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Abstract: Self-collimation (SC) and mesoscopic self-collimation (MSC) have been successfully
demonstrated along the directions of high symmetry of photonic crystals. Indeed, wide angular
acceptances are obtained only in these directions which offer extremely flat isofrequencies. In
this article, we numerically demonstrate that mesoscopic self-collimation with large angular
acceptance can be achieved along arbitrary directions that are not of high symmetry. In particular,
we propose a simple method that allows to easily find all the non-trivial collimation directions
and corresponding frequencies. Thanks to the double periodicity of the mesoscopic crystal, these
solutions can be effectively tailored in terms of direction and frequency. Moreover, non-trivial
MSC solutions can be found well below the light cone. These MSC features open up the
possibility of designing complex systems by combining different configurations, such as high
reflection (HR) or anti reflection (AR) ones, or active materials.

1. Introduction

Self-collimation (SC) allows self-guiding propagation in photonic crystals (PhCs) without any
typical guiding mechanism, such as index or band gap guiding. As explained for the first
time in 1999 by Kosaka et al. [1], this phenomenon arises when, for a certain frequency, the
corresponding isofrequency curve (IFC) of the PhC band diagram shows a flat region. In this
region, for a whole range of wavevectors, the corresponding group velocity vectors are all parallel
to each others as they stay perpendicular to the flat IFC. These wavevectors can thus form a beam
that propagates inside the PhC without any lateral spreading. The angular spectrum of this beam
is directly determined by the extent of the flat region of the IFC: a wider flat zone leads to a wider
angular spectrum and thus to a smaller beam. In traditional PhCs, these flat regions usually occur
at inflexion points of the IFC [1] and are trivially angularly narrow and only allow the propagation
of broad beams. However, self-collimation can also occur along directions of high symmetry of
the PhC where angularly wider flat regions can be achieved [2] and smaller beams can propagate
under self-collimation. All of the proposed [3–11] or demonstrated [2,12–18] devices rely on
self-collimation along a direction of high symmetry of the supporting PhC. Moreover, broad-band
and broad-angle operation have been achieved in bi–dimensional PhCs [19–22].

By combining alternating slabs of PhC and bulk materials, one can form a mesoscopic photonic
crystal (MPhC) [23]. A MPhC can be seen as a 1D supercrystal constituted by slabs of a 2D
PhC and bulk material. This kind of structures support mesoscopic self-collimation (MSC),
introduced in [23], which consists in a succession of small defocusing, in the bulk slabs, and
refocusing, in the PhC slabs, that compensate each other, resulting in a perfectly collimated beam.
This occurs when the PhC used in the slabs is designed to work in its focusing regime, beyond the
SC, showing an abnormal lateral dispersion. As previously demonstrated along the ΓX-direction



of the supercrystal lattice, MSC only requires that the total spreading over one mesoscopic period
averages to zero. Therefore, since it depends neither on the overall mesoscopic periodicity nor on
the phase index in the PhC, one can easily design a mesoscopic structure that also exhibits many
interesting optical properties as tailored overall reflectivity, slow-light and stable full optical
confinement by 1D Fabry-Pérot-like microcavities [23–28].

However, so far MSC has been restricted to the directions of high symmetry for the MPhC, i.e.
the direction normal to the slabs interfaces that form the 1D mesostructure.
In this contribution, we introduce a simple and generic method to find all the non-trivial

self-collimation solutions in a mesoscopic photonic crystal. These solutions exhibit large flat
IFCs that can be determined using a simple analysis based on plane wave expansion method
(PWEM). Based on this method, we demonstrate that MSC can be achieved along arbitrary
directions, and not necessarily along direction of high symmetry. We also demonstrate that, for
certain conditions, MSC can be achieved below the light cone, paving the way towards low-loss
MSC propagation.

2. Structure and methods

As depicted in Fig. 1, we will consider a MPhC consisting of a periodic arrangement of slabs of
bulk material (length db , refractive index nb = 2.9, i.e. effective index of a GaAs membranes at
1.55 µm wavelength [28]) interleaved with slabs of a 45◦-tilted square-lattice PhC (length dc ,
lattice constant a, radius of the air holes r = 0.28 a, etched into the same material that constitutes
the bulk slabs). The x-direction is assumed normal to the interfaces of the slabs. The length of
each row of holes is a/

√
2 and, accordingly, we have dc = aNrow/

√
2, where Nrow is the number

of rows constituting the PhC slab. The overall periodicity is D = dc + db . Inside the PhC slabs,
the x-direction corresponds to the ΓMc direction (see Fig. 2(a)).

