclidean ball Bn = {x ∈ Rn :
∑n

i=1 x
2
i ≤ 1} has numer-

ous (intrinsic) geometric properties. For example, Bn has the smallest surface area among
all domains in Rn of a given volume or, equivalently, it has the largest volume among
all domains of a given surface area. Hilbert and Cohn-Vossen [HCV52] even describe
eleven geometric properties of the Euclidean sphere ∂Bn = {x ∈ Rn :

∑n
i=1 x

2
i = 1}. In

[Las16] it was shown that Bn exhibits some interesting extremal properties relative to its
representation as a sublevel set of a nonnegative form.
More generally, in [Las16] the author was interested in properties of n-variate forms

f of a given degree whose sublevel set {f ≤ 1} = {x ∈ Rn : f(x) ≤ 1} has fixed
Lebesgue volume. For instance, it was proved that the form x ∈ Rn 7→ f ∗(x) =

∑n
i=1 x

2d
i

minimizes the sparsity-inducing ℓ1-norm of coefficients among all n-variate forms of degree
2d whose sublevel set has the same Lebesgue volume as {f ∗ ≤ 1}, the unit L2d-ball in
Rn. Equivalently, by homogeneity, f ∗ minimizes vol{f ≤ 1}, the Lebesgue volume of the
sublevel set, among all n-variate forms f of even degree 2d with bounded ℓ1-norm.
Similarly, it was proved that the form x ∈ R

n 7→ b2d,n(x) = (
∑n

i=1 x
2
i )

d, whose sublevel
set {b2d,n ≤ 1} = Bn is the unit Euclidean ball, minimizes vol{f ≤ 1} among all n-variate
forms f of degree 2d with bounded Bombieri norm when d = 2, 4, 6 and 8. In addition,
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for some values of d, the form b2d,n also minimizes vol{f ≤ 1} among all n-variate sum of
squares forms f of degree 2d whose Gram matrix has bounded trace.
Hence, the abovementioned results from [Las16] suggest that the Euclidean ball has

volume-minimizing properties with regard to its representation as the sublevel set of a
form of fixed even degree d, when considering nonnegative forms of degree d with bounded
Bombieri norm or sum of squares forms of degree d with Gram matrix of bounded trace.

Contribution. This paper shows that indeed these results for the unit Euclidean ball Bn

are true for all even degrees d and not only for the special cases considered in [Las16]. In
fact we prove a more general result. The unit Euclidean ball Bn minimizes vol{f ≤ 1}:
- over all nonnegative n-variate forms f of fixed (arbitrary) even degree d with bounded

norm, when the norm is invariant under orthogonal changes of variables, which includes
Bombieri norm as important special case;
- over all sum of squares n-variate forms f of fixed (arbitrary) even degree d, whose Gram

matrix has bounded norm, when the norm is invariant under conjugation by orthogonal
matrices. This includes Schatten p-norms and, in particular, nuclear and Frobenius norms.
These new volume-minimizing properties of the Euclidean ball are attached to its rep-

resentation as a sublevel set of a form and complement its intrinsic geometric properties.
Our results admit a probabilistic interpretation. The Gaussian-like probability measure

with density x 7→ exp(−κ |x|d) minimizes an O(n)-invariant norm ‖f‖ over all probability
measures with density x 7→ exp(−f(x)), where f is a nonnegative form of degree d.

1. Main results

In the following we denote by Pd,n the space of n-ary real forms (real homogeneous
polynomials) of degree d. For any form f ∈ Pd,n let {f ≤ 1} = {x ∈ R

n : f(x) ≤ 1} be
its sublevel set at level one and let v(f) denote the Lebesgue volume of {f ≤ 1},

v(f) = vol{f ≤ 1}.(1.1)

If for f ∈ Pd,n the volume v(f) of the sublevel set is finite, then f is necessarily nonnegative,
that is, f(x) ≥ 0 for all x ∈ Rn. In particular, the degree d must be even which we
implicitly assume in the sequel.
The volume function v : Pd,n → R≥0∪{+∞} is lower-semicontinuous and homogeneous

of degree −n/d. Moreover, forms f ∈ Pd,n with finite v(f) constitute a convex subcone
Vd,n of the cone of nonnegative forms in Pd,n

1 and the restriction v|Vd,n
: Vd,n → R≥0 is

strictly convex. We refer to [Las16, Thm. 2.2] for these results.
Let ‖·‖ : Pd,n → R be any norm and consider the following convex optimization problem

P‖·‖ : opt‖·‖ = inf{v(f) : ‖f‖ ≤ 1, f ∈ Pd,n}.(1.2)

Remark 1.1. Note that P‖·‖ is the problem of minimization of the volume of the sublevel
set {f ≤ 1} of a form f ∈ Pd,n over the unit ball in Pd,n defined by the norm ‖ · ‖.

