
HAL Id: hal-02327826
https://laas.hal.science/hal-02327826v1

Submitted on 23 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A case study of automated dual-arm manipulation in
industrial applications

Yoann Solana, Hector Herrero Cueva, Alvaro Rubio Garcia, Sergio Martinez
Calvo, Urko Esnaola Campos, Damien Sallé, Juan Cortés

To cite this version:
Yoann Solana, Hector Herrero Cueva, Alvaro Rubio Garcia, Sergio Martinez Calvo, Urko Esnaola
Campos, et al.. A case study of automated dual-arm manipulation in industrial applications. 24th
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2019), Sep
2019, Zaragoza, Spain. pp.563-570, �10.1109/ETFA.2019.8869209�. �hal-02327826�

https://laas.hal.science/hal-02327826v1
https://hal.archives-ouvertes.fr


A case study of automated dual-arm manipulation
in industrial applications

Yoann Solana
LAAS-CNRS

Université de Toulouse, CNRS
Toulouse, France

Hector Herrero Cueva
Tecnalia Research and Innovation

Industry and Transport Division
San Sebastian, Spain

Alvaro Rubio Garcı́a
AIRBUS Operations
Puerto Real, Spain

Sergio Martı́nez Calvo
AIRBUS Operations
Puerto Real, Spain

sergio.martinez-calvo@airbus.com

Urko Esnaola Campos
Tecnalia Research and Innovation

Industry and Transport Division
San Sebastian, Spain

urko.esnaola@tecnalia.com

Damien Sallé
Tecnalia Research and Innovation

Industry and Transport Division
San Sebastian, Spain

Juan Cortés
LAAS-CNRS

Université de Toulouse, CNRS
Toulouse, France

juan.cortes@laas.fr

Abstract—Nowadays, factories are required to increase produc-
tion flexibility in order to manufacture small-lot variants, rapidly
adapting to customer demands. Furthermore, manufacturing
may involve complex manipulation tasks, usually performed by
human workers. In such a context, traditional robotic systems are
not competitive due to the huge costs of installation, maintenance
and adaptation. A new generation of robots, equipped with
multiple arms, is appearing as an attractive alternative because
of their potential versatility and ability to execute intricate
manipulation tasks. To facilitate the integration of these robots
in a work-cell and a rapid adaptation to different tasks, easy-
to-use programming interfaces and a high degree of autonomy
are mandatory. Autonomous task and motion planning are
particularly relevant in this context. In this paper, we present
our recent progress in this direction. Hardware and software
developments are explained in the context of a pilot dual-arm
robot station that is being integrated in the production line of
a big airplane manufacturer. First experimental results are also
presented.

Index Terms—Dual-arm manipulation, coordinated manipula-
tion, motion planning, flexible task programming software.

I. INTRODUCTION

The recent trends of mass customization of products and
lean approaches impact production by a drastic reduction of
lot sizes. In this context, traditional automation and robotics
fail to be competitive since all individual product variants
would require a new complete automation project. In addition,
keeping up with the introduction of robots outside of the
traditional sectors requires to automate much more complex
manipulation tasks, where traditional robotics fails to provide
a good ratio of cost vs. robustness, mainly due to the rigidity
of existing production equipment in terms of programming
and tools. There is thus a great opportunity in the manufac-
turing assembly sector (aeronautics, car industry, electronics,
SMEs...) for dual-arm robots, able to execute complex manipu-
lation/assembly tasks that are traditionally assigned to humans.
Many projects and developments are targeting this objective,
most of which involve academic and industrial partners. For

Fig. 1: The Nextage robot is manipulating a rib with both arms
to place it on the deburring support.

instance: THOMAS 1 focuses on creating a dynamically re-
configurable shop floor with mobile dual-arm robots; VER-
SATILE 2, in turn, applies dual-arm capabilities in executing
complex tasks that are traditionally assigned to humans due
to their manipulation requirements; and SHERLOCK 3, which
focuses on human-robot collaboration, and specifically, co-
manipulation of large parts by a dual-arm mobile manipulator.

