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1 Introduction

This review presents several approaches to stream-data clustering . Among the explored techniques, two phase
(online-offline) clustering is a common approach. Some approaches base their online component in the micro-cluster
generation concept. These micro-structures are characterized by a feature vector that summarizes the information of
all individuals contained therein. The use of this vector makes the algorithms suitable for online applications since
the storage of each individual becomes unnecessary. Micro-clusters may be arranged in an ordered manner (e.g. grids
or trees) with the purpose of making the belonging cluster location easier. The offline component of the algorithms
takes the micro-clusters features as source data for final clustering. K-means based techniques are a common choice
in the offline component, since the one-pass only condition (for high stream rates) is not necessary in this stage
(advantage given by the offline nature of the component). Density-based clustering algorithms are also used in the
offline component, showing an improvement in their capacity to handle any shape clusters including non-convex sets.

The techniques discussed in this report are introduced by the chronological order of their proposal and reported
in pink color on the figure 1.
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Figure 1: Data stream clustering chronology

This report has the following structure. First the distance based methods are displayed in chronological order.
Second some density based approaches are presented. Third some fuzzy evolving approaches are pointed out. Finally,
the methods are discussed and compared.

2 CluStream [1]

The framework of the so called Clustream approach is separated in two components: online and offline clustering. In
the first component, data are collected, pre-processed and compressed in micro-clusters. In the second component,
the micro-clusters are grouped into macro-clusters using a modification of the k-means algorithm.

The micro-cluster phase is used to maintain statistical information about the entire data stream without explicit
data storage. Summary statistics suggested in BIRCH [10] and stored in a cluster feature vector, are extended to
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Figure 2: Time Snapshots taken and store in a pyramidal scheme. Adapted from [1]

provide sufficient spatial and temporal information for the offline clustering phase. The BIRCH statistics are: the
number of data points inside the micro-cluster n, the linear sum of the data values LS and the sum of the squares
of the data values SS. CluStream extends the statistic spatial concept of feature vector to the temporal information
including the same statistics for the stream data arrival time-stamps. Consequently, a micro-cluster is defined as the
vector that summarizes a set of d-dimensional points Xi1 . . . Xin with time-stamps Ti1 . . . Tin in a (2 · d + 3) tuple
(

CF1x, CF2x, CF1t, CF2t, n
)

, where CF1 is the LS of the values in X (d-dimensional) or T (1-dimension) and CF2
is the SS of those values. Each micro-cluster has an unique id associated with it.

The micro-clusters are stored in memory at particular moments in the stream referred as ”‘snapshots”’. This
snapshots are used in the offline stage to generate the macro-clusters for different, specific time horizons. The Snapshots
are stored at different levels of granularity (in a pyramidal scheme) and then classified into different orders varying
from 1 to log(T) maximum; being T the time elapsed since the beginning of the stream or the application of the
technique. Snapshots of order i are taken at the moment when mod(t, αi) = 0, α ≥ 1 being α the base for the
sampling time. The authors posed that a limited amount of snapshots are sufficient for macro clustering and therefore
only the last αl + 1 snapshots are maintained (for each order). The figure 2 exemplifies the framework of pyramidal
time framing for T = 55, α = 2 and l = 2. In this case, the storage requirement of the technique corresponds to
(αl + 1) = 5 snapshots for each order, with a maximum of 5 orders (logα(T ) = 5.78) being ≈ 29 snapshots to store in
the worst case scenario. In the actual case taking redundancy into account, only 14 snapshots are necessary to analyse
the time horizons with five different levels of granularity.

3 ClusTree [9]

Based also on micro clusters as CluStream, the ClusTree proposes a characteristic vector in the form CF = (n,LS, SS)
but in the hierarchical index structure of the R-Tree [7] as illustrated in figure 3. Such structure allows one to maintain
stream summaries up to date and provides efficient cluster location for object insertion at different levels of granularity.
With the hierarchical structure the algorithm could drop the object in a higher level of the tree (using a buffer space)
if no further time is available and then go back after to finally place it in the corresponding leaf node. This rate
depending strategy, provides a framework for “anytime clustering”. The tree micro-cluster structure is shown in figure
3. The general idea is the following: at the time of arrival of a new data point and given enough time the algorithm
descends, searching for the closest micro-cluster (according to euclidean distance to its mean), to reach the leaf level. If
a new point comes before the insertion process is finished, the algorithm interrupts the insertion process and stores the
object temporarily in a local aggregate (buffer) from which it would be taken along in the future as a ”‘hitch-hiker”’
when a new data arrives looking to be located in a micro-cluster on the same path.

