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Abstract—In 4G networks, the emergence of machine commu-
nications such as connected vehicles increases the high demand
of uplink transmissions, thus, degrading the quality of service
per user equipment. Enforcing quality-of-service in such cellular
network is challenging, as radio phenomenon, as well as user
(and their devices) mobility and dynamics, are uncontrolled. To
solve this issue, estimating what the quality of transmissions will
be in a short future for a connected user is essential. For that
purpose, we argue that radio metrics are key features whose
evolutions can help predicting the bandwidth that the considered
connections can take advantage of in the following hundreds of
milliseconds. The paper then describes how a 4G testbed has
been deployed in order to study the correlation between radio
noise and throughput in uplink transmissions. Based on radio
measurements, the main supervised machine learning algorithms
are used, such as Random Forest and Support Vector Machine
to predict the uplink received bandwidth. For a specific user
service, we are able to predict the end-to-end received bandwidth,
i.e. the amount of received data on the server side during a
specific period at a very low scale of 100 ms. Results also prove
that uplink bandwidth predictions are less accurate compared to
bandwidth prediction for downlink based on radio measurements.

Index Terms—QoS monitoring, cellular networks, bandwidth
prediction, machine learning, software defined radio.

I. INTRODUCTION

In the scope of smart cities, where everything is connected
at anytime and anywhere, the Intelligent Transport System -
ITS - emphasizes many services relying on car communication
system. In such system, the vehicle is connected to pedestrians,
other vehicles and the ITS servers via wireless networks. Many
car companies have been engaged in a research effort to tackle
the upcoming ITS issues. For instance, Continental Digital
Service France (CDSF) and LAAS-CNRS have launched a
collaboration in the framework of the eHorizon project (2017-
2021) to cope with ITS systems [6]. As cellular networks
are well known for their high throughput and low latency,
especially the 4G standard, recent researches endorse the use
of LTE-A for the middle term services of connected cars. In
such communication, most applications send data (i.e. data
uploading) to remote internet servers through LTE-A interface.
Thus, contrary to the Human-to-Human applications where
downlink (DL) transmission dominates, cars services use
mostly uplink (UL) communication. For instance, automotive
data analytics [13] forecast a production of up to 30 terabytes
of data per day by an average car. Therefore, the conventional
roles are inverted: when all the vehicles are sending their
information, a large amount of data must be received by the

ITS server with a high quality of service (QoS). Eventhough,
4G is expected to satisfy the high demand of high throughput,
several researches show that LTE suffers from congestion [15],
[21], especially in UL with the growth of machine traffic. This
implies a QoS degradation, and sometimes, the inaccessibility
to the network, that limits the envisaged applications and
services.

Over years, researchers were focused on enhancing down-
link (DL) transmission as only DL was challenging. They
improved DL schedulers and congestion control mechanisms
while taking predicted throughput as an input parameter [1],
[2]. For that, DL LTE throughput prediction has been the
ultimate goal of research, as it improves many use cases,
such as video streaming quality. Although schedulers and
congestion control mechanisms are different in UL and DL,
we forecast an improvement of UL LTE-A in a similar way as
DL, by incorporating UL predicted throughput. Machine ap-
plication servers may avoid saturation based on the forecasted
bandwidth, hence reducing UL QoS degradation. Thereby, UL
bandwidth prediction is valuable in the machine-to-machine
context.

In wireless networks, throughput is one of the high per-
formance metrics that changes rapidly depending on the
environmental situations. However, radio phenomena affect
the different performance metrics. It is increasingly hard to
understand how such phenomena degrade the QoS, as they are
uncontrolled. In this article, we tackle one radio phenomenon,
i.e. noise, to understand how it influences the throughput
performance in uplink 4G. In the framework of eHorizon
project, we study the case of a connected car transmitting
a fixed amount of data to a specific server based on LTE-
A network. The aim is to estimate/predict the uplink-received
bandwidth by the server. To that end, a 4G testbed is deployed,
where the radio propagation is controlled in an Anechoic
Room (AR) while injecting a specific noise profile. We inves-
tigate our work on UL bandwidth prediction based on radio
measurements over a small time granularity, from 100 ms to
1 s scales. Different machine-learning (ML) algorithms are
tested to validate the impact of wireless channel on bandwidth
prediction in UL transmissions.