Several examples of dual-arm robots have been showcased
in recent years. However, apart from a very few exam-
ples (such as those exhibited at the DARPA robotics chal-
lenge [1]), most applications demonstrate high-level sequence-
coordinated individual motions of each arm. To move from
coordinated individual arm motions to complex dual-arm
motions, one must solve planning and control problems for

1THOMAS : http://www.thomas-project.eu/
2VERSATILE : https://versatile-project.eu/
3SHERLOCK : http://www.sherlock-project.eu/home/



the closed kinematic chain formed by the two arms and
the manipulated part. Some interesting approaches have been
developed at a lab scale (e.g. [2], [3], [4]), but have not yet
been transferred to or tested in industrial pilot stations.

To make the jump from lab scale to industry, flexibility
is mandatory, in addition to robustness. Moreover, it is very
important to facilitate the use of the system by moderately
qualified operators. Easiness of use is therefore an important
aspect, even more when one wants to adopt the paradigm
of Industry 4.0 [5], where all the systems in a factory are
connected and must provide the tools to flexibly adapt to the
continuous changes in production.

This paper presents ongoing work on the development of a
software platform to facilitate the integration of versatile dual-
arm robots in the manufacturing industry. The developments
are illustrated in a real use-case: a pilot work-cell located at
the AIRBUS factory in Puerto Real (Spain), where a dual-arm
robot is being deployed to debur parts of an AIRBUS A380
aircraft. This use-case, together with the specific hardware, are
presented in Section II. Then, Section III presents the software
architecture being used. In parallel to the work presented
in this paper, we are developing several approaches (skill-
based programming, CAD-based programming, ...) to enable
moderately qualified operators to easily specify a manipulation
task [6]. Here, we focus on dual-arm motion planning, which
is one of the key issues to be solved in the context of
this case study. Motion planning is required to automatically
generate trajectories of the robot to perform manipulation
tasks while satisfying intrinsic constrains of the system as
well as collision avoidance with obstacles in the workspace.
Section IV describes the motion planning problems that need
to be solved in the present use-case, and explains the adopted
state-of-the-art methods. Details about the implementation
of these motion planning methods in our software platform
are provided in Section V. Results presented in Section VI
show the performance of the implemented solution. Finally,
Section VII presents conclusions and directions for future
work.

II. USE-CASE AND HARDWARE

A. The scenario and its technical particularity

The pilot case presented in this paper is a work-cell located
at AIRBUS Puerto Real. This work-cell is being developed for
a dual-arm robot to work instead of a human for deburring the
120 different ribs of the vertical and horizontal tail planes of
an AIRBUS A380 aircraft. The possibility to replace human
workers by robots in this context is important due to the
potential toxicity of the task.

Using a Nextage dual-arm robot as the one shown in
Fig. 1 (see Section II-D for explanations about the robot),
the smallest ribs can be manipulated with one arm while using
the other arm for the deburring task. However, 35% of the ribs
cannot be processed in this way because of their larger size
and weight. Coordinated dual-arm capabilities are required in
this case to move the ribs using both arms. This technological
enhancement, unavailable in the software packages used as a

Fig. 2: Lay-out and main elements of the work-cell: a) rib
container rack; b) deburring support; c) lineal track.

basis for this work, had to be implemented for a full-scale
validation before production deployment.

B. Cell design

Different parts were designed for the work-cell:
(a) Rib container rack: This rack (Fig. 2.a) allows to store

the ribs in an accurate position, easy to reach from both
sides by the robot and by a human operator. The robot will
be able to reposition each rib using one arm, by sliding
motion of the rib on the rack, if needed previously to
grasping it with the two arms.

(b) Deburring support: This support allows the robot to place
each rib on it, and to debur its holes from both sides. The
robot slides the part along the support, using one arm, to
make the holes reachable for the deburring tool mounted
on the other end-effector.

(c) Lineal track: The lineal track (Fig. 2.c), on which the
robot is mounted, enables the robot to move alongside
the container rack to reach all the ribs.