1Note that Vd,n does not contain the origin.
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Consider the following standard action of the group O(n) = {ρ ∈ Rn×n : ρρt = id} of
orthogonal transformations on forms Pd,n:

ρ ∈ O(n), f ∈ Pd,n 7→ ρ∗f ∈ Pd,n, ρ∗f(x) = f(ρ−1x).(1.3)

A norm ‖ · ‖ : Pd,n → R is O(n)-invariant if ‖ρ∗f‖ = ‖f‖ for all ρ ∈ O(n) and f ∈ Pd,n.
In the following theorem we show that P‖·‖ has a unique optimal solution and we find

it explicitly in the case of an O(n)-invariant norm.

Theorem 1.2. Let d be even and ‖ · ‖ : Pd,n → R be a norm. Then

• the convex optimization problem P‖·‖ has a unique optimal solution f ⋆ ∈ Vd,n.
• If the norm ‖ · ‖ is O(n)-invariant, then f ⋆ = bd,n/‖bd,n‖, where
bd,n(x) = |x|d = (x2

1 + · · ·+ x2
n)

d/2, and opt‖·‖ = ‖bd,n‖n/dv(bd,n).
The sublevel set of bd,n is the unit Euclidean ball Bn = {|x| ≤ 1}, it does not depend

on d and its volume equals

v(bd,n) = vol(Bn) =

√
π
n

Γ
(

n
2
+ 1
) .(1.4)

Remark 1.3. Theorem 1.2 implies that the Euclidean ball in Rn of radius ‖bd,n‖1/d has
smallest volume among sublevel sets of forms in the unit ball {f ∈ Pd,n : ‖f‖ ≤ 1} in Pd,n

defined by an O(n)-invariant norm.

Now we compute the optimal value of P‖·‖ for some relevant O(n)-invariant norms, in
view of Theorem 1.2 and (1.4) this task reduces to computing ‖bd,n‖.
1.1. Bombieri norm. Recall first that any f ∈ Pd,n can be written in the basis of rescaled
monomials,

f(x) =
∑

|α|=d

fα

√

(

d

α

)

xα, x ∈ R
n,(1.5)

where
(

d
α

)

= d!
α1!...αn!

is the multinomial coefficient. The Bombieri norm of f is defined as

‖f‖2B =
∑

|α|=d

f 2
α.(1.6)

Under different names this norm appears in real algebraic geometry [Rez92], in perturba-
tion theory of roots of univariate polynomials [TBS17], in the truncated moment problem
[Sch17], in the study of random polynomials [SS93, FLL15], in the theory of symmetric
tensor decompositions [BCMT10] and in many others branches of mathematics. It is
well-known that Bombieri norm is O(n)-invariant (see, e.g., [AKU19, Sec. 2.1]).

Corollary 1.4 (Bombieri norm). For any f ∈ Pd,n with ‖f‖B ≤ 1

v

(

bd,n
‖bd,n‖B

)

=





d/2−1
∏

i=0

2i+ n

2i+ 1





n/2d √
π
n

Γ
(

n
2
+ 1
) ≤ v(f)(1.7)

and equality holds if and only if f = bd,n/‖bd,n‖B.
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The second author of the present paper conjectured in [Las16, p. 249] the result of
Corollary 1.4 and proved it for any n and d = 2, 4, 6 and 8.

1.2. Lp-norms on Sn−1. The following class of norms plays a fundamental role in the
study of boundary value problems for partial differential equations (see, for example,
[Agm59]). Let p ≥ 1 and define Lp-norm on the unit sphere Sn−1 = {x ∈ Rn : |x| = 1} as

‖f‖Lp(Sn−1) =

(∫

Sn−1

|f(x)|p dSn−1

)1/p

, f ∈ Pd,n,(1.8)

where dSn−1 is the Riemannian volume density on Sn−1. The integral in (1.8) is convergent
for any f ∈ Pd,n and the norms ‖ · ‖Lp(Sn−1), p ≥ 1, are obviously O(n)-invariant.