The remaining of this paper is organized as follows. Section
II points out the 4G background of the experimentation. The
related work is reviewed in section III. Section IV describes
the testbed deployment inside an anechoic room. Section
V covers the prediction methodology used in this article.



Section VI presents and discusses the obtained results for
uplink bandwidth prediction. Finally, section VII concludes
this paper.

II. LTE-A BACKGROUND

Our work is based on 4G communications, as uplink cellular
traffic has become dense with the introduction of M2M com-
munications, especially connected cars. This section presents
a quick overview of the main 4G metrics and techniques that
our study is based on.

Fig. 1 shows a basic architecture of the 4G network when
a User Equipment (UE) is connected via the LTE access
network to the Evolved Packet Core network (EPC). The EPC
maintains the sessions, registration procedures and routing of
UE IP-packets. The base station for LTE-A radio is named
evolved NodeB (eNB); it ensures mainly Radio resource
management and scheduling in both uplink and downlink.
4G is known as a flexible standard as it proposes the use
of different bandwidths {3,5Mhz, 4 MHz, 5 MHz, 10 MHz,
20Mhz} and can be deployed on many frequency bands.
To ensure the multiple users access, 4G uses OFDMA in
downlink and SC-FDMA in uplink. Orthogonal Frequency
Division Multiple Access (OFDMA) is a multiple carrier
system, where each OFDM data symbol is transmitted over
one subcarrier. This transmission of multiple data symbols in
a parallel manner leads to a high PAPR (Peak to Average
Power Ratio). PAPR causes a high-energy consumption for the
transmitter. For uplink transmissions, the efficiency of power
amplifier becomes crucial as the UE has a limited battery
power. To avoid this OFDMA drawback in uplink, the 4G
deploys the single-Carrier Frequency Division Multiple Access
(SC-FDMA), where data symbols are transmitted in series and
each symbol is carried by a wider bandwidth. Such difference
with downlink motivates our investigation on uplink.

The radio transmission is based on either Time Division
Duplex (TDD) or FDD (Frequency Division Duplex) mode.
Different frequency bands are used for downlink and uplink
in FDD; in contrast, the uplink and downlink in TDD mode are
separated in time while sharing the same frequency band. For
each duplex mode, a frame structure type has been defined.
For instance, in FDD, frame type 1 is used in Half and full
duplex mode. As shown in fig. 2, the frame-type 1- length is
fixed to 10 ms, containing 10 sub-frames of 1 ms (two adjacent
slots). Each slot is defined as a resource block of 0.5 ms over
12 subcarriers spaced by 15 khz when a simple Cyclic prefix
(CP) is used and spaced by 7.5 kHz in the case of extended
cyclic prefix. Then, data symbols are transmitted over one or

Fig. 1: Basic 4G architecture.

Fig. 2: Uplink resource grid for one slot.

several resource blocks. Each resource block holds six or seven
SC-FDMA data symbols depending on the used cyclic prefix.
In the physical layer, the LTE-A radio resource is referred as
Physical Resource Block (PRB) that forms 180 khz x 0.5 ms.
Our measurements are mainly based on the specified PRB. In
time domain, the PRB contains seven SC-FDMA data symbols
expanded over 12 subcarriers in frequency domain. The eNB
allocates for each user a specific number of resource blocks
based on its resource-scheduling algorithm, UE’s capability
and the channel quality. Although schedulers are vendor
specific, it is reported to consider one TTI (Transmission Time
Interval) of 1 ms as the smallest scheduling time unit [22].
Thus, based on the used bandwidth, a defined number of
useful resource blocks is available. For example, for a 5 MHz
bandwidth, 25 physical resource blocks of 180 kHz could be
assigned to the users attached in the cell. In order to handle
the communication between the UE and eNB, the use of these
PRBs is standardized by using channels formats in the lower
layers. For instance, for uplink transmissions at Physical layer
level, the UE activates the PRACH, Physical Random Access
Channel to demand access to the network; it communicates
the control signaling information using the Physical Uplink
Control Channel (PUCCH). PUCCH is mainly located in the
bounds of the used bandwidth in frequency domain. The UE
transmits its data on the Physical Uplink Shared Channel
(PUSCH), which uses the remaining PRBs.