C. Lay-out

The integration of all the elements of the working cell can
be seen in the lay-out represented on the left side of Fig. 2.
The operator will only have to go inside the work-cell to get
processed ribs from the rack and to furnish new ribs to be
deburred, the rest of the process being fully automated.

D. The robot

The Kawada Nextage Open robot4 (Fig. 1) was chosen for
the pilot work-cell described in this paper. It has two arms
with 6 degrees of freedom (dof) each attached to a rotary
torso (1 dof) and a stereo-vision-equipped head with 2 dof;
15 dof altogether managed by a single controller.

4Kawada Nextage : http://nextage.kawada.jp/en/



For the application described in this work, the robot was
equipped with specific grippers and an RGB-D camera for
workspace monitoring. Combined with the CAD models of the
work-cell, the data provided by the RGB-D camera is used to
build a virtual representation of the workspace, which is used
for motion planning as explained below. The left arm has a
pneumatic gripper designed for grasping carbon fiber parts.
The right arm has a multipurpose gripper that incorporates:
(i) a suction cup for holding the parts; (ii) a deburring tool;
and (iii) a pair of cameras to detect the holes of the carbon
fiber parts to enable a high-precision deburring operation.

III. SOFTWARE ARCHITECTURE

The software architecture was developed to allow full con-
trol of the executed task. In is based on the Robot Operating
System (ROS)5 [7]. The robot is connected to ROS through
a bridge developed by JSK (Jouhou System Kougaku) Lab-
oratory at The University of Tokyo6, in collaboration with
Tokyo Opensource Robotics Kyokai Association (TORK)7 and
Tecnalia8. OpenRTM9, developed by AIST, was used as a
middleware. This combination of components allows using
all ROS capabilities. At this point, it should be emphasized
that, thanks to the use of ROS, the software architecture is
hardware vendor independent: different robotic hardwares can
be used through appropriate interfaces between ROS and the
robot controller.

In addition, the proposed software architecture is aimed to
facilitate the implementation of new applications by increasing
the re-usability of the developed modules. Through an easy-
to-use graphical user interface (see [6] for additional details
on the software architecture and interface), operators are able
to create, modify, reuse and maintain industrial processes, thus
increasing the flexibility of the cell.

As shown in the Fig. 3, the architecture is composed of
three layers, namely: (i) application development layer, which
allows to create, load and modify processes; (ii) execution
engine layer, to execute a broad portfolio of primitives and
skills; and (iii) robotic interface layer, providing the necessary
interfaces and controllers for different robots [6]. Regarding
the aforementioned reusability and flexibility, the application
development layer allows the selection of previously developed
operations. These operations are the mentioned skills and
range from generic tasks such as dual-arm pick and place to
more specific tasks as dual-arm deburring. These skills can be
reused in similar processes, requiring a configuration to which
the operators are familiar.

Among the ROS packages and tools, MoveIt!10 was mostly
used in this work for motion planning. The extension of the

5Robot Operating System (ROS) : http://www.ros.org/
6Jouhou System Kougaku Laboratory, Tokyo University :

http://www.jsk.t.u-tokyo.ac.jp/
7Tokyo Opensource Robotics Kyokai Association (TORK) :

http://opensource-robotics.tokyo.jp/
8Tecnalia : http://www.tecnalia.com/en/
9OpenRTM-AIST middleware : http://openrtm.org/
10MoveIt! : http://moveit.ros.org/

Fig. 3: Three-layer-based software architecture: application
development through diverse approaches, execution engine for
task execution and capability managment, and interface with
the actual robotic systems.

MoveIt! framework to enable dual-arm manipulation is de-
scribed in SectionV. The point-cloud obtained from the RGB-
D camera was integrated into MoveIt! using the Octomap
plugin. Thanks to this, the 3D occupancy grid implemented
in the Octomap library can be added to the MoveIt! Planning
Scene, and thus taken into account for motion planning in
addition to the static objects directly considered in the model.