Corollary 1.5 (Lp-norm on Sn−1). For any f ∈ Pd,n with ‖f‖Lp(Sn−1) ≤ 1

v

(

bd,n
‖bd,n‖Lp(Sn−1)

)

=

(

2
√
π
n

Γ
(

n
2

)

)n/dp √
π
n

Γ
(

n
2
+ 1
) ≤ v(f)(1.9)

and equality holds if and only if f = bd,n/‖bd,n‖Lp(Sn−1).

1.3. Uniform norm on Sn−1. As the limiting case of Lp(Sn−1)-norms when p → +∞
one obtains the uniform norm on the unit sphere Sn−1,

‖f‖L∞(Sn−1) = max
x∈Sn−1

|f(x)|.(1.10)

Corollary 1.6 (Uniform norm on Sn−1). For any f ∈ Pd,n with ‖f‖L∞(Sn−1) ≤ 1

v

(

bd,n
‖bd,n‖L∞(Sn−1)

)

=

√
π
n

Γ
(

n
2
+ 1
) ≤ v(f)(1.11)

and equality holds if and only if f = bd,n.

Note that (1.11) can be considered as the limiting case of (1.9) when p → +∞.

1.4. Nuclear norm. Nuclear norm appears in the study of tensor decompositions [FL16]
and in the theory of rank-one approximations of tensors [LNSU18, AKU19]. For f ∈ Pd,n

it is defined as

‖f‖∗ = inf

{

r
∑

k=1

|λk| : f(x) =
r
∑

k=1

λk(y
k · x)d, λk ∈ R, yk ∈ S

n−1

}

,(1.12)

where (y · x) = y1x1 + · · ·+ ynxn denotes the dot product of two vectors in Rn.

Corollary 1.7 (Nuclear norm). For any f ∈ Pd,n with ‖f‖∗ ≤ 1

v

(

bd,n
‖bd,n‖∗

)

=





d/2−1
∏

i=0

2i+ n

2i+ 1





n/d √
π
n

Γ
(

n
2
+ 1
) ≤ v(f)(1.13)

and equality holds if and only if f = bd,n/‖bd,n‖∗.
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A form f ∈ Pd,n of even degree d is called a sum of squares if f = s21 + · · · + s2r for
some forms s1, . . . , sr ∈ Pd/2,n of degree d/2. Any sum of squares form is non-negative.

Fix a total order ≤ on the set

{

√

(

d/2
α

)

xα : |α| = d/2

}

of rescaled monomials of degree

d/2 (e.g., the lexicographic order) and denote by N =
(

d/2+n−1
n−1

)

the dimension of Pd/2,n.
Then, f ∈ Pd,n is a sum of squares if and only if there exists a positive semidefinite real
symmetric matrix G ∈ SN , called Gram matrix, satisfying

f(x) = md/2(x)
tGmd/2(x), x ∈ R

n,(1.14)

where md/2(x) denotes the N -dimensional column-vector of rescaled monomials
√

(

d/2
α

)

xα,

|α| = d/2, ordered with respect to ≤ (see [CLR95, §2] and Lemma 2.2). Note that the
cone of sums of squares in Pd,n is the image of the closed convex cone PSDN ⊂ SN of
positive semidefinite matrices under linear map (1.14).
Fix a norm ‖ · ‖ on the space SN of real symmetric N × N matrices and consider the

following optimization problem:

Psos
‖·‖ : optsos‖·‖ = inf{v(f) : f = md/2(x)

tGmd/2(x), G ∈ PSDN , ‖G‖ ≤ 1}.(1.15)

Remark 1.8. Note that Psos
‖·‖ is the problem of minimization of the volume of the sublevel

set {f ≤ 1} of a sum of squares f = md/2(x)
tGmd/2(x) with Gram matrix G from the

unit ball in SN defined by the norm ‖ · ‖.
A norm ‖ ·‖ : SN → R is said to be O(N)-invariant if ‖RtGR‖ = ‖G‖ for all R ∈ O(N)

and G ∈ SN . We prove that problem Psos
‖·‖ has a unique optimal solution, which, in the

case of an O(N)-invariant norm, is proportional to bd,n.

Theorem 1.9. Let d be even and ‖ · ‖ : SN → R be a norm. Then

• Psos
‖·‖ is a convex optimization problem with a unique optimal solution f ⋆

sos.