In the wireless system, channel is changing rapidly, resulting
in QoS degradation. In order to adapt to channel’s change and
guarantee a high quality of service over time in downlink and
uplink communications, the UE and eNB accomplish many
measurements and reports. The 3GPP has normalized the main
measures for each side of the network. The difference between
the UE and eNB composition results in many dissimilarities
between downlink and uplink measurements. As we are inter-
ested in uplink communication, we cover in more details the
main uplink measurements used for prediction in section V -
part V.A.

III. RELATED WORK

Over years, bandwidth estimation and prediction has been
widely studied in wired networks and WLAN. D. Kout-



sonikolas et al. [3] reveal the ineffectiveness of using those
techniques in cellular networks as they are characterized by the
large short-scale fluctuation of bandwidth. Although, [5]- [9]
show the possibility of throughput estimation and prediction
in wireless networks essentially in Downlink. Their proposed
methods are based on higher layer measurements. In cellular
networks, based on radio measurements, multiple performance
tasks are introduced at different layers of the protocol stack.
For instance, when a bad signal is received HARQ (Hybrid
automatic repeat request) is triggered in the second layer.
Given this, we are interested in using the radio measurements
to predict bandwidth instead of higher layer measurements.

Even though, both client and network throughput are im-
portant in cellular networks, link bandwidth prediction related
work considered only Downlink channel. F. Lu et al. [1]
use CQI (Channel quality indicator) and DRX (Discontinuous
Transmission) to predict instantaneous downlink throughput in
3G networks. The study in [16] classifies bandwidth into high
and low categories in order to increase user equipment co-
ordination efficiency for transmission in cellular background.
Margolies et al. [12] investigate the reproducibility of signal
quality over the same path to predict throughput based on user
trajectory tracking. Authors of [10], [11] proposed the use
of machine learning techniques, especially Random Forest, to
predict instantaneous throughput in LTE-A networks. How-
ever, A. Samba et al. [11] predict throughput based on both
eNB and UE information before the connection is established
for content providers. They conclude that applying RF on
radio measurements leads to a promising prediction: 52% of
the relative prediction errors are within ±20%. C Yue et al.
[10] consider a set of lower layer measurements and historical
throughput to predict real-time LTE-A throughput. Accurate
predictions were obtained: 69% of the relative prediction errors
are within ±10% for walking scenario.

All of the above studies focus on predicting bandwidth
for only DL transmissions. Our work differs in that we
are interested in UL that takes advantage of a different
transmitter and receiver composition. In fact, contrarily to
DL that uses OFDMA reducing/vanishing the inter-symbol
interference (ISI), UL 4G uses SC-FDMA, where data symbols
are transmitted in series and each symbol is carried by a wider
bandwidth. Hence, SC-FDMA is susceptible to ISI, which
reduces data-rate when no compensation is present. For that
the eNB deploys as a first step a complex frequency equalizer
to mitigate such distortion. Therefore, UL data-symbols are not
only affected differently by the channel variation compared
to DL, but signal treatment is also different in the receiver
(eNB). This difference with downlink motivates our work
on uplink performance study to investigate the possibility
of estimating/predicting the bandwidth in SC-FDMA based
systems, that could be different from related work focusing on
downlink only. For estimating/predicting UL traffic, we apply
mainly Support Vector Machine (SVM) [14] and Random
Forest (RF) [8] as machine learning techniques to predict the
UL bandwidth based on Radio measurements. Both algorithms
provide good predictions in different application domains with

Fig. 3: LTE-A Testbed deployment.

accurate time series and are insensitive to high dimensional
feature spaces [19], which corresponds to the case study in
this article.