The tree nodes that are no leafs are called inner nodes. An inner node can contain between m and M entries and
stores the CF of the objects it summarizes, a CF of the objects in its local buffer and a pointer to its child nodes. A
leaf nodes stores only the CF of the objects it represents. The tree is always balanced, that is, all the paths from the
root to a leaf have the same length. Since the tree is updated on the fly, splitting nodes is usual. When a leaf node
is reached and the insertion of the object is not possible because the leaf micro-cluster is full, the algorithm splits the
node based on pairwise distances between the clusters. In order to maintain an up-to-date view, clusters are weighted
with an exponential time-dependant decay function ω, ω (∆t) = β−λ∆t. The ∆t is calculated with the current time
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Figure 3: ClusTree micro-cluster hierarchical structure

and the cluster time-stamp tsi. To safe time each cluster is updated only when a new object passes through it or is
assigned to it. The CF components are updated as shown in equations (1) to (3)

n(t) =
n
∑

i=1

ω (t− tsi) (1)

LS(t) =

n
∑

i=1

ω (t− tsi)xi (2)

SS(t) =
n
∑

i=1

ω (t− tsi)x
2
i (3)

In general, if no object is added to a cluster’s CF during the time interval (t, t+∆t), its CF in t + ∆t can be
calculated from CF (t) using the decay function as follows:

CF (t+∆t) = ω(∆t)CF (t) (4)

The elements stored in the buffer should keep their time-stamp until being assigned to a cluster. Upon descending
into a node, the CF of the clusters that were followed through the path are updated by position wise multiplication
with the decay function and the time-stamps are resetted so that,

es.CF ← ω (tx − es.ts) es.CF (5)

es.Buffer ← ω (tx − es.ts) es.Buffer (6)

es.ts ← tx (7)

Inner nodes time-stamps can be calculated from their children ts and the buffer’s ts, as:

es.CF (t+∆t) =

(

ω (∆t)

vs
∑

i=1

esoi.CF (t)

)

+ es.Buffer(t+∆t) (8)

This time weighing avoids splitting due to cluster size limitation (as much as possible). If a node is about to split
due a new assignation, the algorithm checks whether the last significant cluster associated to it can be deleted, because
it is no longer significant. When a cluster has to be deleted, its statistics are subtracted from the corresponding path
up to the root.
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Université Toulouse III Paul Sabatier

LAAS-CNRS

Toulouse

Février

2014

(a) Original data distribution (b) Core-micro-clusters detection (outliers rejected)

Figure 4: DenStream algorithm results with non-convex clusters

If the algorithm faces exceptionally fast streams, interruption of the insertion process and data temporal storage
on local buffers are no longer a feasible solution. The authors propose to speed up through aggregation before the
insertion. Their solution is to create several aggregates for dissimilar objects in order to group similar objects together.
Ideally objects in the same aggregate should correspond to the same leaf node then only objects within a maximum
radius (given by the maximum variance in the leafs) are aggregated. The authors used a deep first approach to reach
quickly the leaf nodes, and, when there is still time available (no other data has arrived), alternatives to the first
selection are evaluated leading to an optimum path. At the moment of new data arrival, the process of iterative
searching is interrupted and the data is assigned in the current optimum.

4 DenStream [3]

This algorithm considers the problem of clustering a data stream over a damped window. Considering also the
concept of micro cluster the authors make an extension to consider potential clusters and also clusters of outliers. To
summarize clusters with arbitrary shape the concept of core (dense) micro-cluster (CMC) is introduced. The outliers
are considered to be grouped also in low density micro-clusters (OMC). For those clusters with densities below the
normal but over the outlier limit, potential micro-clusters (PMC) are created and their evolution is monitored to
decide whether it is part of a new dense cluster creation or just an increment in the quantity of outliers.

