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Hybrid Particle Petri Net Based Prognosis of a
Planetary Rover

Pauline Ribot, Elodie Chanthery, Quentin Gaudel, and Matthew J. Daigle, Senior Member, IEEE

Abstract—This paper describes a model-based prognosis
method for the health management of a planetary rover. Using
a hybrid model of the rover, including a continuous part and a
discrete part, a prognoser is generated that relies on the Hybrid
Particle Petri Nets (HPPN) data structure. The prognosis process
uses the current diagnosis of the system to predict its future
states and to determine its End Of Life (EOL) or its Remaining
Useful Life (RUL). The HPPN-based prognoser is initialized with
a Stochastic Scaling Algorithm (SSA) that selects the diagnosis
hypotheses with the highest beliefs. The SSA provides a compro-
mise between performance and available computational resources
through the setting of scaling parameters. The prognoser then
uses the future commands to determine the hypotheses over the
rover future trajectory and the RUL/EOL. The set of the future
hypotheses associated with their belief degrees forms the current
rover prognosis. The prognosis method is tested on different
scenarios, with different scaling parameters, considering the
future commands are known or not. Experimental results show
that the approach is robust to real system data and computational
performance constraints.

Index Terms—prognosis, hybrid systems, diagnosis, model-
based monitoring, health management, uncertainty.

I. INTRODUCTION

Real systems, such as planetary rovers, have become so
complex that it is often impossible for humans to capture and
explain their behaviors, especially when they are exposed to
failures. Prognostics and System Health Management (PHM)
including an efficient health monitoring technique has to be
adopted to detect, isolate and predict faults leading to failures.
A diagnosis method is used to determine the current state from
observations and identify the possible causes of failures that
lead to this state. Prognosis is the prediction of the future
states and the times of the fault occurrences that lead to these
states. It is related to the determination of the End Of Life
(EOL) of the system, that is the time at which the system is not
operational anymore and of the Remaining Useful Life (RUL),
that is the remaining period before it reaches the EOL [1].

A system is considered as a hybrid system if it exhibits
both discrete and continuous dynamics [2]. Hybrid systems are
convenient to describe systems that have multiple operating
modes. Modes of such multimode systems represent their
continuous evolutions (continuous dynamics) under different
conditions [3]. A discrete-event system (DES) defines the
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changes of modes (discrete dynamics) with occurrences of
events. The system discrete state is the current discrete state of
the DES. The evolution of the system continuous state depends
on continuous dynamics associated with the current system
mode. Here, we are interested in modeling changes in system
dynamics when one or several anticipated faults occur. As long
as the system does not encounter any fault, it is in nominal
mode. Tracked faults are assumed to be permanent, i.e. once
a fault happens, the system moves from a nominal mode to a
degraded mode (or faulty mode), in which the system realizes
its mission either partially or under special conditions. Without
repair, the system ends in a failure mode, in which it cannot
realize its mission anymore.

Finally and for the sake of generality, we consider that
a system can work with discrete and continuous variables
(state variables, parameters, inputs and outputs), and that these
variables are subject to uncertainty, particularly for real system
studies. In such cases, the gap between models and reality
must be taken into account, as for the discrete part (symbolic
uncertainty) as the continuous part (numerical uncertainty)
of the system. Symbolic uncertainty relates to inexact or
improbable event sequences in the DES and to missing or false
event observations. Numerical uncertainty relates to imprecise
continuous dynamics and to noisy numerical data.

Our previous works introduced a data structure called Hy-
brid Particle Petri Nets (HPPN) that aims at capturing all
the system knowledge. It is inspired by Petri nets and state
representations used in particle filters. In particular, the HPPN
marking contains all the necessary knowledge on the system
to determine its diagnosis and prognosis. In [4], we proposed
to use HPPN to generate a diagnoser from a multimode
description of a hybrid system. The diagnoser tracks the
system current state under uncertainty. Its structure is a HPPN
and its process is based on particle filters. System observations
(inputs and outputs) are used to update the diagnoser marking
and determine the diagnosis. A diagnosis at any time contains
the hypotheses over its past trajectories. Each hypothesis is
valued with a belief degree and includes estimates of the
system discrete and continuous states, as well as the set of
faults that occurred on the system until the current time. In [5],
we tested the diagnosis approach on a simulated three-tank
system.

In this paper, we enrich the health monitoring approach
with a prognoser, that aims at computing the prognosis of the
system under uncertainty, based on the current diagnosis and
future inputs. The prognoser structure is a HPPN generated
from a multimode description of the hybrid system.

This paper has four main technical contributions:
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1) We defined a prognosis methodology that meets the
following criteria. (i) It manages hybrid systems that
exhibit both discrete and continuous dynamics. (ii) It
manages uncertainty related to inexact or improbable
event sequences, to missing or false event observation,
to continuous dynamics (imprecise dynamics and noisy
numerical data), to current state and to future inputs. (iii)
It takes into account an estimation of the current health
state of the system given by a diagnosis process.

2) We implemented the methodology and quantitatively
computed a RUL for a real system. This implementation
faces the challenge of computational performances by
proposing an original algorithm named the Stochastic
Scaling Algorithm (SSA) that balances precision and
computation time. All the codes were written in Python
and are available upon request.

3) We experimented the methodology on the K11 planetary
rover prototype of the NASA Ames Research Center.
The K11 hybrid model proposed in [6] is used to
generate the HPPN-based prognoser. The model and the
two scenarios data are available on the web1.

4) We proved that the methodology is relevant for real
system data and constraints by evaluating the perfor-
mance of the method with three metrics: diagnosis and
prognosis computation times, and the maximum RAM
used are studied for each scenario. Different scenarios
with different types of future inputs are tested.

This paper is organized as follows. Section II gives some
related work on diagnosis, extended diagnosis and prognosis
for hybrid systems. Section III presents the hybrid model of
the K11 health evolution. Section IV explains the prognosis
method including the use of the SSA, an algorithm that
is used to initialize the prognoser given the current system
diagnosis and three scaling parameters. Section V provides
results obtained by testing the proposed method on the K11
on two scenarios studied in [7]. Conclusions and future works
are discussed in the final section.

II. RELATED WORK

Hybrid systems are the center of interest of numerous re-
searches in many areas, such as modeling, verification, control,
and monitoring. In system modeling, different formalisms
have been introduced to represent hybrid dynamics: hybrid
automata (HA) [3], hybrid bond graphs (HBG) [8], [9], hybrid
Petri nets (HPN) [10], etc. Such formalisms have largely
been used or extended for hybrid system diagnosis. Structural
approaches [11]–[13] or conflict-based approaches [14] have
also been used for diagnosis purpose.

Figure 1 presents some references to these works and
compare the performances of the other approaches cited in
this Section.

Some works particularly focus on diagnosis with the intent
to use it for prognosis purposes, and then generally consider
degradation monitoring. This is what we call ”Extended Di-
agnosis” in Figure 1. In [15], isolation of faults is dynami-
cally proceeded with a hybrid bond graph (HBG). A mode

1https://homepages.laas.fr/echanthe/K11.