IV. TESTBED DEPLOYMENT

The testbed objective is to limit the uncontrolled effects
during a wireless communication, and study the impact of
disturbing features on high level QoS metrics. The wireless
system is LTE-A as already mentioned in the paper. Fig.3
schematizes the testbed deployment. Openairinterface (OAI)
software based platform [4] is implemented. It spans the
full LTE 3GPP protocol stack (including features from LTE-
Advanced and LTE-Advanced-Pro) for both radio access and
core network. For a full access to radio measurements, the
4G network is based on the Software defined radio (SDR).
The OAI softmodem is connected with a hardware platform
for SDR: USRP B210. The later is connected to a host
computer to perform processing, and then connected to a
PC running core network, and accessing the internet and a
server. Cars are going to be connected using a 4G sim card
in their system. To emulate a connected car communication
system, a commercial UE (Samsung Galaxy J3 2017) is
used and controlled remotely. To simplify the preliminary
experimentations, the network transmission mode is Single
Input Single Output (SISO). The eNB antennas (Tx and
Rx antennas) and the UE are placed inside an AR, where
the RF propagation is controlled thanks to the microwave
absorbers materiel on the walls, scattering any wireless signal
that comes across. Then the room inside is free from any
multipath phenomena and radio perturbation or degradation.
The testbed works on frequency band 7 (regulated to be used
for ITS communications) with 5 MHz bandwidth and uses
Frequency Division Duplex (FDD) mode, which corresponds
to the traditional and stable version of OAI platform with
USRPB210. As our objective is to observe the impact of radio
perturbation on the bandwidth variation, the server and the
intermediate PCs are well provisioned for not behaving as a
bottleneck during communication. Throughput deterioration is
mainly caused by environment phenomena.

IPERF3 generates traffic at the UE side and IPERF3-
server monitors throughput reception in the server. As TCP
(Transport Control Protocol) changes the transmission window



based on the perceived packet losses in the window, we instead
use UDP (User Datagram Protocol) in order to have a fixed
transmission amount of data during the whole test duration.
Given this, any observed bandwidth degradation is essentially
due to channel quality variation. Using a speed test throughput
application in the UE, the maximum UL data-rate achieved in
the testbed is around 8Mbps. Further, the traffic consists of a
UDP flow with a constant throughput of 8 Mbps, which allows
the use of all the available PRBs. The size of the packets is set
to 1350 bytes to avoid any segmentation during transmission.

Noise profile: In real environments, multiple radio phenom-
ena are scrambling the communications. Example phenomena
include multipath fading leading to InterSymbol Interference
(ISI) noise, pathloss and random processes such as AWGN
(Additive White Gaussian Noise). These phenomena tend to
attenuate aggressively the transmitted signal which causes a
significant amount of signal strength reduction. Thus, in time
varying scenarios, the received signal amplitude undergoes
rapid fluctuation that is often modeled as a random variable
with a particular distribution. In this paper, we consider a
Gaussian distribution, AWGN, which is characterized by its
amplitude that affects the signal strength. Moreover, noise
(AWGN) is introduced as it causes transmission errors and
may disrupt the communication with ISI production for high
power noise [18]. Contrarily to work in literature where
AWGN is often taken with constant attenuation, we introduce
randomness in the attenuation in order to have attenuation
fluctuations of the signal over time. For that, we developed
an assisted labVIEW program on the noise generator. Given
an interval of maximum and minimum noise levels, each 10s
the noise level takes randomly a value in the specified interval.
The programmed step for noise level change (10s) is chosen
as to have sufficient samples for each noise level. Therefore,
low noise level values keep the channel flat, while high noise
level disrupt totally the communication, with the probability
of introducing ISI. Also, the abrupt changes in noise levels
during the transmission tend to reflect the real environments,
where the user’s mobility across different shadowers leads to
aggressive/alleviated signal attenuation. The noise is injected
inside the anechoic room using a signal generator with a
directional antenna toward the eNB receiver. The bandwidth
is fixed to 5Mhz to scramble the full UL bandwidth.

V. PREDICTION METHODOLOGY

Given the LTE testbed in the anechoic room, we are able to
generate 4G traffic with noise perturbation. During the whole
test duration, noise level changes by the programmed step
(10s). This way, samples of same duration for every noise
level are generated. In this section, we present the prediction
methodology.