Bulk PhC

dc

a

a/√2

D

x
y

db

Fig. 1. Sketch of a mesoscopic photonic crystal. The dot-dashed rectangle represents the
elementary cell.

In this manuscript the length is taken in unit of a and reciprocal lattice vector in the k-space is
assumed to be in normalised unit of 2π/a. Along the x-direction, the periodicity of the MPhC
arises from two contributions: the rotated PhC, with a 2D periodicity, and the bulk medium,
aperiodic. Along y-direction, its periodicity is fixed only by the rotated PhC and, therefore, is
a
√

2 periodic.
Consistently, the axis of the first Brillouin zone (FBZ) of the MPhC extends as follows: the

kx-axis from −a/2D to a/2D, whilst the ky-axis from −
√

2/4 to
√

2/4. It is worth pointing out
that, in the kx-direction, the length of the ΓX1 segment of the MPhC is

√
2D/a times smaller

than the ΓMc segment of the PhC. Furthermore, since the proportion between the FBZs of the
two structures is fixed by Nrow , db and a, in order to have an integer number of bands Nbands to
cover the entire ΓMc segment, the db has to be chosen according to the following equation:

db = a (Nbands − Nrow) /
√

2 (1)



In order to illustrate our approach, we consider a first structure with Nrow = 3 and db = a/
√

2.
For such a structure we have exactly ΓX1 =

1
4 × ΓMc , as seen in Fig. 2(a) that depicts the FBZ

of the MPhC superposed to that of the PhC (tilted by 45◦). This means that exactly 4 bands of
the MPhC are necessary to cover the same k-range than the first band of the PhC. We thus call
this structure F4 as in “4 Foldings”. These 4 foldings can be seen comparing Fig. 2(b), which
presents the first band for the PhC, and Fig. 2(c), which presents the first 4 bands of the MPhC,
properly unfolded.
The band structure involved in this analysis was calculated using a well established PWEM

algorithm [29]. The 2D unit cell shown in Fig. 1, surrounded by periodic boundary conditions,
has been discretised with a resolution of 32 points per a. The band structure is obtained by
calculating the reduced eigenfrequencies f

(
kx, ky

)
, in unit of a/λ, across the whole FBZ for the

four first bands, using a resolution for the ®k-plane of 128 point per 2π/a. The resolution was
chosen in the simulations after a convergence analysis and it gives a good compromise between
computation time and result stability.
The IFCs-diagram is then retrieved by projecting each band on the ®k-plane. However, as the

unit cell of the MPhC is four times larger than the plain PhC one, its FBZ is four times smaller,
leading to 4 foldings. To ease the understanding of the tangled birefringence of the MPhC, an
unfolded representation of its IFCs-diagram is provided (Fig. 2(b)). To further provide a direct
comparison with the IFCs-diagram of the 45-degree-tilted plain PhC, a portion of the same size
of the corresponding MPhC FBZ has been depicted in Fig. 2(c). Comparing Figs 2(b) and 2(c),
one can see that the overall structure of the IFCs of the PhC are still present in the IFCs of the
MPhC. The meso-periodicity mainly introduces new IFCs distortions, most notably around each
of the 4 foldings. These distortions will provide new locations for non-trivial MSC solutions, as
will be discussed later on.
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Fig. 2. (a) Sketch of the PhC and MPhC FBZ boundaries. The irreducible Brillouin zones
are highlighted in gray (PhC) and in pink (MPhC). (b) "unfolded" IFCs-diagram of the first
4 bands for structure F4 (Nrow =3, db =a/

√
2). (c) IFCs-diagram of the 45-degree-tilted

plain PhC, within a portion of the same size of the corresponding MPhC FBZ.

As it has been shown in [23], the mesoscopic self-collimation, along the high symmetry
ΓX1-direction, requires a null curvature locus on a given IFC. The curvature κ of a certain IFC,
at a give point

(
kx, ky

)
, can be estimated from the unfolded band structure, according to [30], as



follows:

κ = ∇

(
∇ f
|∇ f |

)
=

fxx f 2
y + fyy f 2

x − 2 fxy fx fy√
( f 2

x + f 2
y )

3
, (2)

where the x and y subscripts indicate partial derivatives with respect to kx and ky and where
∇ f = ®vg =

(
fx, fy

)
, ∇ fx =

(
fxx, fxy

)
, ∇ fy =

(
fyx, fyy

)
; ®vg is the group velocity. However, only

asking for a null curvature does not suffice to ensure wide MSC in directions that are not of high
symmetry. Indeed, every inflexion point, where the flatness of the IFC is trivially narrow, will
show a null curvature. In order to find wide MSC zones we have to ask for IFC to be maximally
flat in the range of interest.
To determine the conditions ensuring maximally flat IFC, let us consider a Gaussian beam