Fig. 1. From Diagnosis to Prognosis.

dependent fault signature matrix is proposed and a waiting
time is used to allow all faults to exhibit their symptoms
on residuals, especially faults that are only detected with
continuous signals. In [16], the diagnosis technique monitors
both the system behavior and its degradation in order to have
a better estimate as a start for the prognosis process via the
Interactive Multiple-Model (IMM) algorithm, but the approach
is limited to continuous systems. We aim at extending the
diagnosis and the prognosis processes to hybrid systems.
With the same purpose, we propose in [4] to use HPPN
to monitor the hybrid system degradation in addition to its
behavior, considering many sources of uncertainty. However,
this previous work only deals with extended diagnosis and do
not address the prognosis problem.

In [17], hybrid automata are used to model the system and
to generate a prognoser that determines the system RUL. The
method is demonstrated on a simulated study case in [18].
Even if both the behavior and the degradation are monitored,
only the degradation knowledge is used for the prognosis
process, making the approach limited. The approach does not
take into account uncertainties. In [19], the authors propose to
develop a model-based sequential failure prognosis for hybrid
systems where some faults are detectable only after a waiting
time. Dynamic fault isolation is performed with Hybrid Bond
graph. The degradation behavior of each component is mode
dependent and estimated by a hybrid differential evolution
algorithm. The RUL of the component is computed by the esti-
mation of the degradation and a threshold given by the user. A
sequential prognosis algorithm, including a standard prognosis
module and auxiliary module, is proposed. These works do not
take into account uncertainty about observations and models.
In [20], a generic characterization of the diagnosis and prog-
nosis processes is proposed. The approach does not take into
account uncertainties and does not provide any quantitative
value for the RUL. In [21], the authors extend the model-based
prognostics paradigm to hybrid systems. It relies on previously
established methods for hybrid state estimation, and provides
an approach to predict the RUL/EOL given a hybrid model,
a hybrid state estimate, and a specification of future unknown
input. It describes how the resulting probability distribution
for the RUL/EOL may be multi-modal due to mode-switching
in the predicted future behavior. Petri nets-based approaches
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often deal with the prediction of event occurrences from a
predictability perspective, i.e. the system monitoring indicates
either a fault can still occur, or not. The authors of [22]
use a generalized marking to consider unobservable event
occurrences while minimizing the state space explosion, whilst
the problem is approached with Partially Observed Petri Nets
(POPN) in [23]. These works do not however provide any
quantitative information about the RUL estimates.

This paper aims at providing a quantitative information
about the RUL estimation. Prognosis process will be proceed
in a highly uncertain framework, taking into account among
others uncertainty on the health state of the system, on the
observations and on the future actions. The health state of the
system will be estimated by the diagnosis process and used by
the prognosis process for the initialization step. By comparison
with [21], we use a graphical formalism that looks like a Petri
Net in order to be more compact and expressive. The HPPN
data structure also aims at differentiating the continuous part
and the discrete one from the degradation part of the system.

III. K11 MODEL FOR PROGNOSTICS

The K11 is a four-wheeled electric rover that is used by
NASA Ames Research Center for diagnostics and prognostics-
enabled decision making research [7], [24], [25]. It is a test
bed on which some fault and failures can be simulated. In
this work, it is studied as an operating rover exposed to
failures and executing missions. Its inputs are the wheel speed
commands and its outputs are sensor measurements. This
section presents the K11 hybrid model proposed in [6] based
on the discretization of its health evolution.

A. Platform Description

The K11 rover is powered by twenty-four 2.2 Ah lithium-
ion single cell batteries. A typical mission of the rover consists
in visiting and performing desired science functions at a set of
way-points and joining its charging station before the complete
discharge of its battery. The rover wheels are denominated
by their location: the front-left (FL) wheel, the front-right
(FR) wheel, the back-left (BL) wheel and the back-right (BR)
wheel. Each wheel is driven by an independent motor.The
rover is a skid-steered vehicle, meaning that the wheels cannot
be steered and it is rotated by commanding the wheel speeds
on the left and right sides to different values. An onboard lap-
top computer runs a proportional-integral-derivative controller
and a data acquisition software. Available data are provided by
65 continuous signals: the 4 commanded wheel speeds and the
61 sensor measurements that include the actual wheel speeds,
the total current, the motor currents and temperatures and the
voltages and temperatures of each of the 24 battery cells. More
details on the K11 model can be found in [24], in which it is
studied as a continuous system.

Several fault types can occurred on the rover. These fault
occurrences are considered as unobservable discrete events and
their effects are summarized in the following subsection.

Fig. 2. Streamlined description of the K11 health evolution.

B. Modeling for Health Monitoring

A simplified multimode description of the rover health
evolution, limited to the FL motor part, is presented in
Figure 2. The entire rover health evolution can obviously
be deduced from this description as the four motors have
the same behavior. This simplified view of the system does
not include multiple-fault modes. Graphically, the underlying
graph vertices represent the modes and the edges represent the
mode switches. Variables that can be observed or estimated
with observations are underlined. In each mode, associated
continuous dynamics and degradation dynamics are indicated.

As long as no fault has occurred, the rover is in mode
Nominal with continuous dynamics C1. Fault f1 occurrence
represents the End Of Discharge (EOD) of the battery, i.e. the
time when the battery is too discharged to power the system.
This fault is assumed to occur when the battery voltage is
lower than 3 V (approximately) and it leads to the mission
failure (mode Discharged). Fault f2 represents the emergence
of a parasitic battery load.The parasitic load increases the total
current and thus the battery drain (mode Parasitic load with
continuous dynamics C2), which causes the system to reach
the EOD prematurely. The most feared scenario for a motor is
an overheating: the heat will eventually destroy the insulation
of the windings, causing electrical shorts and leading to motor
failure. The overheating of the FL (resp. FR, BL and BR)
motor is represented by fault f3 (resp. f4, f5 and f6). The
occurrence of any one of these faults leads to the rover failure
(mode Overheated with continuous dynamics C4) and thus
represents the rover EOL. A motor is assumed to overheat
when its temperature exceeds 70 ◦C.

The motor temperatures are measured by four sensors.
These sensors, however, are known to fail unexpectedly,
sending inconsistent values. These failures are represented by
faults f7 f8, f9 and f10. We consider that the temperature
model is not accurate enough without a correction step with
observations. As a consequence, once fault f7 (resp. f8, f9

and f10) has occurred, the occurrence of fault f3 (resp. f4,
f5 and f6) does not match with any condition on the FL
(resp. FR, BL and BR) motor temperature (see the arc be-
tween Sensor FL fault and Overheated ). In Figure 2, mode
Sensor FL fault with continuous dynamics C3 represents the
mode where the temperature sensor of the FL motor has failed.
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As no degradation law is a priori known for this rover, all
modes have the same degradation dynamics D1.