A. Data collection

The eNB performs different radio measures in order to
decode the received data and adapt to channel variation. With
SDR at eNB side, we are able to collect all the performed eNB
measurements (as depicted by the 3GPP standard), especially

from the lower layers. After a benchmark of physical layer
measurements, we present in the following the main radio
measures having a minimum correlation with bandwidth vari-
ation:

• RIP: Received Interference Power measured within the
bandwidth of each PRB. The eNB measures the noise
power over the PRBs each 1 ms.

• UL RSSI: Uplink Received Signal Strength Indicator. It
measures the total wideband received power over the full
bandwidth - 5 MHz - including noise and interference.
UL RSSI states the quality in the cell. Too low RSSI
reflects the inability of the cell to communicate with
any UE, while too high value indicates a high level of
interference in the cell.

• SNR: Signal to Noise Ratio compares the level of the
desired received signal to the level of noise. Taking
Psignal and Pnoise as the average power of the received
signal and noise respectively, SNR is defined (in decibels)
as follows: SNRdB = 10.log10(Psignal/Pnoise). It is
measured for each received PUSCH holding UE’s data
and PUCCH containing the UE’s control signaling infor-
mation. Let’s denote PUSCH SNR and PUCCH SNR the
corresponding metrics.

• Rx power: The received power. It measures the received
power in the eNB based on the demodulation reference
signal (DMRS), which is used to get a coherent detection
and demodulation of UL channels.

One of our objectives is to compare the bandwidth predic-
tions over different time granularity. The bandwidth measure-
ments are performed in a discrete time manner, each δt. As
the minimum time report interval in IPERF3 is 100 ms, we
fix δt=100ms. The predictions are then made every δt. The
eNB measurements are performed per subframe scale (1ms).
In order to have a representative measure per δt, we compute
the maximum, minimum, and the mean of each measure per
δt to construct the datasets. Table I depicts the constitution of
datasets used as input for learning algorithms. The first column
represents the datasets labels, and the second column explicits
the constitution of datasets in the form of samples. We built 5
datasets based on the aforementioned metrics. Four of them are
based on a single feature and the last one combines all the fea-
tures. For instance, dataset RSSI contains the single UL RSSI
feature. Each sample in dataset RSSI is composed of the
maximum, minimum and mean measured UL RSSI over
δt, i.e. {UL RSSI min, UL RSSI max, UL RSSI mean},
dataset All is a combination of the four features.

B. Methodology

In this article, Python scikit-learn library is used for all
the tests. GridsearchCV [23] is applied to choose the opti-
mal hyper-parameters for each estimator. It combines both
gridsearch and cross-validation methods. Gridsearch consists
of an exhaustive search over subset values of parameters for
a given estimator and cross-validation (CV) technique [20]
estimates the prediction error of a model. CV is categorized



TABLE I: Constitutions of datasets.

into exhaustive and non-exhaustive categories, the former
is more computational for high dimensional datasets. For
that, the non-exhaustive cross-validation is chosen, mainly
the recommended K-fold method, with K=10 to have a good
compromise between variance and bias of the model [7].
Varma and Simon [17] report that the estimated prediction
error from the cross-validation used to tune hyper-parameters
is biased, and recommend the use of nested cross-validation
instead, where an inner CV is used to select the optimized
model (executed with GridsearchCV) and an outer CV to
estimate the prediction error. Let denote K1-fold and K2-fold
the inner and the outer CV respectively. Given an input dataset,
a random split is performed to construct training and test sets.
In fact, the dataset is split into K2-folds, one fold is used for
testing and the others K2-1 folds constitute the training set.
For each hyper-parameter combination from the gridsearch,
K1-fold is applied. It divides the training set into K1 equal
folds; K1-1 folds are used for training and the remaining fold
for evaluation. It computes the prediction error and iterates
until all the folds are used for both training and validation,
then the prediction error is averaged over all the K1 cases of
CV. The hyper-parameter combination achieving a minimized
prediction error is selected as the best optimized model. In
order to generalize the selected model, the outer loop CV
is used where the model is tested K2 times on unseen data,
i.e. the test set. Then, the generalized prediction error is the
average of the estimated prediction error over the tested sets.

