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Abstract—This paper presents GRIDHPC, a decentralized
environment dedicated to high performance computing. It relies
on the reconfigurable multi network protocol RMNP to support
data exchange between computing nodes on multi network
systems with Ethernet, Infiniband, Myrinet and on OpenMP
for the exploitation of computing resources of multicore CPU.
We report on scalability of several parallel iterative schemes
of computation combined with GRIDHPC. In particular, the
experimental results show that GRIDHPC scales up when
combined with asynchronous iterative schemes of computation.

Keywords-Grid computing, High Performance Computing,
Computing environment, Heterogeneous networks, Loosely
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I. INTRODUCTION

In this paper, we present the decentralized environ-
ment GRIDHPC dedicated to High Performance Computing
(HPC) on grid platforms. HPC applications that we consider
are basically loosely synchronous applications like the solu-
tion of numerical simulation problems [1] that present fre-
quent data exchanges between computing nodes. GRIDHPC
facilitates the use of large scale distributed systems and the
work of programmer. In particular it uses a limited number
of communication operations.

The GRIDHPC environment allows data exchange between
computing nodes with multi network, multi-core configura-
tions. It relies on the Reconfigurable Multi Network Protocol
(RMNP) to support data exchange on multi-network systems
and on OpenMP [2] for the exploitation of computing
resources of multi-core CPU.

The protocol of communication RMNP is an extension of
the Configurable Transport Protocol (CTP) [3] that makes
use of the Cactus framework [4]. RMNP can configure itself
automatically and dynamically in function of application re-
quirements like scheme of computation that is implemented,
i.e., synchronous or asynchronous iterative schemes and el-
ements of context like available network interface cards and
network topology by choosing the most appropriate com-
munication network and mode between computing nodes.
It can use simultaneously several networks like Ethernet,
Infiniband and Myrinet. These features are particularly im-
portant since we consider loosely synchronous applications

that present frequent data exchanges between computing
nodes. To the best of our knowledge, these features have
not been carried out previously on environments or runtime
systems in the literature.

The remainder of the paper is organized as follows. Related
work is presented in Section II. Section III deals with our
contribution to support communication in a multi-network
context. In particular, the Reconfigurable Multi Network
Protocol RMNP is presented. Section IV presents the archi-
tecture and task assignation of the GRIDHPC environment.
Parallel programming model is given in section V. Computa-
tional results with the decentralized environment GRIDHPC
for the obstacle problem are displayed and analyzed in
section VI. Section VII concludes this paper.

II. RELATED WORK

The possibility to consider heterogeneous network re-
sources for HPC applications goes back to Madeleine and
MPICH-Madeleine [5], [6]. Recently, research has focused
on runtime systems for HPC applications carried out on
heterogeneous architectures that combine multi-core CPU
and computing accelerators.

Heterogeneous multi-core platforms mixing CPUs and
computing accelerators are nowadays widely spread. High
Performance ParalleX (HPX) [7], [8] is a C++ runtime sys-
tem for parallel and distributed applications, some of which
are loosely synchronous applications. It has been developed
for systems of any scale and aims to address issues like
resiliency, power efficiency. It has a programming model
unifying all types of parallelism available in HPC systems
which uses the available resources to attain scalability. It
is portable and easy to use. It is published under an open-
source license and has an active user community. It is built
using dynamic and static data flow, fine grain future-based
synchronization and continuation style programming. The
main goal of HPX is to create an open source implemen-
tation of the ParalleX execution model [9] for conventional
systems like classic Linux based Beowulf clusters, Android,
Windows, Macintoch, Xeon/Phi, Bluegene/Q or multi-socket
highly parallel SMP nodes.

HPXCL [10] and APEX [11] are libraries which pro-



Figure 1: Example of Multi-Network distributed platform

vide additional functionality that extend the HPX. HPXCL,
allows programmers to incorporate GPUs into their HPX
applications. Users write an OpenCL kernel and pass it
to HPXCL which manages the synchronization and data
offloading of the results with the parallel execution flow
on the CPUs. APEX, gathers arbitrary information about
the system and uses it to make runtime-adaptive decisions
based on user defined policies.