Considering all the motors and multiple faults, 192 modes
and 240 mode switches can be identified2.

Continuous dynamics and degradation dynamics can be
represented by differential equations. Because of the lack of
knowledge about the rover components degradation in the
NASA Ames Research Center model, all modes have the
same degradation dynamics D1 that has been defined as the
identity function. C1 is a set of differential equations that
unifies the battery model with the rover motion model and the
temperature models in the nominal case. It can be converted
into a discrete-time representation and solved with a sample
time of 1/20s, while the continuous observation sampling time
is about 1s:

C1 =

{
xk+1 = f(xk,uk) + v(xk,uk)
yk = h(xk,uk) + w(xk,uk)

, (1)

where xk ∈ Rnx is the vector of the nx continuous state vari-
ables, uk ∈ Rnu is the vector of nu continuous input variables
(nu = 4), f is the noiseless continuous state equation, v is the
continuous process noise equation, yk ∈ Rny is a vector of
ny continuous output variables (ny = 61), h is the noiseless
continuous output equation, and w is the continuous output
noise equation.

We consider 32 state variables (nx = 32), including the
rover 2-dimensional position (x, y), its relative angle position,
the wheel control errors, the motor temperatures and motor
winding temperatures. The 24 batteries are lumped into a
single one to only consider 5 battery state variables (3 charges,
the temperature and the voltage) instead of 120. Unifying
the battery, motion, and temperature models, however, highly
increases complexity and uncertainty.

Fault f2 occurrence and effect are modeled as a time
varying parameter. The parasitic battery load is captured as an
additional current reaching a value between 1.5 A and 4.5 A
from value 0 A in a few seconds after the fault f2 occurrence.
First, two parameters are added to the continuous state vector
to monitor both the duration since the fault occurrence and
the additional current value. Then, the uncertain rise of the
additional current is modeled by adding a Gaussian noise, with
a mean and standard deviation values starting respectively at
3 and 0.3 and decreasing to 0 and 0.01 as the duration since
the fault occurrence increases.

Finally, the temperature model is quite uncertain, so temper-
ature measurements are assumed to be reliable when sensors
are not failed. Faults f7, f8, f9, f10 are modeled by increasing
significantly the motor temperature sensor noise because failed
sensors only send inconsistent large values.

IV. HYBRID SYSTEM PROGNOSIS

Prognosis aims at predicting the system future states and its
RUL/EOL from diagnosis and future inputs available from a
mission scenario for example. During an arbitrary prediction
horizon τ , the goal is to determine if and when the system
will enter a failure mode and will not be operational anymore.

2The complete underlying DES of the K11 hybrid model is available at
https://homepages.laas.fr/echanthe/K11.

We propose to use the Hybrid Particle Petri Nets (HPPN)
data structure to generate three different objects: a model, a
diagnoser and a prognoser from a description of the hybrid
system. An overview of the health monitoring architecture is
given in Algorithm 1 and illustrated in Figure 3.

Algorithm 1 HPPN-based monitoring methodology
1: HPPNΦ ← CreateHPPNModel()
2: HPPN∆ ← GenerateHPPNDiagnoser(HPPNΦ)
3: HPPNΠ ← GenerateHPPNPrognoser(HPPNΦ)
4: for all k do
5: Ok ← (USk ,uNk ,Y Sk , yNk )
6: ∆k ← Update(HPPN∆, k,Ok)
7: Πk ← Prognose(HPPNΠ, ∆k,U+

k )
8: end for

Although the health monitoring methodology obviously in-
cludes diagnosis and prognosis, this paper focuses on the prog-
noser generation and on the prognosis computation (lines 3
and 7). Functions GenerateHPPNDiagoser and Update
are covered in previous work [6] and are assumed to be given.

The first offline step (line 1) is the generation of the HPPN
model HPPNΦ of the system. It can be directly built from
a multimode description or created from expert knowledge.
For example, for the K11, it is generated from the K11 hybrid
multimode description given in Section III. The second offline
step (line 2) is the automatic generation of a HPPN-based
diagnoser HPPN∆ from the system model HPPNΦ. The
last offline step (line 3) is the automatic generation of a HPPN-
based prognoser HPPNΠ from the system model HPPNΦ.

The online process (line 4-8) uses the system consecutive
observations Ok (discrete and continuous inputs and outputs)
to update the diagnoser marking [6]. This marking contains
all diagnosis hypotheses. The diagnosis ∆k is given by the
marking of the HPPN-based diagnoser HPPN∆ and repre-
sents a distribution of beliefs obtained by particle filtering.
To compute the system prognosis Πk at time k (line 7),
the prognoser is initialized with ∆k and its marking evolves
according to a given set of future inputs U+

k . The set U+
k =

{uκ|κ ∈ {k, ..., k + τ}} includes the system future inputs
during the prediction horizon τ ∈ N, where uκ ∈ Rnu is the
continuous input vector at future time κ. The prognosis Πk

is defined as the marking of the prognoser at the end of this
process.

Uncertainty and computational performance are two sub-
stantial challenges for prognostics that cannot be ignored. The
first one is related to the result accuracy and precision, whereas
the second one is related to calculation time and computational
resource management. Those challenges for prognostics are
explained in the next subsections.

A. Uncertainty: a Challenge for Prognostics

1) Uncertainty about Diagnosis: The knowledge about the
current state is a significant source of uncertainty for the
prognosis process. In this work, we use the current diagnosis
that contains all the hypotheses on the system. Diagnosis is
performed by combining pseudo firing of transitions in the
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Fig. 3. Overview of the health monitoring architecture.

HPPN-diagnoser and particle filtering for continuous dynam-
ics. Each diagnostic hypothesis provides a possible continuous
state (represented with a distribution of particles), a possible
discrete state (a mode of the DES) and a set of events that
leads to the discrete state. The prognosis process predicts the
system future states by simulating the future evolution of the
diagnosis hypotheses. It also predicts events that will occur
on the system. Particularly, from a hypothesis in ∆k, we
predict the possible sets of events that would lead the system
to failure modes. Mode switches are simulated when some
conditions on the continuous state vector are satisfied. The
time of occurrence of an event that leads to a failure mode is
a possible EOL of this hypothesis.

2) Uncertainty about Continuous Dynamics: Another
source of uncertainty is continuous dynamics noise. In the K11
case study, fault f2 time varying parameters are considered as
state variables (see Section III-B) and are estimated during the
diagnosis process. Process noise is negligible relative to other
sources of uncertainty in prognostics so we choose to ignore
it.

3) Uncertainty about Future Inputs: In real systems, de-
termining the set of future inputs U+

k is another source
of uncertainty. Low level commands are difficult to predict
accurately, even if the high level mission plan is known.
Considering noise on mission plan and future commands is
investigated as a solution to that problem. For the rover
case study, we then consider three kinds of future input
scenarios: (case 1) future commands are accurately known,
(case 2) future commands are set to the maximum speed (the
K11 is believed to go straight), (case 3) future commands
are stochastically generated (the K11 is believed to move
randomly).