Algorithm 1 represents the prediction model for band-
width. For a given dataset (table I), we apply the algo-
rithm summarized in the following. Let N be the size of
the considered dataset. K2-fold CV is chosen for having
randomly 25% of the dataset for testing which we denote
Xtest={X1

test, .., X
m
test} with size m, and 75% for the training

set denoted Xtrain={X1
train, .., X

n
train} with size n, where

Xp
train and Xp

test are the pth samples in their correspond-
ing datasets. GridsearshCV is applied on the Xtrain to se-
lect the optimized model, referred by M . Let w be the
rolling window, it represents the past w time units, and
i denotes the forecast window, where i ∈ {1δt...10δt},
with δt=100 ms. The maximum forecast window is then
1 second. For each lag w and forecast window i, M
uses the historical measures (Xt

test, X
t−1
test , .., X

t−w
test ) to pre-

dict for each sample Xt
test from Xtest the correspond-

ing bandwidth B̂W t
(i,w), i ∈ {1..10}. For example, using

Dataset RIP with i=1 and w=2, M uses the current and

Algorithm 1 Bandwidth prediction from dataseti
Input: Historical radio measurements with lag size w, M:
optimized prediction model.
Output: ˆBW=[(B̂W 1

(1δt,w), .., B̂W 1
(i,w)), .., (B̂Wm

(1δt,w), .., B̂Wm
(i,w))] : the

predicted bandwidth.

for each(w,i) do
for t in range (1, m) do

(B̂W t
(1δt,w), B̂W t

(2δt,w), .., B̂W t
(i,w)))=M(Xt

test, X
t−1
test, .., X

t−w
test )

Xt
test is the value of a feature in time t.

end for
end for
return ˆBW

two past time units of {RIP min, RIP max, RIP mean}ttest:
[{RIP min, RIP max, RIP mean}ttest, {RIP min, RIP max,
RIP mean}t−1

test, {RIP min, RIP max, RIP mean}t−2
test)] to pre-

dict the upcoming bandwidth in 100ms.
Therefore, for predictions evaluation, we compare the pre-

dicted bandwidth B̂W t
(i,w) with the received BW t

(i,w) band-
width, based on RMSE (Root Mean Squared Error) metric.
RMSE is attractive from a statistical and scientific perspective.
It represents the average error prediction in the model, ex-
pressed in the units of the variable of interest. It is computed as
follows: RMSE =

√
(1/n∗

∑n
i (yi− ŷi)2) where y1...yn are

the actual values and ŷ1...ŷn the predicted ones. By squaring
the error, a high weight is given to the large errors. RMSE
score is negatively oriented, hence lower values are better.

VI. UPLINK BANDWIDTH PREDICTION EVALUATION

This part presents and discusses the results obtained on
bandwidth prediction using machine learning techniques. Five
datasets are tested with two ML techniques RF and SVM.
Because of place constraint, we only present the results
with RF model; the results for SVM are pretty similar. The
evaluation is based on the performance metric RMSE.

A. Sensitivity to forecast window

In order to exhibit the influence of window forecast size on
predictions, each dataset from table I is evaluated over iδt,
with i ∈ {1, .., 10} and w = 0. That is, we predict bandwidth
based on the instantaneous radio measurements. The forecast
window changes from 1δt to 10δt. The maximum, minimum
and mean observed RMSE with K2-fold CV is represented in
fig. 4. For each dataset, dashes represent the maximum and
minimum of the observed RMSE per δt, and the line links
the mean of the observed metric per δt. The predictions errors
range from 29 Kbytes to 36 Kbytes. In fact, the lower RMSE
value is obtained for predictions based on dataset Rx power,
which doesn’t exceed 31 Kbytes. Dataset SNR reaches 36.5
Kbytes of RMSE for a window forecast of 1δt. We point
that the minimum, maximum and mean received bandwidth
during the experimentation are 0 Kbytes, 128 Kbytes and
51.1 Kbytes respectively. When combining all the features
in dataset all, the RMSE is not reduced compared with
dataset Rx power. It is surprising that the SNR achieves the
lower scores over the tested features, eventhough it combines
the strength of the received signal and the noise measure.