StarPU [12] is a runtime system that provides an interface
to execute parallel tasks over heterogeneous hardware (multi
core processors and computing accelerators) and develop
easily powerful scheduling algorithms. It is based on the
integration of the data-management facility with a task
execution engine. The main components of StarPU are a
software distributed shared memory (DSM) and a scheduling
framework; DSM enables task computations to overlap and
avoid redundant memory transfers. The scheduling frame-
work maintains an up-to-date and a self-tuned database of
kernel performance models over the available computing
tasks to guide the task mapping algorithms. We note that
middle layers tools like programming environments and
HPC libraries can build up on top of StarPU to allow
programmers to make existing applications exploit different
accelerators with limited effort.

To the best of our knowledge, the above runtime systems
do not handle multi-network contexts that we find typically
in grids. In the next sections, we show how we have
addressed this issue and we propose a decentralized envi-

ronment for multi-network and multi-core grid platforms.

III. COMMUNICATION PROTOCOL

This section presents the mechanisms that support multi-
network communications.

A. Heterogeneous Multi-Cluster Environment

Figure 1 displays a multi-network platform with inter-
connected stand-alone computing nodes that can work co-
operatively as a single integrated computing resource. In
particular, Figure 1 shows the architecture of typical sets
of computing nodes built around low-latency, high band-
width interconnection network like Infiniband and Myrinet.
Supporting heterogeneous networks mainly consists in inte-
grating a functionality in order to switch from one network
to another, according to the communication needs.

B. Htable

1) Distance metric: We consider a distance metric that is
based on IP address. In particular, it concentrates on the third
group of the IP address. For example, in the case of three
computing nodes: A1 having IP address 192.16.64.10, A2
having IP address 192.16.64.11 and B1 having IP address
192.16.34.20, the value of third group of A1 and A2 is
equal to 64, while the value of third group of B1 is 34.
Consequently, it is deduced that A1 and A2 have the same
location (they are in the same cluster), while A1 and B1 are
in different locations (see Table I).



Table I: Example of content of Htable and test on the location of the hosts thanks to the comparison of IP addresses

2) Definition of Htable: Htable is designed to manage
several network adapters within the same application ses-
sion. In particular, Htable permits each computing node to
switch between the networks according to the communica-
tion needs.
Several network interface cards (NICs) are added to the
interface of the RMNP communication protocol and infor-
mation about these NICs are stored in the Htable. In the
Htable (see Table I), the IP addresses displayed in the first
line correspond to Ethernet network and the IP addresses
given in the second line, if any, correspond to fast network
like Infiniband or Myrinet.

C. Reconfigurable Multi Network Protocol RMNP

The Reconfigurable Multi Network Protocol RMNP aims
at enabling an efficient use of the complete set of underlying
communication softwares and hardwares available in a given
multi-network system that uses for example Ethernet, Infini-
band and Myrinet. It is able to deal with several networks
via the management of several networks adapters.

1) choice of networks: The network management proce-
dure has two steps (see Algorithm 1). First step corresponds
to the test of the locality between the computing nodes
thanks to the comparison of IP addresses and the second
step corresponds to the choice of the appropriate network
for data exchange depending on the locality of computing
nodes. In particular, the second step is based on choosing
the best interface network (high bandwidth and low latency
network) from the Htable according to the result of the
locality test. Consequently, if the locality test returns that
the considered computing nodes have different locations,
then the Ethernet network interface is chosen to perform
the communication between the two computing nodes. If
the locality test returns that the computing nodes have the
same location, then the best network interface in the Htable
is selected, e.g., Infiniband or Myrinet.