IV. DUAL-ARM MOTION PLANNING

A. Problem Formulation

The whole deburring process of a part requires different
types of motions of the robot, involving one or two arms:
Ms1 : pick the part on the rack with the left arm.
Ms2 : extract the part from the rack (sliding motion) using the

left arm and the torso.
Md3 : pick the part with the right arm.
Md4 : place the part on the deburring support using both arms.
M5 : a sequence of motions, involving mainly the right arm,

to perform the deburring process.
Md6 : place the part in front of the rack using both arms.
Ms7 : put the part back on the rack (sliding motion) using the

left arm and the torso.
Ms8 : ungrasp and move back to the initial configuration.
Fig. 4 shows some snapshots corresponding to intermediate
states that illustrate these elementary motions. Each motion
(with the exception of M5, which requires an ad-hoc vision-
based technique not described here) is obtained by solving a
planning problem for a given start qs and goal qg states of
the robot, and considering the current state of the objects in
the workspace. In other words, a motion planning algorithm
is required to find a path between each pair of intermediate
configurations satisfying feasibility constraints, in particular
collision avoidance. A more formal definition of the motion
planning problem can be found in related literature, such as
[8], [9]. Note that, when one part is being manipulated, its



(a) Initial state (b) End of Ms1 (c) End of Ms2

(d) End of Md3 (e) End of Md4 (f) End of Md6

(g) End of Ms7 (h) Initial state after Ms8

Fig. 4: Snapshots of the motions described in Section IV-A

pose is directly determined from the configuration of the robot,
and collisions have to be avoided as for the robot’s bodies. It
is also important to mention that, in the coordinated dual-
arm manipulation case, feasible configurations of the robot
must satisfy a kinematic loop-closure constraint induced by the
object grasped with the two end effectors (Ei). The kinematic
loop-closure constraint is defined by a fixed transformation
E1TE2 , which can be determined from the grasping points in
the manipulated object.

In the current version of the software, the initial and final
configurations of each elementary motion are defined by the
user via the application development layer. The user can also
provide additional information to facilitate the manipulation
of the part, such as specifications about start/approach/retreat
translations for grasping/ungrasping. An automatic decompo-
sition of the overall manipulation task into the sequence of
elementary motions is an interesting direction for future work,
as will be mentioned in Section VII.

B. Methods

The motion planning problems to be solved in the present
context are complex due to the cluttered industrial environment
and the high dimensionality of the configuration space (up to
13 for both arms and the torso of the Nextage robot). Among
numerous types of planners, sampling-based algorithms have
been proved to be efficient methods to solve such complex
problems [10], [9]. Several of these planners, such as the Prob-
abilistic Roadmap (PRM) [11], the Rapidly-exploring Random
Tree (RRT) [12], and their variants, are commonly used in
motion planning software. In particular, these algorithms are
implemented in OMPL11 [13], a motion planning library used

11Open Motion Planning Library (OMPL) : http://ompl.kavrakilab.org/

within the MoveIt! framework.
For planning single-arm motions, basic versions of the

algorithms implemented in OMPL can be directly applied.
However, dual-arm motions require dealing with kinematic
loop-closure constraints, which must be considered at the mo-
tion planning level, significantly increasing the difficulty of the
problem. Several approaches have been proposed for extending
sampling-based planners to treat this type of constraints.
Some of them apply numerical methods to project sampled
configurations on the constraint manifold [14], [15], [16],
whereas others are based on a kinematic decomposition of the
mobile system and the application of closed-form (analytical)
inverse kinematics solvers [17], [18]. It has been shown that
kinematics-based decomposition approaches are preferable in
environments cluttered with obstacles [19]. Therefore, in this
work, we implemented state-of-the-art methods of this latter
class described in previous work [18], [20]. Note however
that other approaches for motion planning under kinematic
loop-closure constraints could be used with minor changes
in the code. The main idea behind this approach is that
some degrees of freedom are directly managed by the plan-
ner, whereas some others are computed using closed-form
inverse kinematics. Furthermore, some planning operations
are performed reasoning in the robot’s workspace, instead of
the configuration space. Although this requires introducing
additional variables, reasoning in the workspace allows a better
control of the manipulated object, and may lead to more
human-predictable motions when the robot works alongside
humans. Further details about the extension of MoveIt! to treat
dual-arm manipulation are provided below.