In order to figure out whether the cause is the length of
training samples per noise level, another test is performed,



Fig. 4: Impact of forecast window.

where the time step is 60s instead of 10s. Hence, 600 samples
are available for each noise level, and a total of 26 noise
levels are tested. The same methodology is applied, and similar
results of RMSE are obtained (fig.4). It clearly exhibits that
the cause behind the observed values of RMSE is not the low
number of training samples per noise level. Further, the overall
received signal power could be considered the most relevant
metric of channel quality in an environment with random noise
variation. It is worth noting that the obtained UL predictions
are less accurate compared with DL predictions based radio
measurements, already mentioned in part III. Over the different
forecasted windows, there is no major change in terms of
RMSE, thus exhibiting the insensitivity of the model to the
forecast window.

B. Prediction bias

In order to generalize the estimated error predictions and
be sure that the 10-fold nested CV doesn’t introduce any bias
during the prediction stage, we study CV bias with varying
folds. Different K values for the K-fold method are tested. A
small value of K forms folds containing multiple noise level
transitions, while higher values of K forms folds with a low
number of samples per noise level. For K=26, the number
of folds is exactly the number of noise levels. In this part
K2=K1 for the nested CV. Fig. 5 shows the distribution of the
observed RMSE per CV size for a forecast window of 1δt with
dataset SNR. For each K-fold, a vertical boxplot is drawn.
It consists of a box from the lower quartile of the observed
RMSE to the upper quartile, with a crossbar in the mean of
RMSE. The upper and lower fences outside the box represent
respectively 95% and 5% of the estimated RMSE. For all
the tested K-folds, the mean RMSE is around 36Kbytes.
Then, the generalized prediction error for dataset SNR in an
environment with random noise is approximately 36Kbytes.

C. Sensitivity to lag size

In this part, the importance of having numerous past radio
measurements for good predictions is analyzed. The main lag

Fig. 5: Cross-validation bias.

Fig. 6: Impact of lag size w.

sizes w tested are 3, 7 or 10, i.e. using the past three, seven
and ten δt measurements. Fig. 6 shows the obtained RMSE
for a window forecast of δt with the three values of w for all
the datasets. Adding the past measures improves smoothly the
predictions based on dataset SNR and dataset RSSI. On the
other hand, historical information doesn’t necessary improve
the performance, however, it might degrade it. The reason
behind that might be the random and brutal change of the
signal attenuation caused by the generated noise profile. In
fact, it reflects real radio environment, where the upcoming
attenuation is uncontrolled. Hence, forthwith the past measure-
ments become obsolete. Therefore, in the rest of the paper, we
fix w = 0.

D. Sensitivity to training data length

Machine learning techniques leverage on training sets to
give accurate predictions. The size and variance of a given
training set should then impact the prediction performance. In
this part, we investigate the sensitivity of our model to the
training dataset size. For that, we train RF model with various
datasets of different lengths. In order to have a significant



Fig. 7: Impact of training dataset length.

variance in each training dataset, we shuffle the main dataset,
i.e. dataset Rx Power with bandwidth dataset; 30% is leaved
out for test. At the beginning of the evaluation process,
the training set consists of 2000 samples. The size is then
increased gradually for each test. Based on data RX Power,
Fig.7 depicts the CDF of the relative prediction error of all
the tested sizes with w = 0 and i = δt. The relative error is
obtained from the difference between the predicted and actual
bandwidth divided by the actual bandwidth. The performance
improves when increasing the training dataset size from 2000
to 4000 samples. Larger training dataset sizes don’t affect the
predictions, and 58% of errors are within ±40%. This shows
that the model becomes insensitive to training data length
when it contains more than 4000 samples.

E. Sensitivity to noise level linearity

In the previous parts, noise level was changing randomly
during the test duration. Hence, the selected X train contains
a significant amount of random noise level variations. In order
to study the impact of the presence of such transitions in
the training set, we set up another experimentation process.
Keeping the same testbed, we changed the assisted LabVIEW
program to control remotely the noise generator. This time,
given an averaged granularity of 0.1 dBm as a step for noise
level variation, the noise level is increasing every 10 s by
the programmed step during the whole test duration (800s).
This later experiment is aimed at providing a dataset less
complex than the previous one in order to investigate the
impairments introduced by the random change of noise levels
on the system. The same process of data collection in part
V.B is followed, and the two machine learning techniques, RF
and SVM, are applied. We evaluate each dataset from table I
over iδt, with i ∈ {1, .., 10} and w = 0. During bandwidth
predictions, the forecast window changes from 1δt to 10δt.
The maximum, minimum and mean observed RMSE with
K2-fold CV is represented in fig. 8. For each dataset, dashes
represent the maximum and minimum of the observed RMSE
per δt, and the line links the mean of the observed metric
per δt. Based on dataset SNR and dataset RIP, the RMSE