2) Example of scenario: We present now a simple sce-
nario for the RMNP communication protocol so as to
illustrate its behavior. We consider a high performance com-
puting application, like for instance a large scale numerical
simulation application, solved on the network composed
of two clusters shown in Figure 1. Computing nodes in

Algorithm 1: Test locality and choose the best network
function Localityandbestnet (laddress, raddress);
Input : laddress and raddress : Ethernet IP addresses

of local and remote computing nodes

/* inet_ntop converts the network
address structure into a character
string */

inet ntop(AF INET,&(laddress.sin addr), l, 80) ;
inet ntop(AF INET,&(raddress.sin addr), r, 80)
;
substringl← GetV alThirdGroup(l) ;
/* GetValThirdGroup function get the

value of third group of a given IP
address */

substringr ← GetV alThirdGroup(r) ;

if strcmp(substringl, substringr) == 0 then
/* Local and Remote computing nodes

belong to the same cluster */
Bestladdress← Get(laddress) ;
/* Get function get the best

interface network from Htable */
Bestraddress← Get(raddress) ;
/* Communication between computing

nodes are made via the best
network (Infiniband or Myrinet
Network), i.e., Bestladdress and
Bestraddress */

else
/* Local and Remote computing nodes

are in different cluster, Hence
communication between them are
made via Ethernet Network, i.e.,
laddress and raddress */

cluster A own both a Fast-Ethernet card, i.e., 192.16.64.x
and Infiniband card, i.e., 192.18.64.x (see Table I) and
computing nodes in cluster B own both a Fast-Ethernet card,
i.e., 192.16.34.x and Myrinet card, i.e., 192.18.34.x where x



is a value between 1 and 255. We suppose that we have
a communication network between computing nodes like
A1 ↔ A2, A2 ↔ B1 and B1 ↔ B2 where X ↔ Y
means that there is bidirectional link between X and Y.
The value of third group of A1 and A2 is equal to 64.
Consequently, the communication between A1 and A2 that
share the same high speed networks is made via Infiniband
network. The values of third group of A2 and B1 are 64
and 34, respectively. Hence, the communication between the
considered computing nodes is made via Ethernet network.
The value of third group of B1 and B2 is equal to 34.
Consequently, the communication between the considered
computing nodes is made via Myrinet network.

IV. THE DECENTRALIZED ENVIRONMENT GRIDHPC

A. Environment Architecture of GRIDHPC

The decentralized environment GRIDHPC natively sup-
ports any combination of networks and multi-core CPUs by
using the reconfigurable multi network protocol RMNP and
OpenMP. Figure 2 shows the architecture of GRIDHPC. It
consists of five main components [13].

1) Interface Environment Component: It is the interaction
interface between the application like obstacle problem and
the environment. It allows users to submit their tasks and
retrieve final results.

Figure 2: Environment Architecture of GRIDHPC

2) Helper Programs: GRIDHPC works with tools called
helper programs that are responsible for the analysis of
the application, task assignation and building the network
topology. The helper programs rely on two pillars namely the
CPU manager and the Network selection manager (see Fig.
2). The CPU manager is composed of Job Initialization and
Job Execution. The Network selection manager is composed

of Topology Initialization and RMNP-OpenMP components.
In the CPU manager module, there are two components :
• Job Initialization Component is responsible for problem

decomposition and assignment of tasks to individual
CPU cores.

• Job Execution Component executes sub-tasks on the
different CPU cores, takes care of data exchange, i.e.,
communication of updates produced by the parallel
iterative method. At the end of the application, it
regroups the results from all the computing cores.

In the Network selection manager module, there are two
components :
• Topology Initialization Component organizes connected

computing nodes into clusters and maintains links be-
tween clusters. It is based on storing in the Htable in-
formation regarding the network interface cards (NIC)
used in the application by the different computing
nodes.

• RMNP Component provides support for directed data
exchange between computing nodes on several net-
works like Infiniband, Myrinet and fast Ethernet using
the reconfigurable multi-network protocol RMNP.

We note that the CPU manager is in charge of data exchange
between computing cores, i.e., read/write; while the network
selection manager is in charge of data exchange between
computing nodes via the best underlying network, i.e., high
speed and low latency network like Infiniband and Myrinet.
The combination of the CPU manager and the Network
selection manager permits us to use the decentralized en-
vironment GRIDHPC in a multi-network and multi-core
context.