SI (u, v) at a frequency f0, that propagates energy along an arbitrary direction u, being v the
local transverse direction. By definition of the IFC, the local coordinate system is such that u
is normal to the IFC while v is tangential to the IFC. In the [ku, kv]-space it can be described
as S̃I (ku, kv) = Fu,v [SI (u, v)], where Fu,v represents the 2D-Fourier transform operator. In the
[ku, kv]-plane, the f0-IFC, given by the dispersion relation, can be locally expanded as a Taylor
series:

ku(kv, f = f0) ≈
∑
n

ankn
v (3)

where an = 1
n!

∂nku
∂kn

v

���
ku=0,kv=0

and a0 = 0. Thus, the generic propagator in the u-direction, for an
arbitrary medium, can be expressed as it follows:

Φ(ku, kv, u) = e j(kuu) = e ju
∑

n ank
n
v . (4)

The source, after being propagated for a distance Lu , can be written as it follows:

S̃O(®k) = Φ(ku, kv, Lu)S̃I (®k) (5)

Therefore, in order to have a maximally flat IFC and to obtain a collimated beam, all the
coefficients an have to be zero when the u-direction corresponds to the propagation direction.
This is a stricter set of constraints than what is usually asked for when searching for SC or MSC
solutions [23, 31]. Hereinafter, we will only consider the first three coefficients a1, a2, a3 to
retrieve the position P0 in the k−space of the maximally flat MSC ranges. These can be written
as:

a1 =
∂ku
∂kv

����
P0

, a2 =
1
2
∂2ku
∂k2

v

����
P0

, a3 =
1
6
∂3ku
∂k3

v

����
P0

, (6)

To calculate numerically these coefficients, we rely on the very definition of the IFC under study
as f (ku, kv) = f0, it implies that its total differential is null : df = fudku + fvdkv = 0. This
allows to express a1, a2 and a3 as a function of the partial derivatives of the band (e.g. we can
write a1 = − fv/ fu and so on).

a1 = −
fv
fu

(7)

a2 = −
fuu f 2

v − 2 fu fv fuv + f 2
u fvv

f 3
u

(8)

a3 =
1
f 5
u

{
− 3 f 2

uu f 3
y + fu f 2

v

[
9 fuu fuv + fuuu fv

]
− 3 f 2

u fv
(
2 f 2

uv + fuuv fv + fuu fvv
)

+ 3 f 3
u ( fuvv fv + fuv fvv) + f 4

u fvvv
}
.

(9)



where the u and the v subscripts indicate partial derivatives with respect to ku and kv . However,
these coefficients are still expressed in the local coordinates (u, v). In order to express them in
the (x, y) coordinates and to calculate them numerically, we have to perform a rotation of the
reference axis by θ = arctan(vg,y/vg,x), where vg,x and vg,x are the components of the group
velocity. As the group velocity is always normal to the IFC, after performing this rotation we
find that the condition a1 = 0 is always satisfied. Therefore, in order to find the position of the
maximally flat MSC ranges we only need to look for a2 = a3 = 0. Graphically, requiring the IFC
to be maximally flat in P0 implies that the IFC and the curve κ(kx, ky) = 0 must have the same
tangent at this point: this provides a geometrical insight for the MSC condition. Moreover, this
also provides an alternative way to search for it. Since the tangent angle of a given IFC and of the
curve κ(kx, ky) = 0 can be written as φIFC = arctan(− fx/ fy) and φκ=0 = arctan(−κx/κy)

��
κ=0,

respectively, we can also ask for |φκ=0 − φIFC | to be zero along the zero-κ locus.
Finally, it is worth observing that the a2 can be related to the curvature κ (which is invariant

with respect to axis rotations) as it follows:

a2 = κ

��®v��3
fu3 .

(10)

In order to validate this method we apply it to the F4 structure introduced previously (Nrow = 3
and db = a/

√
2, having Nbands = 4). We find the MSC points by numerically computing the

respective unfolded band structure and by looking for the crossing points of the zero a2 and a3 loci.
Then, some of these working points are simulated using 2D-FDTD [32] with a computational
cell surrounded by scalar absorber boundary condition (electric and magnetic conductivity losses
that slowly increase within the absorbing layer). The simulation region is excited by a continuous
wave (CW) source. Two different profiles are used: either an omnidirectional point source or a
tilted Gaussian spatial profile, with a full width at half maximum of the intensity ∆x = 10 × a.
Moreover, by computing the Fourier transform of the z-component of the magnetic field (hz), it is
possible to directly observe the IFCs responsible for the propagation of the self-collimated beam.