V. IMPLEMENTATION DETAILS

A. Functional view

At the highest level, the robot programming framework
manages the tasks to be performed by the robot. To process
a specific part, a sequence of motions is defined, as described
in the previous section. Then, for each motion Mi, a planning
request is sent to MoveIt!. Following the type of the task
and the group (i.e. set of joints) involved, the request is
performed by MoveIt! using the dedicated action/service. We
implemented specific action/service servers to compute pick
and place motions with one or two arms.

B. Developed components

Several components were implemented12 to add the dual-
arm capability to MoveIt!. All the components are ROS
packages and most of them are plugins. Fig. 5 shows the
interconnection of these components to solve a dual-arm
planning request (coming from the Application Development
layer). Each developed component is described below.

12The implemented MoveIt! components will be distributed as open-source
code in the short future.



OMPL

 move_group_x

OMPL
 Solve the problem

Dual Arm WorkerComponents from: MoveIt!

PR PR
 dual_arm_manipulation

Stage 1: Reachability
Stage 2: Translations
Stage 3: Planning_x

moveit_ros
Planning pipeline:

Apply adapters
Forward request

moveit_ompl_planning_interface
Define the interface to

a custom context and forward

dual_arm_context
Configure the context for OMPL

Use OMPL to solve

3rd party

dual_arm_msgs 1

1

dual_arm_constraints_sampler 2

2

2

Application
Development

Layer 

MoveIt!

PR = planning
request

Fig. 5: Functional view of the developed packages to solve a
dual-arm planning request. The numbers 1, 2 indicate where
the two unconnected components at the bottom are used.

1) move group x package: Overrides the MoveGroup object
provided by MoveIt! to interact with a robot. It adds the dual-
arm pick/place functions and eases the work for a user to build
a motion planning request.

2) dual-arm msgs package: Holds the definition of actions
and messages used to communicate a dual-arm pick/place
request to one of the dual-arm servers.

3) dual-arm manipulation package: Defines a plugin to add
the dual-arm manipulation capability to MoveIt!. It contains
two action servers that process dual-arm pick and place
requests by decomposing them into three stages. For instance,
a “place a part” query is decomposed as:

• goal reachability: It is aimed to generate a valid state of
the robot to place the object at a given location. For this,
the dual-arm constraint sampler is used to generate the
valid state for both arms and the torso from the pose of
the object and the two end-effectors.

• translations: Generates the start/approach/retreat linear
trajectories following the planning request.

• plan: Computes the trajectory from the last state of a start
trajectory to the first state of the approach trajectory. This
stage uses the dual-arm context to treat the problem with
dual-arm constraints.

4) dual-arm constraint sampler package: This sampler
generates valid configurations of a dual-arm robot for a given
pose of the two end-effectors, which is defined by the pose of
the manipulated object and the relative reference frames for
grasping it. This sampler requires inverse kinematics solvers
for the arms, but is general-enough to be used with any torso
(1, 2, ... dofs). Using ideas from related work [21], [20],
the algorithm incrementally samples the joint values of the
manipulation group (torso+arms) following a 3-stage proce-
dure. First, the configuration of the torso is sampled based on
the pose of the two end-effectors. Then, inverse kinematics
(IK) problems are solved to determine the configuration of
both arms satisfying the pose constraint. The analytical solver

IKFast13 [22] was used in this work. Finally, the validity of
the whole configuration with respect to collisions is tested.

5) dual-arm planning context: Inside MoveIt!, a planning
context is used to set up objects of the planning library
that are then applied to solve a request. Among the OMPL
objects, the state-space defines the set of state variables seen
by OMPL, and provides methods to process states. A new
context was developed to perform dual-arm motion planning
directly considering the pose of the manipulated object. More
precisely, this context involves the set of joint values for
the torso and the arms, plus the pose of the object. The
implemented OMPL state-space incorporates methods to man-
age the compound states and to perform actions (distance,
interpolate, sample, ...) required by the planner that satisfy
the dual-arm constraint. It can be plugged to MoveIt! using
the moveit ompl planning interface package.