• If norm ‖ · ‖ is O(N)-invariant, then f ⋆
sos = bd,n/‖idN‖, where idN ∈ SN is the

identity matrix, and optsos‖·‖ = ‖idN‖n/dv(bd,n).

Remark 1.10. Theorem 1.9 implies that the Euclidean ball in Rn of radius ‖idN‖1/d has
smallest volume among sublevel sets of sums of squares corresponding to Gram matrices
from the unit ball {G ∈ SN : ‖G‖ ≤ 1} in SN defined by an O(N)-invariant norm.

1.5. Schatten p-norms. Given a real symmetric matrix G ∈ SN its Schatten p-norm,
p ≥ 1, is defined by

‖G‖p =
(

N
∑

i=1

|λi(G)|p
)1/p

,(1.16)

where λ1(G), . . . , λN(G) ∈ R are the eigenvalues of G. When p = 1 this norm is also known
as nuclear norm and if p = 2 we recover Frobenius norm which is classically used in the
context of low-rank approximation of matrices [EY36]. Since eigenvalues do not change
under conjugation by orthogonal matrices, all Schatten p-norms are O(N)-invariant.
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We next compute the optimal value of problem Psos
‖·‖ for Schatten p-norms. Again,

as in the above case of general nonnegative forms, by Theorem 1.9 this task reduces to
computing the norm of idN ∈ SN .

Corollary 1.11 (Schatten p-norms). Let p ≥ 1. Then for any sum of squares form
f = md/2(x)

tGmd/2(x) ∈ Pd,n, G ∈ PSDN , with ‖G‖p ≤ 1

v

(

bd,n
‖idN‖p

)

= Nn/dp

√
π
n

Γ
(

n
2
+ 1
) ≤ v(f)(1.17)

and equality holds if and only if f = bd,n/N
1/p.

Remark 1.12. In [Las16] the second author of the present paper considered an analogous
problem to Psos

‖·‖2
, where md/2(x) is replaced by the vector of monomials xα, |α| = d/2,

(without coefficients
√

(

d/2
α

)

), and proved that bd,n is (up to a multiple) a unique optimal

solution when d = 2, 4 and when d ∈ 4N provided that n is large [Las16, Thm. 5.1].

Corollary 1.11 immediately follows from Theorem 1.9, definition of Schatten p-norms
(1.16) and formula (1.4) for the volume of the sublevel set of bd,n.

1.6. Spectral norm. The Spectral norm of G ∈ SN defined by

‖G‖σ = max
i=1,...,N

|λi(G)|(1.18)

can be considered as the limit of Schatten p-norms (1.16) as p → +∞.

Corollary 1.13 (Spectral norm). For any sum of squares f = md/2(x)
tGmd/2(x) ∈ Pd,n,

G ∈ PSDN , with ‖G‖σ ≤ 1

v

(

bd,n
‖idN‖σ

)

=

√
π
n

Γ
(

n
2
+ 1
) ≤ v(f)(1.19)

and equality holds if and only if f = bd,n.

1.7. Probabilistic interpretation of results. If for f ∈ Vd,n the sublevel set {f ≤ 1}
has finite Lebesgue volume, then by [Las15, Thm. 2.2]

(1.20) v(f) =
1

Γ(1 + n/d)

∫

Rn

exp(−f(x)) dx,

see also [MS09]. When
∫

Rn exp(−f(x)) dx = 1 the function x 7→ exp(−f(x)) is the density

of a probability measure µf on Rn. In particular, if f ∗(x) = κ |x|d with

(1.21) κ =

(

Γ(1 + n/d)

Γ(1 + n/2)

)d/n

πd/2,

then µf∗ is a Gaussian-like probability measure in the sense that all of its moments are
easily obtained from those of a Gaussian measure, that is,

∫

Rn

xα exp(−f ∗(x)) dx =
Γ(1 + (n+ |α|)/d)
Γ(1 + (n+ |α|)/2)

∫

Rn

xα exp(−κ2/d |x|2) dx, ∀α ∈ N
n.

(1.22)
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By (1.20) and homogeneity, f is the unique optimal solution of P‖·‖ if and only if
(

opt‖·‖Γ(1 + n/d)
)d/n

f is the unique optimal solution of the convex optimization problem

P∗
‖·‖ : opt∗‖·‖ = inf

{

‖f‖ :

∫

Rn

exp(−f(x)) dx ≤ 1, f ∈ Pd,n

}

.(1.23)

In light of this fact Theorem 1.2 can be equivalently stated as follows.