B. Processor hierarchy and GRIDHPC

Task assignation in GRIDHPC [13] is based on a hierar-
chical Master-Worker paradigm that relies on three entities:
a master, several sub-masters (coordinators) and several
workers.
The master or submitter is the unique entry point, it gets the
entire application as a single original task, i.e., root task.
The master decomposes the root task into sub-tasks and
distributes these sub-tasks amongst a farm of workers. The
master takes also care of gathering the scattered results in
order to produce the final result of the computation.
The sub-masters or coordinators are intermediary entities
that enhance scalability. They forward sub-tasks from the
submitter to workers and return results to the submitter
limiting network congestion.
The workers run in a very simple way: they receive a
message from the sub-master that contains their assigned
sub-tasks and they distribute them to their computing cores.
They perform computations and data exchange with neigh-
boring computing nodes. At the end of the application,
when the iterative schemes has converged, they regroup the



results from all their computing cores and send them back
to the coordinator. The coordinators transfer results to the
submitter. Note that the number of workers in a group cannot
exceed 32 in order to ensure efficient management of a sub-
master. Figure 3 shows an example of processor hierarchy.

Figure 3: Processor Hierarchy

V. PARALLEL PROGRAMMING MODEL OF GRIDHPC

A. Communication operations

We aim at facilitating the use of GRID platforms as
well as the programming of large scale HPC applications
and hiding the complexity of communication management.
The communication protocol RMNP has a reduced set
of communication operations, there are only GRID Send,
GRID Receive and GRID Wait. Contrarily to MPI commu-
nication library where communication mode is fixed by the
semantics of communication operations, the communication
mode of a given communication operation depends on the
context at application level like chosen parallel iterative
scheme of computation, e.g., synchronous or asynchronous
iterative scheme and elements of context like topology at
network level, i.e., inter or intra cluster communication
and type of network like Ethernet, Infiniband and Myrinet.
The programming model permits us to expect scalable
performance and application flexibility. The prototype of the
communication operations of our programming model are
summarized in listing 1 where :
• GRID Send communication operation is used to send

a message placed in buffer to subtask destination.
• GRID Receive communication operation is used to

receive a message from sub-task source.
• GRID wait operation is used to wait for a message

from another computing node.

Note that flags parameters in these operations are used
to distinguish two types of messages: CTRL FLAG in-
dicates control messages and DATA FLAG indicates data
messages. Data messages are used to exchange updates
between computing nodes; while control messages are used
to exchange information related to computation state like
state of termination condition, termination command, etc.
These data are particularly important for the convergence
detection process and termination phase.

Listing 1: Prototype of RMNP communication operations
1) int GRID_Send(GRIDSubtask *pSubtask,

uint32_t dest, char *buffer, size_t
size, int flags);

2) int GRID_Receive(GRIDSubtask

*pSubtask, uint32_t source, char

*buffer, size_t size, int flags);

3) int GRID_Wait(GRIDSubtask* pSubtask,
uint32_t *iSubtaskRank, int *flags);

B. Application programming model

Figure 4 displays the activity diagram that a parallel
application must follow. The diagram consists of thirteen
activities.

• Task definition: First, the application is defined at
the submitter, i.e., setting task parameters as well as
computational schemes (synchronous iterations, asyn-
chronous iterations, hybrid), problem size and the num-
ber of computing nodes required. Note that hybrid
iterative scheme is a combination of synchronous and
asynchronous computation schemes, i.e., synchronous
iterations in the same cluster and asynchronous itera-
tions between clusters (at global level).

• Collect computing nodes: based on the task definition,
the submitter collects free computing nodes.

• Enough computing nodes: the submitter verifies if
there are enough free computing nodes to carry out
the task. If there are not enough free computing nodes,
then the computation is terminated.

• Send sub-tasks: if there are enough free computing
nodes, then the submitter sends sub-tasks to coordina-
tors.

• Forward sub-tasks: The coordinator forwards sub-
tasks from submitter to workers.

• Receive sub-tasks: computing nodes receive sub-tasks
from coordinator and become workers.

• Distribute sub-tasks on the different cores: decom-
poses sub-task into sub-sub-tasks and assigns each one
to a core at a given computing node. Note that the



number of sub-sub-tasks is equal to the maximum
number of cores in a computing node.

• Calculate: This is the module which performs com-
putations relative to sub-tasks. Each core executes its
sub-sub-task. We note that in the case of applications
solved by iterative algorithms, a worker has to carry out
many iterations; after each iteration, it has to exchange
updates with others workers. For this purpose, it uses
RMNP for data exchanges between computing nodes,
i.e., Grid Send and Grid Receive communication op-
erations.