VI. RESULTS

This section presents the results of an evaluation of the
computational performance of the motion planning algorithms,
and experimental results about the quality of the trajectories
executed by the robot.

A. Dual-arm motion planner

Solving the dual-arm motion planning problem, correspond-
ing to Md4, is the most computationally time-consuming
part of the process. For this, we apply the single-query bi-
directional RRT planner extended to closed kinematic chains,
as explained in the previous sections. We evaluated the perfor-
mances of the planner to solve 100 queries. A time-out of 5
seconds was set, after which the planner returns failure. CPU
time presented in this section corresponds to an Intel R© CoreTM

i7-6820HQ processor at 3.60 GHz with 16 GB of DDR4
SDRAM.

Table I presents a summary of the results for the planner.
The success rate of 100% indicates that all the planning
queries were solved in less than 5 seconds, which is an
indicator of the good performance of the planner given the
complexity of the constrained dual-arm motion. The average
time including path planning and post-processing (path sim-
plification, trajectory generation and verification) is around 1.5
seconds. This computational efficiency is in part explained by
the high sampling speed provided by the dual-arm constraint
sampler (around 200 configurations per second), which allows
to rapidly construct the exploration tree.

13IKFast plugin :
http://docs.ros.org/indigo/api/moveit tutorials/html/doc/ikfast tutorial.html

TABLE I: Dual-arm planning results averaged over 100 at-
tempts to generate the motion Md4.

success 100%
time to find a path 0.91s
time to post-process path 0.51s
total time to solve request 1.42s



B. Experiment

The developments presented in this paper were validated
in simulation as well as on the real robot. A video showing
experimental results in different situations, including compli-
cated motions due to a very cluttered workspace, is available14.
All the planned motions were accurately executed using ba-
sic methods implemented in ROS/MoveIt! and the standard
controller of the Nextage robot, based on a velocity control
following a trapezoidal profile. The available ROS driver for
commanding the robot accepts, as a command, a message
specifying the desired position, velocity and acceleration of
each joint with a given time resolution. Afterwards, the robot
QNX controller acts as a black-box for following the planned
trajectory.

The implementation of the AddTimeParameterization
adapter from MoveIt! was used to generate trajectories from
the planned paths considering velocity and acceleration limits.
Although our experiments show that this method provides
good results in most cases, we envision the implementation of
a more sophisticated trajectory generation algorithm [23], [24].
Table II shows the time for the planned elementary motions
considering the maximum speed values in Table III, and a
maximum acceleration value of 1 rad/s2 for all joints. The
duration of the motions was measured at the Application De-
velopment level, including the time to solve planning requests,
which is very small compared to the execution time. For the
coordinated dual-arm motions (Md4 and Md6), the time is
higher than for the other motions due to the length of the
trajectory to move the part between the rack and the deburring
support.

The coordinated dual-arm motions are also the most chal-
lenging ones for execution. The constraints imposed by the
dual-arm grasping make the configuration of the arms to
be dependent on each other. If the controller is not able
to track the trajectory provided by MoveIt! accurately, then
large forces/torques can be exerted on the arms and the part,
leading to a failure and possible break. Fig. 6 presents a
comparison of the joint values for both arms between the
planned trajectory provided by MoveIt! and the executed
one corresponding to the coordinated motion Md4. The plots
show that the deviation is small (less than 0.012 radians on

14Video of experiments:
https://homepages.laas.fr/jcortes/ETFA2019/ETFA2019-DAW-video.mp4

TABLE II: Execution time of the planned elementary motions
to process a part (averaged over 10 tests)

motion time (s) motion time (s) motion time (s)
Ms1 7.74 Ms2 3.89 Md3 4.21
Md4 15.5 Md6 9.23 Ms7 3.08