Theorem 1.14. Let d be even and ‖ · ‖ : Pd,n → R be a norm. Then

• the convex optimization problem P∗
‖·‖ has a unique optimal solution f ⋆ ∈ Vd,n.

• If the norm ‖ · ‖ is O(n)-invariant, then f ⋆ = κ bd,n, where
bd,n(x) = |x|d, κ is as in (1.21), and opt∗‖·‖ = κ ‖bd,n‖.

Remark 1.15. If ‖ · ‖ is O(n)-invariant, then Theorem 1.14 implies that the Gaussian-
like probability density x 7→ exp(−κ |x|d) minimizes ‖f‖ over all probability measures µf

with density x 7→ exp(−f(x)), where f ∈ Pd,n is a nonnegative form of degree d.

2. Preliminaries and auxiliary results

In this section we give necessary definitions and prove some auxiliary results that are
needed in Section 3.
Recall that Pd,n denotes the space of n-ary real forms (or homogeneous polynomials)

of degree d. Recall also that the group O(n) = {ρ ∈ Rn×n : ρρt = id} of orthogonal
transformations acts on Pd,n as follows

ρ ∈ O(n), f ∈ Pd,n 7→ ρ∗f ∈ Pd,n, ρ∗f(x) = f(ρ−1x).(2.1)

For even d the form

bd,n(x) = (x2
1 + · · ·+ x2

n)
d/2 =

∑

|β|=d/2

(

d/2

β

)

x2β1

1 . . . x2βn

n , x ∈ R
n,(2.2)

is obviously invariant with respect to (2.1). The following easy lemma asserts that bd,n is
essentially the only invariant form.

Lemma 2.1. Let f ∈ Pd,n be a non-zero form invariant under O(n)-action (1.3). Then
d is even and f is proportional to bd,n.

Proof. O(n)-invariance of f implies f(x) = c whenever |x| = 1, for some constant c. If
the degree d is odd, we have f(−x) = −f(x) for any x ∈ Rn and hence f = 0. Thus d
must be even and by homogeneity of f

f(x) = f

(

|x| x|x|

)

= c|x|d = c bd,n(x) for any x 6= 0.(2.3)

�

For two real forms f, g ∈ Pd,n define their Bombieri product as

〈f, g〉B =
∑

|α|=d

fα gα,(2.4)
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where {fα}|α|=d and {gα}|α|=d are the coefficients of f and g in the basis of rescaled
monomials (1.5). Equivalently, denoting by f(∂) the differential opearator obtained from
f by replacing variable xi, i = 1, . . . , n, with partial derivative ∂/∂xi, one can show that

〈f, g〉B =
1

d!
f(∂)g(x).(2.5)

From this, taking Bombieri product with a power of a linear form x 7→ f(x) = (y · x)d,
y ∈ R

n, amounts to evaluation at y, that is,

〈f, g〉B = g(y).(2.6)

Recall that a form f ∈ Pd,n of even degree d is called a sum of squares if f = s21+· · ·+s2r
for some s1, . . . , sr ∈ Pd/2,n. The following characterization of sums of squares is well-
known; we state it here as our version concerns rescaled monomials, cf. [CLR95, §2].
Lemma 2.2. A form f ∈ Pd,n is a sum of squares if and only if there exists a positive
semidefinite real symmetric matrix G ∈ PSDN such that

f(x) = md/2(x)
tGmd/2(x), x ∈ R

n,(2.7)

where N = dimPd/2,n =
(

d/2+n−1
n−1

)

and md/2(x) is the column-vector of rescaled monomials
√

(

d/2
α

)

xα, |α| = d/2, ordered with respect to a fixed order ≤.

Proof. If f = s21 + · · ·+ s2r, then f = md/2(x)
tGmd/2(x), where G =

∑r
i=1 ~si~s

t
i ∈ PSDN

and ~si denotes the column-vector of coefficients of form si, i = 1, . . . , r, in the basis
of rescaled monomials ordered with respect to ≤. Conversely, if (2.7) holds for some
positive semidefinite matrix G = G1/2G1/2 ∈ PSDN , then f = s21 + · · · + s2N , where
s1, . . . , sN ∈ Pd/2,n are the entries of the N -dimensional vector of forms G1/2md/2(x). �

3. Proof of main results

In this section we prove our main results, Theorem 1.2 and Theorem 1.9.