3. Results

Figure 3(a) shows the loci satisfying the conditions a2 = 0 (black lines) and a3 = 0 (gray lines),
superimposed on the IFC of the F4 configuration. As it can be seen, several points satisfy the
MSC conditions and provide non-trivial flat zones. The length of these flat zones strongly
depends on the particular position of the MSC point. Wider flat zones will allow self-collimation
of narrower beams. It is worth observing that, owing to the higher order derivatives involved, the
numerical computation of the a3 = 0 curve is noisier than the a2 = 0 one. Numerical noise is the
reason why, in practice, it is not meaningful to try canceling higher order terms of the expansion
given in equation (3).

In particular, the thick segments in Fig. 3(b) highlight the flat zone for each of them. Moreover,
the same figure displays both the phase (black thin arrows) and the group velocity (grey thick
arrows) vectors for three specific solutions labelled P1, P2 and P3. It is worth recalling that the
group velocity vector determines the direction of propagation of the self-collimated beam.

Figures 4(a)-4(c) show the logarithm of the self-normalised magnitude of the Poynting vector
distribution when a point source excites the MPhC F4 at f = 0.1367[a/λ] (Fig. 4(a)), at
f = 0.1609[a/λ] (Fig. 4(b)) and at f = 0.2043[a/λ] (Fig.4(c)) that correspond to the reduced
frequency of the IFCs onto which the points P1, P2 and P3 (see Fig. 3(b)) are located. Figs. 4(d)-
4(f) show the corresponding FDTD calculated IFCs in the FBZ, obtained by the spatial Fourier
transform of the propagated magnetic fields. As it can be inspected by comparing Fig. 4(d)-4(f)
and Fig. 3(b), the shape of the FDTD calculated IFCs is in complete agreement with that obtained
by means of PWEM calculations. To ease the figure reading, the beam formation has been
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Fig. 3. (a) zero a2 (black curves) and zero a3 (gray thin curves) loci for the F4 MPhC.
Black circles highlight the crossing points where non-trivial MSC is ensured. (b) IFCs
corresponding to the solutions found.

highlighted by superposing the same set of arrows both on the power density distributions and on
the corresponding flat IFC regions of the FBZ. It is worth noticing that in Figs.4(d)-4(f) mirrored
replicas of IFCs appear near the band boundaries due to innermost reflections occurring inside
the MPhC.
As can be noticed in Figs. 4(a) and 4(d), when a CW point source at f = 0.1367[a/λ] is

considered (point P1), most of the energy relies on the flat zone of the corresponding IFC,
forming two symmetrical beams with a tilt of about ± 70◦ with respect to the x-axis. These
beams propagate without any visible spreading.
Similar considerations can be made for Figs. 4(b) and 4(e), where a point source, having

a reduced frequency of f = 0.1609[a/λ], forms a set of beams that is coherent with the
corresponding IFCs (point P2). In particular, two well-formed beams can be observed at 90◦ and
at ± 37.2 ◦.

Finally, Figs. 4(c) and 4(f) show the formation of beams at about ± 8 ◦ when f = 0.2035[a/λ].
The omnidirectional point source is capable of exciting all the self-collimated beams at once

as shown in Fig. 4. However, we can excite a specific non-trivial solution independently by
imposing a directive source. This can be numerically achieved by a Gaussian beam, provided
that the phase components of the excitation lay on a IFC flat region. A case of study that gives an
example of this property is a MPhC forming a flat vertical interface (parallel to the y-axis) with
the hemispace (x > 0) filled by the background bulk material. We performed the simulation of
this structure excited by a tilted source having a Gaussian spatial distribution (∆ = 10× a) placed
near the lower left corner of the computational cell. The source axis (the direction normal to
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its waist corresponding to the Gaussian beam axial direction) forms an angle Θs with respect
to the x-axis. Figure 5 shows the Poynting vector magnitude calculated by FDTD for the F4
MPhC configuration forming a flat interface with the bulk medium. The structure is excited by a
Gaussian beam with f = 0.1368[a/λ] and Θs = 70◦, corresponding to the point P1 in Fig. 3 (b).
It is worth pointing out that the solution P1 is below the light cone and, therefore, the excited



−100 −50 0 50 100
−50

0

50

x [a]

y 
[a

]
0

0.5

1

1.5

2

AR1

Collimated 
beam

bulk bulk

13.2°

(a)