TABLE III: Maximum speed values (rad/s)

joints speed joints speed joints speed
Torso-J0 1.91986 Arms-J0 3.00197 Arms-J1 2.32129
Arms-J2 3.99680 Arms-J3 4.60767 Arms-J4 3.90954
Arms-J5 5.23599

average and less than 0.1 radians in the worst case). The
largest errors appear in the last part of the trajectory for
certain joints. This is particularly visible for joints 1 and 2
of the left arm. The detected errors can be explained by slight
inaccuracies of the models. Nevertheless, these errors do not
produce any appreciable jump during the execution of the
planned trajectory. Note also that no warning message due
to an excessive effort during the manipulation was returned
by the robot. These results show that, thanks to the accuracy
of the dual-arm motion planner, complicated trajectories can
be executed using simple controllers. Nevertheless, as further
discussed in the next section, the implementation of more
sophisticated control methods is essential to enhance safety
and robustness, and would be a valuable complement to the
work presented in this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented ongoing work on the
development of flexible and easy-to-use software packages to
facilitate the integration of autonomous dual-arm manipulators
in manufacturing industry. Such software is an essential ingre-
dient to enable rapid reconfiguration of a robot in a versatile
work-cell.

The current capabilities of the implemented methods were
illustrated through an application scenario in the context
of aerospace industry. Using models of the robot and the
work-cell, the operator can easily specify a manipulation
task, involving single-arm and dual-arm motions. The robot
automatically computes collision-free trajectories in very short
time, and then executes the motions with high accuracy.

Our first goal for future work is to improve the robustness of
motion planning and execution methods by integrating more
sophisticated dynamic collision avoidance algorithms. The
idea is to equip the work-cell with other sensors, in addition to
the RGB-D camera, able to detect and localize the presence of
unexpected obstacles, and to use this information for on-line
trajectory adaptation or re-planning. This is required for safety
when human operators are allowed to enter the work-cell while
the robot is working. As mentioned at the end of the results
section, safety and robustness can also be enhanced using more
advanced control methods. In particular, and depending on the
accessible control inputs and on the embedded force/torque
sensors, force control methods (Chapter 9 in [25]) would be
a perfect complement to the dual-arm motion planner.

Aiming to further simplify robot programming, another
objective for future work is the implementation of methods for
the automatic decomposition of the high-level manipulation
task into the sequence of elementary motions and actions.
Several methods have been proposed to solve such a task
decomposition problem based on extensions of sampling-
based motion planning algorithms [26], [27], [28], or on a
combination of motion planning and symbolic task planning
algorithms [29].



Fig. 6: Comparison of the right and left arms joint values for motion Md4 between a planned trajectory and the executed one.

ACKNOWLEDGMENT

This work was conducted in the context of the DualArm-
Worker experiment, which received funding from the Euro-
pean Union’s Seventh Framework Programme for research,
technological development and demonstration, as part of the
project ECHORD++ under grant agreement no. 601116.

REFERENCES

[1] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss,
G. Pratt, and C. Orlowski, “The DARPA robotics challenge finals:
Results and perspectives,” Journal of Field Robotics, vol. 34, no. 2,
pp. 229–240, 2017.

[2] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann,
“Humanoid motion planning for dual-arm manipulation and re-grasping
tasks,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2009, pp. 2464–2470.

[3] N. Hudson, J. Ma, P. Hebert, A. Jain, M. Bajracharya, T. Allen,
R. Sharan, M. Horowitz, C. Kuo, T. Howard, L. Matthies, P. Backes, and
J. Burdick, “Model-based autonomous system for performing dexterous,

human-level manipulation tasks,” Autonomous Robots, vol. 36, no. 1, pp.
31–49, 2014.

[4] B. Cohen, S. Chitta, and M. Likhachev, “Single- and dual-arm motion
planning with heuristic search,” International Journal of Robotics Re-
search, vol. 33, no. 2, pp. 305–320, 2014.