Proof of Theorem 1.2. The proof of the fact that P‖·‖ has a unique optimal solution is
analogous to the one of [Las16, Thm. 3.2]; we give it here for the sake of completeness.
Let {fk}k∈N be a minimizing sequence of the optimization problem P‖·‖, i.e., ‖fk‖ ≤ 1,

k ∈ N, and limk→+∞ v(fk) = opt‖·‖. By compactness of the unit ball of norm ‖ · ‖ there is
a subsequence {fkm}m∈N and f ⋆ ∈ Pd,n such that limm→+∞ ‖fkm − f ⋆‖ = 0 and ‖f ⋆‖ ≤ 1,
meaning that f ⋆ is feasible. By [Las16, Lemma 2.3], the function v : Pd,n → R≥0 ∪{+∞}
is lower-semicontinuous. This implies

opt‖·‖ = lim inf
m→+∞

v(fkm) ≥ v(f ⋆),(3.1)

that is, f ⋆ is an optimal solution of P‖·‖.
Now, by [Las16, Thm. 2.2], the function v is strictly convex. Thus, if P‖·‖ had two

different optimal solutions f ⋆
1 and f ⋆

2 , then for α ∈ (0, 1) we would have

(3.2)
‖αf ⋆

1 + (1− α)f ⋆
2‖ ≤ α‖f ⋆

1‖+ (1− α)‖f ⋆
2‖ ≤ 1,

v(αf ⋆
1 + (1− α)f ⋆

2 ) < αv(f ⋆
1 ) + (1− α)v(f ⋆

2 ) = opt‖·‖,
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a contradiction. Thus an optimal solution of P‖·‖ is unique. Moreover, homogeneity of
‖ · ‖ and v implies that the unique optimal solution f ⋆ of P‖·‖ must satisfy ‖f ⋆‖ = 1.
Let us now consider the case of an O(n)-invariant norm. Observe first that the volume

function v is O(n)-invariant, that is, v(ρ∗f) = v(f) for any f ∈ Pd,n and ρ ∈ O(n). Indeed,
this follows directly from the definition of v(f) and invariance of Lebesgue measure on
Rn. We claim that the optimal solution f ⋆ of P‖·‖ is O(n)-invariant. If not there exists
ρ ∈ O(n) such that ρ∗f ⋆ 6= f ⋆. Then in view of O(n)-invariance of v and ‖ · ‖, f ⋆ and ρ∗f ⋆

are two different optimal solutions of P‖·‖, which is impossible by the above. Lemma 2.1
implies that f ⋆ is proportional to bd,n and since ‖f ⋆‖ = 1 we must have f ⋆ = bd,n/‖bd,n‖.
As v is homogeneous of degree −n/d, we obtain opt‖·‖ = v(bd,n/‖bd,n‖) = ‖bd,n‖n/dv(bd,n).

�

If ‖ · ‖ is a particular norm then by Theorem 1.2, computing the optimal value of P‖·‖

reduces to computing ‖bd,n‖. We next evaluate ‖bd,n‖ for Bombieri norm, Lp(Sn−1)-norm,
uniform norm on S

n−1, nuclear norm, and thus prove Corollaries 1.4, 1.5, 1.6 and 1.7.

Proof of Corollary 1.4. By [Rez92, (8.19)] we have

‖bd,n‖B =

√

√

√

√

d/2−1
∏

i=0

2i+ n

2i+ 1
.(3.3)

Combining this formula with (1.4) yields (1.7). �

Proof of Corollary 1.5. One has

‖bd,n‖Lp(Sn−1) =

(
∫

Sn−1

|bd,n(x)|p dSn−1(x)

)1/p

= vol(Sn−1)1/p =

(

2
√
π
n

Γ
(

n
2

)

)1/p

,(3.4)

which together with Theorem 1.2 and (1.4) yields (1.9). �

Corollary 1.6 follows from Theorem 1.2, (1.4) and ‖bd,n‖L∞(Sn−1) = maxx∈Sn−1 |x|d = 1.