Fig. 8: Impact of noise level variation.

doesn’t exceed 9.7 Kbytes and 13.4 Kbytes respectively for
all the forecasted windows. It is to be noted that the minimum,
maximum and mean received bandwidth are 1.32 Kbytes,
133 Kbytes and 75.04 Kbytes respectively. Comparatively,
based only on the received power (dataset Rx power), poor
predictions are obtained; an RMSE of 23.5Kbytes is observed
for a window forecast of 1δt. Dataset all that combines all
the features, gives pretty similar results to the ones obtained
with dataset SNR. This is explained by the presence of SNR
measurements in dataset all. Therefore, this remarkable de-
crease of RMSE with the datasets containing linear generated
noise levels is essentially due to the absence of randomness
in noise level variation. In other words, the lower observed
values of RMSE in the linear testbed are essentially due to
the consecutive noise level variation in the training set for the
model. Hence, the randomness in noise level variation leads
to an increase in terms of RMSE, as expected.

F. Sensitivity to high noise level

The noise level changes each 10s by a step of 0.1 dBm
during the whole test duration. After several tests, the maxi-
mum noise level is set to -12 dBm and the minimum to -20
dBm. Low values perturbate smoothly the radio environment,
while the higher values, around -12 dBm, result in a packet
loss above 90%(±5%) in the cell. In this part, we aim to
see whether the prediction in linear testbed is sensitive to the
high noise levels. To that end, we split the main dataset, for
example, dataset RIP with bandwidth, into subsets of 1000
samples. Then, each subset contains 10 noise levels of 0.1 dBm
difference, i.e. between -17.0 dBm to -16.0 dBm. We apply the
methodology in V.B on each subset and plot in fig.9, in 3D, the
variation of the perceived RMSE over iδt with i ∈ {1..10} and
per noise level. The RMSE is almost constant from -19 dBm to
-16 dBm, then it increases brutally for the two levels of noise,
-15 dBm and -14 dBm. Checking the corresponding bandwidth
subsets, a high level of bandwidth variation is observed for
these two levels. The increase of RMSE for those levels could
be explained by the insufficiency of training samples, as only



Fig. 9: Sensitivity to high noise level.

700 samples were used. This result points out the necessity of
taking advantage of large training sets for each noise level to
achieve the insensitivity to high noise levels.

VII. CONCLUSION

In this article, we investigated the uplink bandwidth predic-
tion in cellular network and the radio phenomena impact on
high-level QoS metrics, i.e. bandwidth. For that, a testbed is
deployed in an anechoic room where the radio phenomena are
controlled, and then noise is injected in a controlled manner to
scramble the uplink transmissions. This allows a clear analysis
of encountered behaviors. The noise profile is generated in a
manner to emulate the amplitude attenuation variability present
in real radio phenomena. Exhaustive radio measurements are
performed to collect the main measures reflecting the uplink
channel quality. In order to predict the received bandwidth at a
granularity of 100 ms, machine learning techniques are used,
mainly random forest and support vector machine. Nested
cross-validation is used for each case study to generalize
the obtained error predictions. As the features choice for
machine learning is crucial, the sensitivity of the model to
forecast window, lag size, high noise level and training data
length are investigated for each feature. The model shows
insensitivity in the different cases. We have emulated two
types of environments and have shown that in an environment
where noise level changes gradually, accurate predictions
are achieved. On the other hand, when noise level changes
brutally from lower to higher values and vice versa, thus
emulating real radio communication systems, high prediction
errors are obtained. Therefore, contrarily to downlink, where
only radio measurements are sufficient to predict accurately the
received bandwidth, uplink bandwidth prediction needs more
investigation in a real environment with very versatile devices
and users. Hence, cellular uplink is becoming the hotbed of
improvements.
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