Each CMC is defined at time t as the tuple CMC = {w, c, r} that summarizes a group of close points pi1, . . . , pin
with time-stamps Ti1, . . . , Tin, where w, c and r are the weight of the cluster, its center and radius, respectively.

w =

n
∑

j=1

f (t− Tij) (9)

c =

∑n
j=1 f (t− Tij) pij

w
(10)

r =

∑n
j=1 f (t− Tij) dist (pij , c)

w
(11)

dist is the euclidean distance and f (t) = 2−λt is the fading function representing the exponential decay in the damped
window. To be a CMC the cluster must satisfy the following conditions: w ≥ µ and r ≤ ǫ, proving to be dense.
Both µ and ǫ user defined. A variant of the BIRCH algorithm is applied to find the final clusters, using a set of
density-connected non-redundant CMC as virtual points located in the CMC center c with weight equal to w. An
illustration of the use of DenStream in non-convex clusters is shown in figure 4.
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The potential-micro-cluster is defined as PMC =
{

CF
1
, CF

2
, w
}

, where w is defined as before but satisfying

w ≥ βµ, being 0 < β ≤ 1 the parameter that establishes the minimum weight for non dense clusters. CF
1
is the

weighted sum of points CF
1
=
∑n

j=1 f (t− Tij) pij and CF
2
is the weighted squared sum of the points, CF

2
=

∑n
j=1 f (t− Tij) p

2
ij . The radius and center of the cluster can be easily calculated from those statistics.

The outlier-micro-cluster is defined as OMC =
{

CF
1
, CF

2
, w, to

}

with CF
1
, CF

2
and w being the same as

before. The weight restriction in this case is w < βµ and to = Ti1 is the cluster creation time-stamp, which is used to
determine the life span of the OMC. Outlier micro-clusters are maintained in a separate memory space.

Operation: when a new point p arrives the algorithm verifies which is the closest C or P micro-cluster. If the
closest is a CMC, maximum radius condition is verified. If the new radius is ≤ ǫ the point is absorbed by the cluster,
otherwise the algorithm tries to merge the point with the closest OMC. If there the radius condition stands the point
is merged and after that, the weight of the OMC is verified to decide if the cluster has grown into a PMC. When an
OMC becomes denser it is removed from the outlier buffer and with its statistics a new PMC is created. In the case
when no cluster is a radius match to the point a new OMC is created with the point as center and its time of arrival
is set as OMC time-stamp. PMC and OMC are maintained incrementally. When a point p is absorbed by the cluster,
its new statistics are:

(O\P )MC =
{

CF
1
+ p, CF

2
+ p2, w + 1

}

(12)

For each existing micro cluster, if no point is absorbed in a time interval δt, its statistics become:

(O\P )MC =
{

2−λδtCF
1
, 2−λδtCF

2
, 2−λδtw

}

(13)

since its weight decays gradually, if it lies below βµ, it means that the PMC becomes an OMC, so it should be deleted

from the main memory. The clusters weight is checked periodically each TP time periods, with TP = 1
λ
log
(

βµ
βµ−1

)

.

The age of the OMC is checked with the same periodicity and clusters with weight lower than a limit ξ(λ, TP , to, tc)
are deleted from the outlier buffer.

The algorithm is initialized offline applying DBSCAN [6] over a set of points {P}. Then for each point p in {P}, if
the total number of points in the area r < ǫ is above βµ then a PMC is created using p and those points and formerly
the point are deleted from P , the process continues until P is empty. Once initialized the algorithm updates the micro
clusters incrementally.

5 D-Stream [4]

This algorithm based on density analysis, maps the data into a grid in an online procedure. Offline the grid density
is calculated and clusters are found based on that density. The offline phase is evaluated every ”‘gap”’ time steps.
After the first gap, the algorithm generates the initial cluster and then periodically, it removes low density grids and
updates the clusters.

Online, each data x is mapped into a density grid g(x) in the multi-dimensional space. A density coefficient is

assigned to the data, which decreases as it ages, following D(x, t) = λ
t
−Tsx , where Tsx is the input time-stamp and

where λ ∈ (0, 1) is a constant called the decay factor. For a grid, its density D(g, t) is defined as the sum of the
density coefficients of all data records that mapped to it until the given time t; D(g, t) =

∑

x−→g D(x, t). The density
coefficient of each grid is updated only when new data is mapped to the grid, and the time of this insertion is stored
as time-stamp for future updates. The update is given by D(g, tn) = λtn−tsD(g, ts) + 1, where tn is the new time of
arrival and ts is the time stamp of the last assignation. It should be noted that only those grids in the grid list are
considered for calculations and updating procedures.