B. Computational Performances Challenge

Sequential prognosis (based on simulation) for continuous
systems are computationally expensive. In particle filter-based

prognostics, the computation time is proportional to the num-
ber n of particles to simulate, where n ∈ N can be considered
as the precision of the predictions. In HPPN-based monitoring,
each simulated diagnosis hypothesis has its own set of particles
and the difficulty is to select which hypotheses to select as
initial condition for prognosis. In order to scale the prognosis
computation time, we propose an original algorithm named
the Stochastic Scaling Algorithm (SSA), to select which
hypotheses to simulate and the precision with which they
will be simulated. By setting three scaling parameters ρminΠ ,
ρmaxΠ and ρtotΠ , the operator is able to influence the prognoser
performances. Parameters ρminΠ and ρmaxΠ are respectively
the minimum and maximum precision needed to simulate
the evolution of a hypothesis. Parameter ρtotΠ is the total
particle number available to simulate the evolution of all the
hypotheses.

The SSA determines, from a given finite set of values
distributed on a starting range, a new set of values distributed
on a specific arrival range. The objective is on one hand to
change values range and one the other hand to change their
cardinal. This scaling is a Monte Carlo process and uses three
scaling parameters ρmin, ρmax and ρtot. Parameters ρmin and
ρmax are respectively the minimum and maximum bounds of
the arrival range, and ρtot indicates the maximum sum of the
new set values. As the SSA is also used for diagnosis, these
parameters are denoted ρmin∆ , ρmax∆ and ρtot∆ for the diagnoser
and ρminΠ , ρmaxΠ and ρtotΠ for the prognoser.

The SSA is given in Algorithm 2. It can be presented as
a resource allocation problem solver where there are NJ jobs
to realize, here NJ hypotheses to simulate. Belief degrees are
associated with hypotheses to indicate their importance and are
given in input as weights. Each hypothesis has a precision,
considered here as resource, that is the number of particles
used to simulate it. The higher the number of resources is
allocated to a job, the better the job will be realized: in other
words, the higher the number of particles is allocated to a
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Algorithm 2 Stochastic Scaling Algorithm
Input: B . list of the NJ hypotheses belief degrees
Input: ρmin, ρmax, ρtot . scaling parameters
Output: R . list of the particle numbers allocated to the NJ

hypotheses
1: J ← (1, ...,NJ) . list of IDs of hypotheses to provide (all at

start)
2: R← (0|∀i ∈ t) . list of particles numbers allocated to

hypotheses
3: r ← ρtot . remaining particle number (all available at start)
4:
5: while r > 0 and |J | > 0 do
6: . it remains resources and jobs to provide
7: BJ ← (Bi|∀i ∈ J) . belief degrees of the hypotheses to

provide
8: for o ∈ {1, ..., r} do . repeat r times
9: Jc ← Pick(J ,BJ) . pick over a normal distribution

10: RJc ← RJc + 1 . allocate a particle to the hypothesis
11: end for
12: for all Ri ∈ R do
13: if Ri > ρmax then . constraint 2 not satisfied
14: Ri ← ρmax . handover the overload
15: end if
16: if Ri < ρmin then . constraint 1 not satisfied
17: Ri ← 0 . handover the underload
18: end if
19: end for
20:
21: J ← (Ji|∀Ji ∈ J ,RJi < ρmax) . keep hypotheses to

provide
22: rn ← ρtot −

∑
Ri∈R

Ri . new remaining particle number

23: if rn = r then . no new allocation
24: r ← 0 . stop algorithm
25: else
26: r ← rn . update remaining particle number
27: end if
28: end while

hypothesis, the better the hypothesis will be simulated. The
problem consists in allocating the ρtot available particles to
the NJ hypotheses depending on their belief degrees.

Two constraints are added to the problem. Firstly, a hypoth-
esis can only be simulated if a sufficient number of particles
ρmin is allocated to it (constraint 1). Secondly, it is forbidden
to allocate more than ρmax particles to a hypothesis because
it does not improve the simulation (constraint 2).

The proposed solution to the problem is based on two steps:
(1) the random allocation of all the available particles using a
normal distribution depending on the hypotheses belief degrees
(lines 8-11), (2) the handover of all the particles allocated to
hypotheses that do not satisfy constraint 1 (underload) (lines
16-18) and the handover of the unnecessary particles allocated
to hypotheses that do not satisfy constraint 2 (overload) (lines
13-15). These two steps are repeated until no more particles
are available (line 5) or that the allocation remains unchanged
after the execution of the two steps (line 24).

The SSA can return undesirable results with some ex-
treme scaling parameter setups and belief distributions. For
instance, the scaling of the sample example with parameters
(ρmin, ρmax, ρtot) = (20, 120, 1000) never assigns any par-
ticle to the hypotheses, because the total number of avail-
able particles is too low (1000) compared to the number of

hypotheses (200) and the minimum number of particles to
allocate to each one of them (20). In such cases, a recovery
mechanism allocates the maximum number of particles ρmax

to the hypotheses with the highest belief degrees until no more
particle is available. A computational performance study com-
paring different values of the scaling parameters is provided in
Section V-B. The choice of these parameters highly depends
on the constraints on the computation time and the precision
required on the results.

C. Prognoser Generation

The prognoser is defined with the HPPN framework. The
HPPN structure, introduced in [4], is an extension of Petri
nets. The main advantage of the HPPN structure is that
it can capture heterogeneous knowledge about the system,
such as discrete evolutions with symbolic places, continuous
evolutions with numerical places, and relations between each
others with transitions via degradation.

Let us consider the HPPN model HPPNΦ of the system.
The prognoser HPPNΠ derived from HPPNΦ is a tuple
〈P ,T ,A,A,E,X,D, C,D, Ω,M0〉 where:

• P is the set of places, partitioned into symbolic places
PS , numerical places PN and degradation places PD,

• T is the set of transitions,
• A ⊂ P × T ∪ T × P is the set of arcs,
• A is the set of arc annotations,
• E is the set of event labels,
• X ⊂ RnN is the state space of the continuous state vector,

with nN ∈ N+ the number of continuous state variables,
• D ⊂ RnD is the state space of the degradation state

vector, with nD ∈ N+ the number of degradation state
variables,

• C is the set of dynamic equation sets associated with
numerical places, representing continuous dynamics,

• D is the set of dynamic equation sets associated with
degradation places,

• Ω is the set of conditions associated with transitions,
• M0 is the initial marking of the Petri net.

The different steps of the generation of the HPPN-prognoser
HPPNΠ are described in detail in [26].

The set of the event labels E = Eo ∪ Euo is partitioned
into observable event labels Eo and unobservable event labels
Euo. An event is defined as a couple e = (v, k) where v ∈ E
is an event label and k the time of occurrence of e.