• Results aggregations of all the cores: sub-sub-tasks
results are aggregated into one result at a given com-
puting node.

• Send results: Sends aggregated results to coordinator.
• Forward results: The coordinator forwards results

from workers to submitter.
• Receive results: the submitter receives sub-tasks results

from coordinators.
• Results aggregation: sub-tasks results of all the

workers are aggregated at submitter into final result.

VI. COMPUTING RESULTS AND EVALUATION

This section presents an evaluation of the scalability
of GRIDHPC in a multi-core and multi-network context
for a loosely synchronous application : the obstacle problem.

A. Obstacle problem

The obstacle problem occurs in many domains like me-
chanics and finance and can be formulated as follows:

Find u∗ such that
A.u∗ − f ≥ 0, u∗ ≥ ∅ everywhere in Ω,
(B.u∗ − f)(∅− u∗) = 0 everywhere in Ω,
B.C.,

(1)

where the domain Ω ∈ R3 is an open set, A is an elliptic
operator, ∅ a given function and B.C. denotes the boundary
conditions.

We consider the discretization of the obstacle problem.
The parallel solution of the associated fixed point problem
via the projected Richardson method combined with several
iterative schemes of computation is studied. Reference is
made to [14], [15] for the mathematical formulation of
parallel synchronous and asynchronous projected Richard-
son methods. The interest of asynchronous iterations for
various problems including boundary value problems has
been shown in [16], [17], [18].
The experiments are carried out via GRIDHPC in order
to solve the 3D obstacle problem with different parallel
iterative schemes of computation, i.e. synchronous, asyn-
chronous and hybrid schemes of computation. We consider
cubic domains with n = 256, up to 512 points, where n
denotes the number of points on each edge of the cube.

Figure 4: Activity diagram of a parallel application with
GRIDHPC

B. Domain decomposition

We illustrate the decomposition method of the obstacle
problem via the simple example displayed in Figure 5, where
the cubic domain is decomposed into four sub-domains, each
sub-domain being decomposed into four sub-sub-domains.
This case corresponds to a decomposition and assignation
of tasks to four computing nodes, each computing node
having four computing cores. The decomposition technique
balances fairly the computing tasks, i.e., the number of
discretization points on the different computing cores. The
iterate vector of the discretized obstacle problem is de-
composed into a ∗ b sub-vectors of size n/a ∗ n/b ∗ n,
where a denotes the number of cores per computing node
and b denotes the number of computing nodes. In the case
displayed in Figure 5, we have a = b = 4.

Data exchanges between computing nodes correspond to
the interfaces of the sub-domains since the domains do not



Figure 5: Example of Decomposition of the discretized
obstacle problem

overlap. To this end, values of the components of the iterate
vector at the interface that are updated by the different
computing cores of a computing node are aggregated into
one message.

1) Convergence detection and termination: In the case of
parallel synchronous iterative schemes, the convergence test
is based on the difference between successive values of the
components of the iterate vector. The global convergence
is detected when σ = maxi∈N ( |uik+1 - ui

k| ) < ε,
where uik is the value of the i th component of the iterate
vector at iteration k, N is the set of discretization points
and ε is a positive constant. In the sequel, ε = 10−11.
The termination is detected as follows. Two global tokens
are associated with update exchange between computing
nodes. Token tok convr,r+1 is sent from computing node
Pr to Pr+1 in order to transmit information about local
termination test. Token tok termr,r−1 is sent from Pr to
Pr−1 in order to propagate the termination state (see Figure
6). Note that the message type which contains these tokens
are control messages, i.e., flags = CTRL FLAG. Note also

that tok convr,r+1 is the logical conjunction of all the local
tokens (tok convr,r+1

q) of cores q at computing node Pr

and tok convr−1,r. In particular, token tok convr,r+1
q is

true if σi = maxi∈Nq ( |uik+1 - uik| ) < ε, where Nq

is the subset of points assigned to core q of processor Pr,
q ∈ 1, ..., a and a is the number of cores.