Grids are described by a characteristic vector that permits incremental update. The tuple {ts, tm, D, label, status}
is formed by: ts, the time-stamp of the last update in g; tm, the time-stamp from the last removal of g from the
grid list as a sporadic grid (if ever). D is the grid density at the last update, label is the class label of the grid, and
status = {SPORADIC,NORMAL} is the grid status in the last update (used to remove grids).
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(a) Original distribution (b) Final clustering results

Figure 5: Randomly generated 4 clusters 30K 2-dimensional data set, including 5K outlier data

A grid g is said to be dense at a time y if D(g, t) ≥ Cm

N(1−λ) where Cm > 1 controls the threshold. At time t, a

grid g is said to be sparse if D(g, t) ≤ Cl

N(1−λ) , where 0 < Cl < 1 is used to handle the maximum sparse density. And

finally a grid is said to be transitional if its density is between the Cl and Cm thresholds, Cl

N(1−λ) ≤ D(g, t) ≤ Cm

N(1−λ) .

To find the final clusters the dense character of a cluster and its neighbours is analysed. A grid group id said to be
a cluster if every inside grid of the group is a dense grid and every outside grid is either a dense grid or a transitional.
Two grids g1 = (j11 , j

1
2 , · · · , j

1
d) et g2 = (j21 , j

2
2 , · · · , j

2
d) are considered as neighbours if there exists k, 1 ≤ k ≤ d such

that: j1i = j2i ∀i 6= k and
∣

∣j1k − j2k
∣

∣ = 1. This definition allows to quickly find the grid’s neighbours but brings with it
a limitation: only those grids with d− 1 equal dimensions can be detected as neighbours (i.e. diagonal grids will not
be considered as neighbours in a 2− d space). An example of non-convex clustering using DStream is shown in figure
5.

6 simpl e Clustering [2]

One approach used for handling large amounts of incoming data is to consider only the data arriving in the current time
(no time-window), avoiding to deal with temporal relations or sequential elements. This is the case of evolving rule
base clustering. From its beginning as evolving Takagi-Sugeno eTS in 2004, the fuzzy system with evolving structure
has changed greatly to become a fast algorithm capable to deal with real time data streams. In such approach an
evolving fuzzy rule based algorithm that allows a flexible and evolving system structure is created. One of the main
advantages of this method is that it does not need the prespecification of any parameter, not even the number of
inputs. The simpl eTS+ can be interpreted as an evolving set of N linguistic fuzzy rules Ri of the form:

Ri : IF
(

x1 is xi∗
1

)

AND . . . AND
(

xn is xi∗
n

)

THEN
(

LocalModel
(

yi
))

(14)

where i = [1, N ], x = [x1, x2, . . . , xn]
T is the input vector, n the number of fuzzy sets of the ith fuzzy rule (could

evolve), xi∗ is the focal point of the ith rule antecedent, LM(yi) is the Local Model of the ith fuzzy rule which can be
a first order Takagi-Sugeno system (linear output) or into a zero-Order Takagi-Sugeno system (singleton output) and
is expressed by the (generally, m-dimensional) output variables yi = [yi1, y

i
2, . . . , y

i
m]. The global output y is given by

a weighted sum of local outputs y =
∑N

i=1 λ
iyi being λi = τ i/

∑N
j=1 τ

j the normalized activation level of the rule i

and τ i its firing level. The algorithm includes a gradual evolution in terms of local subsystems as well as in terms of
input variables. This gradual evolution which involves drift and/or shift of the data distribution is based in the global
density increment. Abrupt changes in the distribution (shift) are reflected in new cluster formation or old cluster
elimination. There is a gradual simplification of the rule data base based on a measure of the utility of the rules, in
terms of the accumulated time of appearance of the samples that form the cluster which supports that fuzzy rule.
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The structure of the simpl eTS+ is updated according to the following conditions: condition A) a data sample
that covers a new area of the data space is represented by the density increment relative to the global mean (equation
(15)); condition B) overlap and information redundancy must be avoided.