Symbolic places PS model the discrete states of the system
and are marked by configurations. The set of all configurations
at time k is noted MS

k . A configuration δk ∈MS
k is a symbolic

token at time k whose value is the set bk of events that
occurred on the system until time k: bk = {(v,κ)|κ ≤ k}.

Numerical places PN model the different continuous evolu-
tions of the system. A numerical place pN ∈ PN is associated
with a set of equations C ∈ C modeling system continu-
ous dynamics without their associated numerical uncertainty.
Noise functions v and w in Equation (1) are removed in the
prognoser. Numerical places are marked with particles. The set
of all particles at time k is noted MN

k . A particle πk ∈MN
k is a
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Fig. 4. Prognoser HPPNΠ of the K11 rover.

numerical token at time k whose value is a possible continuous
state xk ∈ X of the system at time k.

A couple ’symbolic place’ and ’numerical place’ models
a system operating mode. A symbolic or a numerical place
can be used to model several modes (for example, if two
modes have the same continuous evolution, they can be
modeled with two symbolic places and only one numerical
place). Figure 4 shows the HPPN-based prognoser gener-
ated with the simplified hybrid model of the K11 rover
presented in Figure 2. The 5 symbolic places (plain places
pS1 ,...,pS5 ) represent the 5 discrete states of the hybrid automa-
ton (Nominal ,...,Overheated ). The 4 numerical places (dashed
places pN6 ,..., pN9 ) represent the 4 continuous evolutions (C1,...,
C4). Mode Nominal is thus fully represented with places pS1
and pN6 . Modes Discharged and Overheated are symbolically
represented with respectively places pS4 and pS5 , and they are
both numerically represented with the same numerical place
pN9 that is associated with continuous dynamics C4.

Degradation places PD and dynamics D model the system
degradation evolutions associated to modes [5] and are marked
with degradation tokens MD. In this work, our knowledge
on the rover does not encompass such parallel evolution. As
a consequence, we use only one degradation place (dotted
place pD10 in Figure 4) in HPPNΠ that contains all the
degradation tokens at any time k. Any degradation token
dk ∈ MD links one configuration with one particle. These
links are a particularity of the HPPN data structure. We
note link(δk,πk, dk) = >, where > is the true value, if
the degradation token dk links the configuration δk with the
particle πk.

These links are required to represent hypotheses on the
system trajectories, i.e. its discrete and continuous states
at time k and the set of events that occurred on it un-
til time k. We define formally a diagnosis hypothesis at
time k as a set of tokens {δk,π1

k, ...,πnk

k , d1
k, ..., dnk

k |∀i ∈
{1, ...,nk}, link(δk,πik, dik) = >} that contains all the knowl-
edge on the continuous state at time k with the particles and the
events occurred until time k with the configuration. The subset
of particles represents the distribution of probability over the

continuous state (as in particle filters). The number of particles
nk is called the precision of the hypothesis at time k. Here,
degradation tokens ensure the consistency of the hypothesis
by linking a configuration with particles.

The marking Mk of the HPPN-based prognoser is the distri-
bution of the configurations, the particles and the degradation
tokens in the different places at time k. The set Mk denoted
the set of all tokens at time k:

Mk = MS
k ∪MN

k ∪MD
k . (2)

Transitions in the prognoser model mode switches. A tran-
sition t ∈ T will have as input (resp. output) the set of places
representing the outgoing (resp. ingoing) mode of the switch.

A transition t ∈ T may be fired:
• if there is at least one token in any of its input places,
• these tokens are linked together,
• with respect to its associated set of conditions Ωt ∈ Ω

describing the mode switches.
A condition ωt : Mk → B, with ωt ∈ Ωt and B = {>,⊥}
can be either a test on a token value, always satisfied (>), or
never satisfied (⊥).

The prognosis process works with future inputs only (dis-
crete input events and continuous input vectors). As a con-
sequence, only the mode switches triggered by continuous
variables or input events are modeled in the prognoser. For the
K11 case study, there is no discrete input event, so a transition
is created only for the mode switches triggered by conditions
on continuous state variables. It means that any set Ωt is
composed of only one numerical condition ωNt . For example
in Figure 4, only switches triggered by v < 3 or tFL < 70 are
considered in the prognoser of the K11 as transitions t1, t2,
t3, t4 and t5. With this reasoning, fault occurrence conditions
are ignored in the prognoser.

Arc annotations A, however, are used in the prognoser to
update the configuration values during the transition firing and
thus record fault occurrences. An arc a ∈ A that connects a
transition t to a symbolic place pS , may be annotated with
an event label v ∈ E. In such a case, a configuration δ that
is moved to pS after the firing of t at time k, sees its event
set b updated with the event (v, k). In Figure 4, each arc that
connects a transition to a symbolic place is annotated with the
fault label that conditions the mode switch in Figure 2.

D. Prognosis Process

The prognosis process may be performed at any time k and
provides a prognosis Πk, as shown in Algorithm 1, line 7.
Its inputs are the HPPN-based prognoser HPPNΠ generated
from a hybrid model HPPNΦ, the diagnosis ∆k and the set
U+
k of the future system inputs at time k. Diagnosis ∆k is

provided by the marking of HPPN-based diagnoser HPPN∆

at time k [5], [6] and thus contains hypotheses over the system
past trajectories. Each diagnosis hypothesis is valued with
a belief degree and includes discrete and continuous state
estimates, as well as the set of faults that occurred on the
system until time k. The prognosis process steps are given in
Algorithm 3.
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Algorithm 3 Prognose

Input: HPPNΠ, ∆k,U+
k

Output: M̂kEOP|k
1: Initialize(HPPNΠ, ∆k)
2: for all Uκ ∈ U+

k do
3: if AllHypothesesFailed(M̂κ−1|k)==0 then
4: M̂κ|k ← Update(HPPNΠ,κ,uκ)
5: else
6: break for loop
7: end if
8: end for
9: kEOP ← κ

1) Prognoser Initialization: The prognoser is initialized
from the diagnosis ∆k (line 1). To keep diagnosis uncertainty,
the initial marking Mk = M0 of the prognoser HPPNΠ

is based on ∆k, the set of configurations, particles and
degradation tokens representing all the diagnosis hypotheses
on the system at time k.

During the Initialize procedure (line 1), the tokens of ∆k

are duplicated in a way that any diagnosis hypothesis of
precision n is represented in the prognoser by m prognosis
hypotheses with precision 1, where m ∈ N+ is determined
with the SSA (see Algorithm 2 in Section IV-B). The n jobs
to realize are the simulations in the future of the n diagnosis
hypotheses included in ∆k. The resources are the hypotheses
with precision 1.