[5] H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for
implementing the strategic initiative INDUSTRIE 4.0 – securing
the future of german manufacturing industry,” Acatech – National
Academy of Science and Engineering,” Final Report of the Industrie
4.0 Working Group, 2013. [Online]. Available: http://forschungsunion.
de/pdf/industrie 4 0 final report.pdf

[6] H. Herrero, J. L. Outón, M. Puerto, D. Sallé, and K. López de
Ipiña, “Enhanced flexibility and reusability through state machine-based
architectures for multisensor intelligent robotics,” Sensors, vol. 17, no. 6,
2017.

[7] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[8] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[9] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[10] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf


Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

[11] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[12] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees :
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, B. Donald, K. Lynch, and D. Rus, Eds. A.K. Peters,
2001, pp. 293–308.

[13] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[14] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path
planning for linkages with closed kinematic chains,” IEEE Transactions
on Robotics and Automation, vol. 17(6), pp. 951–958, 2001.

[15] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Transactions on Robotics, vol. 26, no. 3, pp.
576–584, 2010.

[16] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by
rapidly exploring manifolds,” IEEE Transactions on Robotics, vol. 29,
no. 1, pp. 105–117, 2013.

[17] L. Han and N. M. Amato, “A kinematics-based probabilistic roadmap
method for closed kinematic chains,” in Algorithmic and Computational
Robotics: New Directions (WAFR2000), B. Donald, K. Lynch, and
D. Rus, Eds. A.K. Peters, 2001, pp. 233–245.

[18] J. Cortés and T. Siméon, “Sampling-based motion planning under kine-
matic loop-closure constraints,” in Algorithmic Foundations of Robotics
VI, M. Erdmann, D. Hsu, M. Overmars, and F. van der Stappen, Eds.
Springer-Verlag, 2005, pp. 75–90.

[19] A. Sintov, A. Borum, and T. Bretl, “Motion planning of fully actuated
closed kinematic chains with revolute joints: A comparative analysis,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2886–2893,
2018.

[20] M. Gharbi, J. Cortés, and T. Siméon, “A sampling-based path planner
for dual-arm manipulation,” in IEEE/ASME Int. Conf. on Advanced
Intelligent Mechatronics, 2008, pp. 383–388.

[21] J. Cortés, T. Siméon, and J.-P. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using prm methods,” in
Proc. IEEE Int. Conf. Robotics and Automatation, 2002, pp. 2141–2146.

[22] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” PhD Dissertation, Carnegie Mellon University, Robotics Insti-
tute, 2010.

[23] X. Broquère, D. Sidobre, and I. Herrera-Aguilar, “Soft motion trajec-
tory planner for service manipulator robot,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008, pp. 2808–2813.

[24] T. Kröger and F. M. Wahl, “Online trajectory generation: Basic concepts
for instantaneous reactions to unforeseen events,” IEEE Transactions on
Robotics, vol. 26, no. 1, pp. 94–111, 2010.

[25] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. Springer, 2010.

[26] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” International Journal of Robotics
Research, vol. 23, pp. 729–746, 2004.

[27] K. Harada, T. Tsuji, and J. P. Laumond, “A manipulation motion planner
for dual-arm industrial manipulators,” in IEEE Int. Conf. on Robotics
and Automation, 2014, pp. 928–934.

[28] P. Lertkultanon and Q.-C. Pham, “A certified-complete bimanual ma-
nipulation planner,” IEEE Transactions on Automation Science and
Engineering, vol. 15(3), pp. 1355–1368, 2018.

[29] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate mo-
tion, manipulation and task planning,” International Journal of Robotics
Research, vol. 28, no. 1, 2009.


	Introduction
	Use-case and Hardware
	The scenario and its technical particularity
	Cell design
	Lay-out
	The robot

	Hardware and Software Architecture
	Dual-arm Motion Planning
	Problem Formulation
	Methods

	Implementation Details
	Functional view
	Developed components
	move group x package
	dual-arm msgs package
	dual-arm manipulation package
	dual-arm constraint sampler package
	dual-arm planning context


	Results
	Dual-arm motion planner
	Experiment

	Conclusion and Future Work
	References