Figure 6: Termination detection of synchronous iterations

In the case of parallel asynchronous iterative schemes, we
have implemented the termination method proposed by El
Baz [19]. It is based on activity graph.

The behavior of computing nodes is given by the finite
state machine in Figure 7. It can be summarized as follows;
each computing node can have three possible states: Active
(A), Inactive (I) and Terminated (T). Four types of messages
can be exchanged by computing nodes : activate message, in-
activate message, termination message and update message.
Note that the first three message types are control messages,
i.e., flags = CTRL FLAG and the last message type is data
message, i.e., flags = DATA FLAG.

Figure 7: States of computing nodes in the termination
detection procedure of asynchronous iterations

In active state (A), a computing node Pr evaluates the
local termination test, i.e., the local conjunction of all the
token of computing cores at Pr; if it is satisfied, then Pr does
not compute any update; otherwise, each computing core at
Pr updates components of the sub-sub-vector assigned to
it. After that Pr aggregates the values of the components
of the iterate vector at the interface that were updated by
its computing cores and sends them to adjacent computing
nodes.

In inactive state (I), a computing node is waiting for
messages using GRID wait operation. Note that if Pr′ is
inactive and receives an update message from a computing
node Pr, then Pr′ becomes active (A) and it is the children



Figure 8: Evolution of the activity graph

of Pr. If Pr receives an inactivate message from Pr′ , then
Pr removes Pr′ from its list of children.

Terminated state (T) corresponds to the case where the
computation is terminated at the computing node.

To illustrate the procedure, we consider the simple ex-
ample of the evolution of the activity graph in the case
of four computing nodes presented in Figure 8. Initially,
only the root, i.e., computing node P1 is active and all other
computing nodes are inactive. The computing nodes become
progressively active on receiving an update message from
other computing nodes. An activity graph is generated; the
topology of the graph changes progressively as the messages
are received and the local termination tests are satisfied; an
active computing node becomes inactive if its list of children
is empty and its local termination test is satisfied; then the
computing node sends an inactivate message to its parent.
The activity graph changes as the computation progresses.
At the end, the computing nodes becomes progressively
inactive (the computing node P1 is the last node to become
inactive) and the global termination is detected.

C. Experimental results

This subsection presents an evaluation of GRIDHPC
in various multi-core and multi-network contexts for the
obstacle problem and several parallel iterative methods.
Table II gives the characteristics of the different clusters
of the Grid5000 platform [20] used in the computational
experiments.

We study first the scalability of parallel synchronous
and asynchronous iterative schemes of computation com-
bined with GRIDHPC for a 3D obstacle problem with size
2563. Table III displays computing time of parallel iterative
schemes of computation for several grid configurations. The
synchronous, asynchronous and hybrid iterative methods
are denoted by : Syn, Asyn and Hybrid, respectively. We
consider the Graphene cluster, the Chinqchint cluster and
a multi-cluster configuration, i.e., Graphene and Chinqchint
clusters coupled via 10 Gb/s Ethernet network (measured
latency is about 5 micro seconds). We note that the en-
vironment GRIDHPC selects always the best network in
each cluster when several networks are available (Infiniband
network with Graphene cluster and Myrinet network with

Chinqchint). As an example, synchronous iterations takes
742 s with GRIDHPC on Graphene cluster with 128 com-
puting cores while the same iterative scheme takes 1282
s with the same number of computing cores of the same
cluster when using Ethernet network.

Table IV shows the corresponding computing gains. The
computing gain is given as follows:

computing gain Cg = t1/ts (2)

where t1 is the fastest parallel computing time on one multi-
core machine and ts is the parallel computing time on
several multi-core machines.