More formally, any diagnosis hypothesis
{δk,π1

k, ...,πnk , d1
k, ..., dnk} ⊂ ∆k, where the n degradation

tokens link the n particles to the configuration δk,
is reproduced in the prognoser initial marking Mk

and takes the form of an equivalent distribution
{δ1
k,π1

k, d1
k, ..., δmk ,πmk , dmk }, in which, for any i ∈ {1, ...,m},

dik links δik and πik, and any δik has the same value bk as δk.
Once initialized, the prognoser has as many configurations as
particles and degradation tokens:

|MS
k | = |MN

k | = |MD
k |. (3)

Without performance constraints, a diagnosis hypothesis is
completely reproduced in the prognoser, i.e. m = n: any
particle πk or degradation token dk in ∆k is duplicated. To
improve computational performance of the prognosis process,
however, the hypotheses in ∆k can be partially reproduced.
The SSA determines the precisions to associate to all the
hypotheses, based on their belief degrees, and by using three
scaling parameters ρminΠ , ρmaxΠ and ρtotΠ . It means that any
m is chosen to satisfy the predicate ρminΠ ≤ m ≤ ρmaxΠ . It
also means the total number of tokens in the prognoser |Mk|
always verifies:

|Mk| ≤ 3× ρtotΠ , (4)

because there are three types of tokens. Then, for any hypothe-
sis in ∆k, m particles and m degradation tokens are randomly
selected and duplicated to form Mk.

The initialization process is illustrated in Figure 5. It shows
how the initialization process creates 8 hypotheses of precision
1 in Mk from the 4 hypotheses in ∆k.

Fig. 5. Illustration of HPPNΠ initialization.

Parameters ρminΠ and ρmaxΠ are respectively the minimum
and the sufficient precisions granted to the prognoser to
simulate a hypothesis in the future. The prognoser scaling
parameters thus provide a compromise between the number of
hypotheses to project in the future and the precision granted
to each one of them, relative to a maximum number of tokens
to simulate. They are set up to fulfill performance constraints.

2) Prognoser Marking Evolution: Once the prognoser
marking is initialized, the future evolutions of the selected
hypotheses are simulated according to U+

k (line 4). The
prognoser marking evolves according to the future inputs
U+
k = {uκ|κ ∈ {k, ..., k + τ}}, where τ + 1 ∈ N is

the prediction horizon. The prediction is stopped when all
the inputs have been simulated (line 6) or before if all the
hypotheses have reached a failure mode (lines 3-4), in order
to reduce computation time.

The goal of the Update function described by Algorithm 4
is to predict the evolutions of the system from the generated
prognoser and the inputs at time κ. For each continuous input
vector uκ ∈ Rnu at future time κ, the marking M̂κ−1|k is
updated to M̂κ|k in two steps, the transition firing and the
tokens value update. Three rules are given hereafter to define
the transition firing step.

a) Transition Firing: All enabled transitions are simul-
taneously fired using the following definitions and rules.

When a transition t ∈ T is fired, all the hypotheses in its
input places satisfying conditions Ωt are moved to the output
places of t.

Let ◦t and t◦ respectively denote the set of input and output
places of t, and Mκ(p) denote the set of the tokens in the place
p ∈ P at time κ.

Let define the set Stκ as

Stκ = {(δκ,πκ, dκ) ∈ (Mκ(pS)×Mκ(pN )×Mκ(pD))|
link(δκ,πκ, dκ) ∧ ωNt (πκ) },

(5)
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with (pS , pN , pD) ∈ (PS ∩◦ t)× (PN ∩◦ t)× (PD ∩◦ t) and
ωNt ∈ Ωt.

Definition 1 (Enabled transition): A transition t ∈ T is
enabled at time κ if

|Stκ| > 0. (6)

Rule 1 (Transition firing): Let t ∈ T be an enabled
transition. For each type of places in input and output of t,
the firing of t at time κ is defined by
∀P o ∈ {PS ,PN ,PD}, p ∈ P o ∩◦ t, p′ ∈ P o ∩ t◦,

Mκ+1(p) = Mκ(p)\Stκ(p),
Mκ+1(p′) = Mκ(p′) ∪ Stκ(p),

(7)

where Stκ(p) is the set of tokens of Stκ that are in the place p.
b) Token Value Update: During the transition firing,

configuration values are updated with the arc annotations A
with Rule 2.

Rule 2 (Configuration value update): When a configuration
moves through an arc a during the firing of a transition t at
time κ, its event set bκ is updated with the event label v ∈ E
that annotates a: bκ+1 ← bκ ∪ {(v,κ)}.

After the transition firing, all particle values are updated
with Rule 3.

Rule 3 (Particle value update): The continuous state vector
xκ of a particle is updated with the continuous state equation
associated with the numerical place the particle belongs:
xκ+1 = f(xκ,uκ), where uκ is the continuous input vector
at time κ.

Algorithm 4 Update
Input: HPPNΠ,κ,uκ
Output: M̂κ|k

1: for all t ∈ T do
2: if t is enabled at time κ− 1 then
3: M̂κ|k ← update the marking applying Rule 1
4: bκ ← update configuration values applying Rule 2
5: xκ ← update particle values with uκ−1 to applying

Rule 3
6: end if
7: end for

Concerning the complexity, the prognoser is initialized with
a maximum of 3 × ρtotΠ tokens (see Section IV-D1) and
the marking evolution does not create new token. So, the
prognoser HPPNΠ is 3× ρtotΠ -bounded.

3) Prognosis Result: The output of the prognosis process
is the marking of the HPPN-based prognoser: Πk = M̂kEOP|k,
where kEOP is the End Of Prediction: kEOP ≤ k + τ . The
prognosis Πk is a distribution of beliefs over the system
future modes until time kEOP. It especially contains the event
occurrences that will lead to failure modes, and particularly
the faults and their times of occurrences. It thus contains all
necessary data to compute a belief distribution over the system
RUL/EOL.

Whatever the value of the prediction horizon τ , kEOP

always satisfies kEOP ≤ k + τ .
Let {δ,π, d} be a hypothesis in Πk and pS , pN and pD

be the places where the tokens δ, π and d are. If places pS ,

pN and pD represent a failure mode, then the EOL of this
hypothesis is the occurrence time of the last event contained
in the event set b of the configuration δ:

EOL({δ,π, d}) , max{κ|(v,κ) ∈ b}. (8)

With the EOL, we can retrieve the RUL:

RUL({δ,π, d}) , EOL({δ,π, d})− k. (9)

V. EXPERIMENTAL RESULTS

This section provides results obtained by testing the pro-
posed prognosis method on the K11. Two scenarios fully
described in [7] are considered in this section: a nominal
scenario and a scenario during which a battery parasitic load
fault (i.e. f2) is injected. For the two scenarios, the rover
mission is to visit 5 way-points and to go back to its starting
position. It starts at 0s with batteries fully charged and with
all components at the ambient temperature.

The K11 rover has actually two motor temperature sensors
(FL and BL) failed. The sensors faults are diagnosed in one
sampling period by the diagnoser if we consider the initial
mode to be unknown. In the rest of the paper, we assume to
know the rover initial mode as the degraded mode Sensor BL
FL fault. For the sake of clarity, we also consider the End Of
Discharge (EOD) as a Rover end Of Life (EOL).