Proof of Corollary 1.7. From a result of Hilbert [Hil09] it follows that there exist r ∈ N,
λ1, . . . , λr > 0 and y1, . . . , yr ∈ Sn−1 such that

bd,n(x) =
r
∑

k=1

λk(y
k · x)d(3.5)

and thus, invoking [Nie17, Example 1.1], we have

‖bd,n‖∗ =
r
∑

k=1

λk.(3.6)

On the other hand, by (2.6) and (3.5),

‖bd,n‖∗ =
r
∑

k=1

λk =

r
∑

k=1

λk〈(yk · •)d, bd,n〉B = 〈bd,n, bd,n〉B = ‖bd,n‖2B,(3.7)

and (1.7) follows from (3.3) and (1.4). �
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We now prove Theorem 1.9.

Proof of Theorem 1.9. Let us observe first that convexity of the feasible set

{f ∈ Pd,n : f = md/2(x)
tGmd/2(x), G ∈ PSDN , ‖G‖ ≤ 1}(3.8)

of optimization problem Psos
‖·‖ follows directly from convexity of the cone PSDN of positive

semidefinite matrices and convexity of norm ‖ · ‖. This fact combined with convexity of
the function v (see [Las16, Thm. 2.2]) implies that Psos

‖·‖ is a convex optimization problem.

Let {fk = md/2(x)
tGk md/2(x)}k∈N be a minimizing sequence of Psos

‖·‖, i.e., Gk ∈ PSDN ,

‖Gk‖ ≤ 1, k ∈ N, and limk→+∞ v(fk) = optsos‖·‖. Since {G ∈ PSDN : ‖G‖ ≤ 1} is

compact, there is a subsequence {Gkm}m∈N and a matrix G⋆ ∈ PSDN , ‖G⋆‖ ≤ 1,
such that limm→+∞ ‖Gkm − G⋆‖ = 0. In particular, the sum of squares form f ⋆ =
md/2(x)

tG⋆md/2(x) ∈ Pd,n is feasible for Psos
‖·‖ and coefficients of fkm converge to co-

efficients of f ⋆, as m → +∞. Next, since the function v : Pd,n → R≥0 ∪ {+∞} is
lower-semicontinuous [Las16, Lemma 2.3] we have

optsos‖·‖ = lim inf
m→+∞

v(fkm) ≥ v(f ⋆),(3.9)

that is, f ⋆ is an optimal solution of Psos
‖·‖. Exactly in the same way as in the proof of

Theorem 1.2, strict convexity of v implies that f ⋆ is a unique optimal solution of Psos
‖·‖.

Also, from homogeneity of v and ‖ · ‖ we obtain ‖G⋆‖ = 1.
Let now ‖ · ‖ : SN → R be an O(N)-invariant norm. If f = md/2(x)

tGmd/2(x) is
feasible for Psos

‖·‖, i.e., G ∈ PSDN and ‖G‖ ≤ 1, then so is ρ∗f for any ρ ∈ O(n). Indeed,

since Bombieri product (2.4) is invariant under O(n)-action (1.3) and since the rescaled

monomials
√

(

d/2
α

)

xα, |α| = d/2, form an orthonormal basis of Pd/2,n with respect to

Bombieri product, for any ρ ∈ O(n) there exists R = R(ρ) ∈ O(N) such that

ρ∗f = md/2(x)
tRtGRmd/2(x).(3.10)

Hence, by O(N)-invariance of PSDN and ‖ · ‖, we have RtGR ∈ PSDN and ‖RtGR‖ =
‖G‖ ≤ 1 or, in other words, ρ∗f is feasible for Psos

‖·‖. Therefore the unique optimal solution

f ⋆ of Psos
‖·‖ must be O(n)-invariant, that is, ρ∗f ⋆ = f ⋆ for all ρ ∈ O(n).

Next, by Lemma 2.1, f ⋆ is proportional to bd,n. From (2.2) we have that bd,n =
md/2(x)

tmd/2(x), namely the identity matrix idN ∈ PSDN is a Gram matrix of bd,n.
Therefore f ⋆ = bd,n/‖idN‖ as its Gram matrix satisfies ‖idN/‖idN‖‖ = 1. Also, optsos‖·‖ =

v(bd,n/‖idN‖) = ‖idN‖n/dv(bd,n) by homogeneity of the volume function v. �

4. Conclusion

We have provided new volume-minimizing properties of the Euclidean unit ball. In
contrast to its intrinsic geometric properties, they are attached to its representation as
the sublevel set of a form of fixed even degree. The minimum is over all nonnegative forms
of same degree with bounded norm or over sum of squares forms of same degree whose
Gram matrix has bounded norm, for certain families of norms.
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