IF (δ(k) = N) THEN (x(k)→ new center) (15)

δ(k) =

∣

∣

∣

∣

∣

∣

N
∑

i=1

sign

n+m
∑

j=1

γi∗
j (k)

∣

∣

∣

∣

∣

∣

(16)

γi∗
j =

(

zi∗j (k)
)2
− z2j (k) + 2

(

zj (k)− zi∗j (k)
)

z̄i∗j (k) (17)

where δ(k) (equation (16)) denotes the total density increment, γ denotes the partial (per cluster and per input)
density increment (equation (17)) and z = [xT yT ]. It is important to notice that online analysis (Condition A) only
requires to know: the current point zk, the previous focal points zi∗(k) and the global mean z̄.

It is assumed that if a new data does not bring a density increment to all the existing clusters/rules then it can
be interpolated by the existing rules and no structural change in the classifier is necessary. On the other side if the
density increment is global δ(k) = ±N a new rule should be created taking the point as prototype. The point must
not have a high membership degree to any of the existing rules. If the global increment is positive, the new rule
represents a focal point with higher density than any previous focal points. If it is negative a new rule is defined by
focal points that cover new areas of the data space that cannot be interpolated well using the existing focal points.

Operation: This algorithm begins from scratch (if there is no a priori knowledge) or from an initial rule-base.
When xk arrives, data are standardized online using recursively updated mean and standard deviation, as seen in
equation (18).

xst =
x−x̄
σx

x̄(k) = k−1
k

x̄ (k − 1) + 1
k
x(k); x̄(1) = x(1)

σ2
x(k) =

k−1
k

σ2
x (k − 1) + 1

k−1 (x(k)− x̄(k))
2
σ2
x(1)

(18)

With the xst the density increment δ(k) is calculated with respect to all the previous existing rules using (16).
Then the mean value of all data points, x̄(k) is updated using (18). If condition A (equation (15)) holds a new center
is added based on current data point x(N+1)∗ ← x(k) and the radius of all clusters are updated per input j using:

rij (k)
2
= β

(

rij (k − 1)
)2

+ (1− β)
(

σi
j (k)

)2
; rij (1) = 0.5 (19)

where β is the learning step and σi
j (k)

2
is related to the cluster scatter. σ is calculated as:

σi
j (k)

2
= 1

Si
k

∑Si(k)
l=1

∥

∥zi∗ − zl
∥

∥

2
σi
j(1) = 1; (20)

IF
(

l = arg minN
i=1

∥

∥z(k)− zi∗
∥

∥

)

THEN
(

Sl (k + 1) = Sl(k) + 1
)

(21)

being Si the support of the ith cluster. Then Condition B is evaluated and if the overlapping of the new rule with
at least one of the old rules is too high then the previous focal point(s) is(are) removed and replaced with the new
data point. The relevance of a cluster can change in time due to the incremental approach. To keep the rule base up
to date non relevant rules must be removed from the rule base. The authors propose as a measure of relevance the
cumulated weight of the rule contributions to the overall output during the life of the rule, the measure can be seen
in equation (22).

U l(k) =
1

k − tl(k)

tl(k)
∑

l=1

λl (22)
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Figure 6: General structure of the LAMDA classification method. Edited from [8]

In simpl eClustering, only cluster centers and the global mean value are kept in the memory that are N +1 values
of dimension (n+m). It is worth noting that this algorithm does not use the mean of all data or mean of groups of data
to create new clusters, conversely it takes an actual point as prototype for the class, avoiding reaching a non-existing
and possibly infeasible point.

7 P3S-LAMDA

P3S is a software for sensor selection and qualitative situation assessment developed inside the DISCO group in the
LAAS-CNRS [5]. Made over LAMDA this tool can combine qualitative, quantitative and/or interval information of the
process variables and the expert’s knowledge to provide guide over sensor selection and functional state identification
via clustering. LAMDA algorithm creates and drift classes in an automatic fashion, and assigns one individual to
one existing class (or creates a new one) by analysing the contribution of each one of the object descriptors to the
characteristics of the classes. This contribution is called Marginal Adequacy Degree (MAD). Once all the MAD’s are
calculated, the Global Adequacy Degree (GAD) of the element to a given class is calculated using a convex interpolation
of fuzzy logic connectives. This procedure is done for each class. Finally, the object is assigned to the class with the
maximum GAD. LAMDA allows the classes descriptors to update taking into account the previous data of the class
and the values given by the new element. The major difference between the LAMDA methodology and the classical
clustering and classification approaches is that LAMDA models the total homogeneity inside the feature space from
which the information is extracted [8]. This is done through the Non-Informative Class (NIC) that accepts all items
with the same adequacy (GAD). If NIC is chosen as the class with maximum GAD, it is concluded that the object
corresponds to a new class that should be created (in the learning stage). A diagram of the LAMDA classification
methodology for an object xj with n descriptors is shown in figure 6.