From Tables III and IV, we see that in the case of
a single cluster like Graphene or Chinqchint, asynchronous
iterative schemes of computation perform better than syn-
chronous iterative schemes since there are no idle time
due to synchronization or synchronization overhead. We
note also that parallel asynchronous iterations combined
with GRIDHPC scale up. The multi-core multi-network
configuration considered in Tables III and IV corresponds
to the case where Chinqchint cluster in Lille is connected to
Graphene cluster in Nancy. Lille and Nancy are two French
cities three hundred kilometers apart. The experiments are
carried out with up to 24 computing nodes (16 computing
nodes at Graphene and 8 computing nodes at Chinqchint)
and 128 cores. There is the same number of computing
cores in the two clusters, i.e., 64 cores at Graphene and
64 cores at Chinqchint. Computing results show that even
in a heterogeneous context where the computing nodes have
different number of cores and there are several networks,
the combination of GRIDHPC and asynchronous or hybrid
iterative schemes of computation scales up. The computing
gain of hybrid iterations is situated in between the com-
puting gains of synchronous and asynchronous iterations.
This is due to the fact that hybrid schemes of computation
correspond to synchronous iterations in the same cluster and
asynchronous iterations between clusters.

We note that the parallel time on one computing node
at Chinqchint cluster is equal to 3298 s; while the parallel
time on one computing node at Graphene cluster is equal to
3115 s. The computing nodes at Chinqchint cluster compute
slower than the computing nodes at Graphene cluster though



Site Cluster Processors Type CoresInterconnection Networksclock GhzRAM GB
Lille ChinqchintIntel Xeon E5440 QC 8 Ethernet and Myrinet 2.83 8

Nancy Graphene Intel Xeon X3440 4 Ethernet and Infiniband 2.53 16
Rennes Paravance Intel Xeon E5-2630v3 16 Ethernet 10 Gbs 2.4 128

Grenoble Edel Intel Xeon E5520 8 Ethernet and Infiniband 2.27 24
Grenoble Genepi Intel Xeon E5420 QC 8 Ethernet and Infiniband 2.5 8

Table II: Characteristics of machines

Number of cores
Computing time / s

Graphene cluster Chinqchint cluster Graphene and Chinqchint clusters
Syn Asyn Syn Asyn Syn Asyn Hybrid

4 3115 - - - - - -
8 1723 1595 3298 - - - -

16 1355 971 1785 1576 2321 1369 1461
32 1012 594 1419 1001 1824 855 1119
64 841 378 1119 631 1444 536 977
128 742 272 - - 1262 386 854

Table III: Computing time of parallel iterative methods applied to the obstacle problem with size 2563 and several grid
configurations

Number of cores
Computing gain

Graphene cluster Chinqchint cluster Graphene and Chinqchint clusters
Syn Asyn Syn Asyn Syn Asyn Hybrid

4 1 - - - - - -
8 1.80 1.95 1 - - - -

16 2.29 3.2 1.84 2.09 1.34 2.27 2.13
32 3.07 5.24 2.32 3.29 1.70 3.64 2.78
64 3.7 8.24 2.94 5.22 2.15 5.81 3.18
128 4.19 11.45 - - 2.46 8.06 3.64

Table IV: Computing gain of parallel iterative methods applied to the obstacle problem with size 2563 and several grid
configurations

Number of cores
Computing time / s

Edel and Genepi clusters
Syn Asyn Hybrid

8 1962 - -
16 1867 1448 1494
32 1571 909 1283
64 1252 538 1132
128 1117 343 1049
256 1020 307 967

Table V: Computing time of parallel iterative methods
applied to the obstacle problem with size 2563 on a grid

with Edel and Genepi clusters

Number of cores
Computing gain

Edel and Genepi clusters
Syn Asyn Hybrid

8 1 - -
16 1.05 1.35 1.31
32 1.24 2.15 1.52
64 1.56 3.64 1.73
128 1.75 5.72 1.87
256 1.92 6.39 2.02

Table VI: Computing gain of parallel iterative methods
applied to the obstacle problem with size 2563 on a grid

with Edel and Genepi clusters

they have twice as much computing cores due to the fact
that the size of RAM memory at Graphene cluster is greater
than the size of RAM memory at Chinqchint cluster and
the parallel iterative methods perform frequent accesses to
the memory. The more RAM memory, the more we avoid
swapping and reduce the time to solve the problem.

Tables V and VI display the computing times and com-
puting gains, respectively of synchronous, asynchronous and
hybrid schemes of computation for a different multi-cluster
configuration. We consider two clusters that belong to the
same site (Grenoble), i.e., Edel and Genepi clusters of the
Grid5000 testbed. The experiments are carried out with up
to 32 computing nodes and a total of 256 computing cores
(each computing node has 8 cores). Data exchange is made
via Infiniband network in Edel and Genepi clusters and via
Ethernet network (10 Gb/s) between them. We note that
asynchronous iterations perform better than synchronous or
hybrid iterations and that the combination of asynchronous
iterations with GRIDHPC leads to important reduction in
computing time.