The proposed methodology is implemented in Python 3.4.
The tests were performed on a 4 Intel(R) Core(TM) i5 −
4590 CPU at 3.30 GHz with 16 GB of RAM and running
GNU/Linux (Linux 3.13, x86 64). In order to reduce com-
putation time, the token value updates are multi-threaded on
the 4 physical cores. The rest of the implementation uses one
core.

The scaling parameters are chosen for the HPPN-based
diagnoser in order to monitor between 18 and 37 hypotheses.
In order to only simulate the future of hypotheses with high
beliefs, but also to limit the prognosis computation time, the
HPPN-based prognoser scaling parameters are firstly set to:

(ρminΠ , ρmaxΠ , ρtotΠ ) = (1, 5, 100)Π.

Thereby, 20 to 100 hypothesis evolutions will be simulated,
with precisions varying between 1 and 5.

The prediction horizon is τ = 10000, because missions
last a maximum of 150 minutes. For the two scenarios,
future commands are based on recorded data, then the last
command is repeated to fulfill the prediction horizon. Finally,
the prognoser computes a prognosis result every 30 diagnoses.

A. Scenarios and Results

1) Nominal Scenario: In the nominal scenario, no fault is
injected. The rover successfully visits the 5 way-points and
returns to the charging station at 5064s.

Figure 6 shows the prognoser RUL estimates, i.e. the rover
remaining times before entering a failure mode, all along
the scenario. These RUL estimates are obtained from the
HPPN-based prognoser marking and Equation (9). The RUL
associated to all hypotheses simulated by the prognoser are
drawn with different shades of gray; the ones with the highest
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Fig. 6. Nominal scenario - RUL estimates with (40, 80, 1500)∆ and
(1, 5, 100)Π.
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Fig. 7. Battery parasitic load fault scenario - Mode beliefs at any time with
(40, 80, 1500)∆.

belief degrees are black, while the ones with the lowest belief
degrees are light gray. The real time of the End Of Mission
(EOM) is drawn with a dashed line. The gap between 81s and
281s corresponds to a break during the experiment.

From Figure 6, it is possible to verify that the EOL with the
highest belief degree is almost always around 8150s. These
results are consistent with our expectations because there is
a constant difference of about 3000s between the EOM and
these EOL. EOM occurs before EOD. This illustrates that the
diagnoser keeps the true mode Sensor BL FL fault in its set of
possible current modes and assigns it a high belief all along
the scenario.

Other modes are also considered by the diagnoser at any
time because of the model-based uncertainty, leading to shorter
RUL in Figure 6.

2) Parasitic Load Fault Scenario: In this scenario, a 2 A
battery parasitic load fault (fault f2) is injected between 772s
and 784s and the rover is fully discharged at 4571s before
returning to its starting point.

Figure 7 shows the belief degrees at any time of some
modes, giving an overview of the system diagnosis. The belief
degree of a mode at any time is represented by the thickness
of the line and the highest belief degree of all the modes is
plotted in blue. The belief degree of a mode at time k is the

Fig. 8. Battery parasitic load fault scenario - RUL estimates with
(40, 80, 1500)∆ and (1, 5, 100)Π.

maximum of the belief degrees of all the hypotheses being in
that mode at time k.

Figure 8 shows the prognoser RUL estimates and the real
EOL (dashed line) for the faulty scenario. It illustrates that
the HPPN-based prognoser succeeds to compute the expected
RUL estimates and thus validates the model. Before the fault
occurrence, we can see the same scheme as for the nominal
scenario.

After the fault occurrence, the RUL estimates for hypotheses
with the highest beliefs (in dark) underestimate the real EOL.
After 3000s, estimates and real value coincide.

More precisely, between 750s and 2800s, two clusters
of RUL stand: they correspond to the diagnosis hypotheses
considering the system is still in the initial mode and the ones
considering that f2 has occurred.

After 2800s, a third cluster appears in the RUL estimates
in Figure 8. It corresponds to diagnosis hypotheses stemming
from the initial hypothesis and that consider a parasitic load
recently appeared. These diagnosis hypotheses have however
lower belief degrees than the others ones (light gray).

3) Comparison with Other Approaches and Exploitation:
In comparison with other prognosis works on the rover [25],
the main advantage of our approach is that the RUL estimates
are not presented as an unique distribution but are clustered
in several distributions, where each cluster corresponds to one
of the main possible futures of the system. In case of decision
making in a health management context, if the operator is
pessimistic, the shortest RUL estimate will be obviously taken
into account.

Some indicators on RUL estimates can qualify the results.
A relevant indicator is the average relative error between the
shortest RUL estimate and the real RUL. In the faulty scenario,
between 760s and 4571s, it is -14.12%, which indicates the
shortest RUL is most of the time shorter than the real one.
Between 760s and 2676s, the error is -15.90%, and between
2677s and 4571s, it is -12.31%, indicating it is quite constant
along the scenario. These results are summed up in Table II.

A real-time estimation of the system past and future trajec-
tory can be more valuable than an estimation of the current
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Fig. 9. Battery parasitic load fault scenario - Hypotheses on the system
trajectories at 781s with (40, 80, 1500)∆ and (1, 5, 100)Π.

TABLE I
COMPUTATIONAL PERFORMANCES OF THE HPPN-BASED HEALTH

MONITORING FOR DIFFERENT SCALING PARAMETERS.

Scaling parameters ∆k time (s) Πk time (s) max. RAM (MB)

(40, 80, 1500)∆,
(1, 5, 100)Π

min. 0.28 52.12
max. 4.54 1188.48
ave. 3.35 605.32 126.73

(40, 80, 400)∆,
(1, 5, 100)Π

min. 0.28 0.03
max. 1.00 444.73
ave. 0.56 108.00 122.15

(20, 60, 400)∆,
(1, 1, 1)Π

min. 0.22 0.03
max. 0.98 33.50
ave. 0.74 12.35 112.18

mode and RUL/EOL. Figure 9 shows the distribution over the
system trajectories at 781s. It combines the past hypotheses in
the diagnosis and future hypotheses in the prognosis. Concern-
ing the prognoses, it clearly details four possible futures of the
system. This representation can be useful for the operator in
case of complex decision making.

B. Performance Analysis

Diagnosis and prognosis computation times, and the maxi-
mum RAM used for different sets of scaling parameters, are
given in Table I. Tests have been performed on three scenarios
(including the nominal and faulty scenarios presented above)
and run 12 times. 54403 diagnoses and 1822 prognoses were
computed.

These metrics point out that computation times with the
initial scaling parameters remain acceptable but do not respect
real-time constraints; observations sampling is about 1s and
the average diagnosis computation time is 4.54s. A prognosis
process is launched every 30s, but the minimum prognosis
computation time is 52.12s. This is mainly due to that both
processes rely on parallel step-by-step simulations but it is also
due to the rover model computational complexity.