8 Discussion

In the previous sections several different methods are presented. In this section the strengths and weaknesses of each
method are pointed out in order to extract ideas for future works. Table 1 gives an overview of those characteristics.

The online-offline framework is a common approach but some works put their efforts in one of this two stages. This
two phase scheme, proposed in CluStream, is very useful when it comes to handling data streams. Another powerful
tool introduced in that work, is the pyramidal time framework. On the upside, that tool allows managing arbitrary
time horizons with low storage consumption. On the downside, it asks the user to input the target time duration
of clustering, which can be problematic if the user has no deep knowledge of the process. The main problem with
CluStream is the predefined constant number of micro clusters, that could lead the algorithm to create several clusters
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Method Strength Weakness

CluStream • Snapshots (time evolution analysis)

• Can’t detect non-convex clusters
• ⇑number of user defined parameters
• low density MC are considered as outliers
• pre-fixed # of MC

ClusTree
• Tree Structure ids save time
• buffer and hitch-hiker
• exponential decay of clusters (aging)

• No tree construction only updating
• MC split and merge due memory
• no final clustering proposal
• Final MC may not be the optimal

DenStream

•Damped window (aging)
•Dense micro-cluster allow non-convex
clusters
• Handle outliers in specific OMC

• ⇑number of user defined parameters

DStream
• Grid list makes faster grid location and
reduces calculations
• Sporadic grids to handle outliers

• Grid mapping is not trivial
• Need of context
• no grid granularity analysis

Simpl e clus
• No fix number of inputs
• Global density as a measure of structural
change

• Utility vs. aging

P3S
• Handle quantitative, qualitative and in-
terval information
• NIC improves classification purity

• No online evolution of the structure
• wasted information of points assigned to
NIC?
• Need of context

Table 1: Strengths and weaknesses of streaming clustering

for the outliers, which may leave less space for true clusters. Furthermore, since each cluster can absorb only a limited
amount of data, similar data can be located in different micro-clusters and possibly even in different final clusters.

ClusTree improves the limitation of CluStream about the fix number of MC, but establishes a maximum number
of MC and when the algorithm reaches this value, has the same limitations as CluStream. ClusTree also keeps the
limitation in the number of elements described by a MC. The authors works only in the online micro cluster update
and tree modification; initial tree construction is not considered, neither is the final clustering (offline-phase). On the
other side, the proposal of a hierarchical id structure saves a lot of time reducing the amount of calculation necessary
for MC location. Nevertheless the deep-first descent approach can lead to non optimal classification, since data could
be located within a micro cluster that might not be the closest to it.

Between the algorithms that use density based final clustering DenStream makes a good proposal that handles
outliers and cluster evolution with the use of outlier and potential micro cluster. It saves time by searching with
priority core or potential micro-cluster to locate arriving data. The problem with this algorithm is the high number
of user defined parameters, that make it unsuitable for users with little knowledge of the process. That problem is
also seen but to a lesser extent in DStream algorithm where context should be provided in order to create a grid fine
enough for mapping. DStream algorithm also provides an explicit way to deal with outliers as low density grid areas
that are not considered for initial mapping.

The fuzzy approaches can grow from zero (without any user knowledge). In fact P3S, DenStream and simpl e TS+
describe explicitly how to built the initial cluster partition from scratch. P3S and DenStream build the cluster structure
in an offline fashion, instead, simpl e TS+ makes it online. The simpl e TS+ algorithm does not consider elimination
of rules with a decay factor but instead considers elimination by low rule’s contribution in the global output. Only the
simpl e TS+ approach considers non pre fixed inputs and only P3S considers quantitative and non quantitative data.
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Louise Travé-Massuyès – Victor Hugo Grisales

10


	Introduction
	CluStream CluStream
	ClusTree ClusTree
	DenStream DenStream
	D-Stream Dstream
	simpl_e_Clustering Angelov2011
	P3S-LAMDA
	Discussion