(d)

−3

−2

−1

0

0

0.1

0.2

0.3

k y
 [2

π/
a]

0 0.2 0.4 0.6
kx [2π/a]

(b)

kMPhC

vg,MPhC

kbulk k//

vg,bulk

MPhC IFC
bulk IFC

Fig. 6. (a) Poynting vector distributions [arb. u.]. The central region (within the superimposed
white vertical lines) is filled by the AR1 MPhC as defined in [24]. (b) Logarithm of the
self-normalised absolute value of the spatially Fourier transformed z-component of the
magnetic field. The superimposed dashed black curve represents the AR1 MPhC IFC
calculated by means of PWEM, whereas the dot-dashed thin black curve represents the
corresponding bulk isofrequency circle. The blue and the violet arrows represent the
wavevectors of the MPhC and of the bulk, respectively, whereas the pale and the dark the
green arrows represent the MPhC and the bulk group velocity vectors, respectively. In (a)
the same group velocity vectors are superposed to the beam in each corresponding region.

beam propagates with no intrinsic out-of-plane scattering losses. By inspecting Fig. 5, we can
see that, once the beam has reached the flat interface, it is reflected and refracted according
to the generalised Snell Law [33]. According to the power conservation law, the reflected and
refracted beams exhibit different beam widths and their intensities depend on the incidence angle
on the interface. Moreover, the reflected beam remains collimated, as it still propagates inside the
MPhC, whereas the refracted beam spreads as expected for the propagation in the bulk medium.
In order to better show the versatility of the proposed design method, we consider another

MPhC configuration, already studied by the authors [24]. This configuration, named AR1, was
designed to offer low reflectivity at the interfaces between the bulk material and the MPhC for a
beam propagating along the direction of high symmetry. Using our method, we found alternative
solutions along arbitrary directions. In particular, here we analyze the excitation of a tilted
self-collimated beam in a MPhC layer delimited by two semi-infinite layers of bulk medium (the
interfaces are at x < −90a and x > 100a). The aim of this example is to show that we can excite
a self-collimated beam at a well defined SC direction, from outside the MPhC, by a Gaussian
source placed in the bulk medium.
Figure 6(a) shows the calculated Poynting vector distribution for the AR1 MPhC when it is

excited by a Gaussian beam in the bulk medium with f = 0.1868[a/λ] and incidence angle in the
bulk Θs = 18.7◦. Considering the refraction phenomenon at the bulk-MPhC interface, the input
beam is capable of exciting a self-collimated beam in the MPhC propagating at angle Θs = 13.2◦.
In conclusion, in order to excite the SC beam at a given angle (i.e. Θs = 13.2◦) from the bulk



medium, the source incidence angle must be properly chosen to satisfy the conservation of the
wavevector component parallel to the interface. To identify the required incidence angle, we can
inspect Fig. 6(b) that shows the logarithm of the self-normalised absolute value of the spatially
Fourier transformed z-component of the magnetic field. The superimposed dashed black curve
represents the IFC pertaining to the AR1 MPhC calculated by means of PWEM, whereas the
dot-dashed thin black curve are the corresponding bulk isofrequency circle. The blue and the
violet arrows denote the wavevectors of the MPhC and of the bulk, respectively, whereas the pale
and the dark green arrows are the MPhC and the bulk group velocity vectors, respectively. The
wavevector component k// parallel to the interface is highlited by the red arrow. The conservation
of the wavevector parallel component occurs when the beam impinges on the interface with an
angle Θin = 18.7◦. This is in very good agreement with the full-wave FDTD results of Fig. 6(a).
Similar considerations can be made for the output interface at x = 100a.

4. Conclusion

In this paper, we have introduced a simple numerical method for determining all non-trivial
solutions (with wide angular acceptance) of mesoscopic self-collimation. Using this method we
have numerically demonstrated MSC along non-trivial directions, while MSC was so far limited
to highly symmetrical directions for the structure. Albeit not shown in this contribution, this
method is not restricted to MSC and works equally well for normal self-collimation. It is worth
pointing out that by changing the composition of MPhC, it is actually possible to adapt the sets of
angles and frequencies in which MSC can be achieved. In addition, we have found MSC solutions
even below the light cone, while MSC had so far been proposed and observed only above the
light cone, resulting in large propagation losses. This paves the way for low-loss propagation of
MSC. Finally, MSC solutions can be combined with other optical properties, such as minimal
reflectivity at the PhC interfaces for efficient coupling with the surrounding environment.
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