The methodology complexity is difficult to evaluate because
it depends on the continuous equations, the DES structure and

(a) (b)

(c) (d)

Fig. 10. RUL estimates - (a),(c): nominal scenario; (b),(d): battery para-
sitic load fault scenario; (a),(b): (40, 80, 400)∆ and (1, 5, 100)Π; (c),(d):
(20, 60, 400)∆ and (1, 1, 1)Π.

TABLE II
BATTERY PARASITIC LOAD FAULT SCENARIO - AVERAGE RELATIVE
ERRORS BETWEEN SHORTEST RUL ESTIMATE AND REAL RUL (%).

Scaling parameters 760s-4571s 760s-2676s 2677s-4571s

(40, 80, 1500)∆, (1, 5, 100)Π -14.12 -15.9 -12.31
(40, 80, 400)∆, (1, 5, 100)Π -9.32 -10.29 -8.34
(20, 60, 400)∆, (1, 1, 1)Π -1.55 -4.56 1.51

the token number, among others. Moreover, software imple-
mentation, compilation optimization or virtual machine exe-
cution are also other performance factors difficult to evaluate
in practice. This is why we propose in this work to approach
performance constraints by tuning the scaling parameters.

We can see in Table I that reducing the scaling parameters
reduces computation times and memory usages. RUL esti-
mates (see Figure 10) are still acceptable, even if they are not
as detailed as with the initially parameter sets (40, 80, 1500)∆

and (1, 5, 100)Π.

Regarding the average relative errors between the shortest
RUL estimate and the real RUL for the battery parasitic
load fault scenario, we can see in Table II that reducing
the scale parameters reduces the error. It also highlights that
the error decreases along the scenario because the parasitic
load estimation becomes more consistent with the model as
explained is Section V. These results are consistent because
less uncertainty is taken into account.

This kind of performance analysis needs to be performed
during the design of the health monitoring phase for choosing
the relevant scale parameters. An interesting perspective of
this work is to develop some solutions for automatically find
the best scale parameters, knowing the required precision and
the computation time constraints.
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(a) Maximum speed commands.

(b) Stochastic commands.

Fig. 11. Battery parasitic load fault scenario - RUL estimates with
(40, 80, 1500)∆ and (1, 5, 100)Π, and unknown future commands.

C. Unknown Future Commands

In this section, results of RUL estimation are given in
the case where future inputs are unknown. In such a case,
we propose to dynamically construct the set of future inputs
U+
k following a given rule. The construction consists in

determining the wheel speed commands at any future time
κ. Wheel speeds are commanded with value between 0 and
100, where 100 is the maximum speed value.

We propose two kinds of rules, inspired by [27]. The
first one considers the rover will go straight at the highest
speed. The 4 command variables of uκ are thus set to the
maximum speed value 100, at any future time κ. The second
rule considers the rover will move randomly and thus the
future wheel speed commands are then randomly chosen. More
precisely, for each time κ, the left-side (resp. right-side) wheel
speed is randomly chosen between 0, 50 and 100.

Figures 11 (a) and (b) show the results of the use of the
two rules for the battery parasitic load fault scenario. They
show quite similar results than Figure 8. By looking at the
average relative errors between the shortest RUL estimate and
real RUL (Table III), we can see that both rules provide slightly
smaller errors than those obtained with known future com-
mands (between 1.45% and 9.57%). Using stochastic future
commands divides by almost 2 the average error between 760s
and 4571s, and by almost 4.5 the average error between 2677s
and 4571s. We can deduce that in this particular case, the use
of the stochastic rule corrects the model inaccuracy during the
simulation of the future behavior of the K11.

TABLE III
BATTERY PARASITIC LOAD FAULT SCENARIO - AVERAGE RELATIVE
ERRORS BETWEEN SHORTEST RUL ESTIMATE AND REAL RUL (%).

Future command types 760s-4571s 760s-2676s 2677s-4571s

Known commands -14.12 -15.9 -12.31
Maximum speed commands -11.33 -14.45 -8.16
Stochastic commands -7.66 -12.5 -2.74

This case study leads to several conclusions on the HPPN-
based prognosis method:
• it is adaptable to systems without discrete observations

nor degradation knowledge,
• it is robust to real system data and provides results that

are consistent,
• it is tunable to fulfill performance constraints (both the

diagnoser and prognoser scaling parameter sets have an
effect on the prognoser performance),

• reducing the scaling parameters still provides acceptable
results but does not respect prognosis real-time con-
straints for the rover with the current implementation,

• it can be used without knowledge on the future com-
mands, and it particularly provides interesting results
when using stochastic future commands.

VI. CONCLUSION

This work proposes an original prognosis approach of hy-
brid systems based on Hybrid Particle Petri Nets, and its appli-
cation on a real case study, the K11 planetary rover prototype.
The main contributions are the uncertainty management and
the compromise between performance and available computa-
tional resources, through the setting of scaling parameters in
the SSA. Two scenarios are tested on the rover to illustrate the
usability of the proposed methodology. Results are consistent
and show that the prognosis method is robust to real system
data. The metrics show its computational performance.

As said in Section V-B, an interesting perspective is first
of all to develop some solutions for automatically finding the
best scale parameters, knowing the required precision and the
computation time constraints. Learning approaches or fuzzy
logic could be investigated. Future works will also focus on
the HPPN-based diagnoser and prognoser verifications. We
aim at investigating how the HPPN-based prognoser results
may influence the HPPN-based diagnoser results (and vice
versa). The prognoser could, for example, increases the preci-
sion of the monitoring of a system hypothesis whose predicted
trajectory is particularly critical.
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Figure captions:
Fig. 1. From Diagnosis to Prognosis
Fig. 2. Streamlined Description of the K11 health evolution
Fig. 3. Overview of the health monitoring architecture
Fig. 4. Prognoser HPPNΠ of the K11 rover
Fig. 5. Illustration of HPPNΠ initialization
Fig. 6. Nominal scenario - RUL estimates with (40, 80, 1500)∆

and (1, 5, 100)Π

Fig. 7. Battery parasitic load fault scenario - Mode beliefs at
any time with (40, 80, 1500)∆

Fig. 8. Battery parasitic load fault scenario - RUL estimates
with (40, 80, 1500)∆ and (1, 5, 100)Π

Fig. 9. Battery parasitic load fault scenario - Hypotheses
on the system trajectories at 781s with (40, 80, 1500)∆ and
(1, 5, 100)Π

Fig. 10. RUL estimates - (a),(c): nominal scenario; (b),(d):
battery parasitic load fault scenario; (a),(b): (40, 80, 400)∆

and (1, 5, 100)Π; (c),(d): (20, 60, 400)∆ and (1, 1, 1)Π

Fig. 11. Battery parasitic load fault scenario - RUL estimates
with (40, 80, 1500)∆ and (1, 5, 100)Π, and unknown future
commands