Consider now multi-network configurations in Tables III
and V and the respective computing times of asynchronous
iterations for 128 computing cores, then we see that the



Number of cores
Computing time / s

384 448 512
Syn Asyn Syn Asyn Syn Asyn

16 4200 - 8943 - 21705 -
32 4124 2242 9353 5190 21787 13344
64 3317 1785 6690 3507 11798 6643

128 2912 1099 5151 2023 8847 3529
256 2609 562 4625 1240 7608 2156
512 2357 374 4245 703 7097 1346
1024 2236 311 4065 538 6615 924

Table VII: Computing time of parallel iterative methods
applied to the obstacle problem with size 3843, 4483 and

5123 on Paravance cluster

Number of cores
Computing gain

384 448 512
Syn Asyn Syn Asyn Syn Asyn

16 1 - 1 - 1 -
32 1.01 1.8 0.95 1.72 0.99 1.62
64 1.26 2.35 1.33 2.55 1.83 3.26

128 1.44 3.82 1.73 4.42 2.45 6.15
256 1.60 7.4 1.93 7.21 2.85 10.06
512 1.78 11.22 2.10 12.72 3.05 16.1
1024 1.87 13.5 2.2 16.62 3.28 23.49

Table VIII: Computing gain of parallel iterative methods
applied to the obstacle problem with size 3843, 4483 and

5123 on Paravance cluster

result in Table V (343 s) is less than in Table III (386
s). Nevertheless, the respective computing gain in Table IV
(8.06) is greater than the the associated computing gain in
Table VI (5.72) since the parallel time on one computing
node of Edel cluster is equal to 1962 s (computing nodes
of Edel cluster are faster than computing nodes of Genepi
cluster) while the parallel time on one computing node of
Graphene cluster is equal to 3115 s.

We consider now a different set of the obstacle problems,
i.e., problems with size 3843, 4483 and 5123. In this part
of the study, we concentrate on task granularity and its
effect on the computing gain of parallel iterative schemes
of computation combined with GRIDHPC. The computing
tests have been carried out on the Paravance cluster located
in Rennes with 10 Gbps Ethernet network that has a large
number of computing nodes and can be used to solve
large instances of obstacle problem. We consider here up
to 64 computing nodes and a total of 1024 computing
cores. The results are displayed in Tables VII and VIII.
The experiments show that asynchronous iterative schemes
of computation achieve scalability when combined with
GRIDHPC. The results show also that the computing gain
generally increases when the problem size increases, i.e.,
when the task granularity increases.

VII. CONCLUSIONS

In this paper, we present the GRIDHPC decentralized
environment for high performance computing. GRIDHPC
functionality relies on the reconfigurable communication
protocol RMNP to support data exchange between com-
puting nodes on multi-network systems with Ethernet, In-
finiband, Myrinet and on OpenMP for the exploitation of
computing resources of multi-core CPU.

We have presented and analyzed a set of computational
experiments with the decentralized environment GRIDHPC
for a loosely synchronous application. In particular, we
have studied the combination of GRIDHPC and parallel
synchronous and asynchronous iterative schemes of compu-
tation for the obstacle problem in a multi-core and multi-
network context. Our experiments are carried out on the
Grid5000 platform with up to 1024 computing cores for a
loosely synchronous application with frequent data exchange
between computing nodes. We have considered several
configurations like two Infiniband clusters connected via
Ethernet or one Infiniband cluster and a Myrinet cluster con-
nected via Ethernet. The results show that the combination
of the GRIDHPC environment with asynchronous iterative
algorithms scales up even when considering multi-cluster
configurations.

In future work, we plan to use GRIDHPC for a different
kind of loosely synchronous application. We shall consider
the solution of large scale nonlinear network flow optimiza-
tion problems. Finally, we shall extend GRIDHPC in order
to combine multi-core CPUs and computing accelerators like
GPUs.
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