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LMI Tests for Positive Definite Polynomials:
Slack Variable Approach

Dimitri Peaucelle and Masayuki Sato

Abstract—The considered problem is assessing non-negativity
of a function’s values when indeterminates are in domains con-
strained by scalar polynomial inequalities. The tested functions
are multi-indeterminates polynomial matrices which are required
to be positive semi-definite. New tests based on linear matrix
inequalities are provided in a Slack Variables type approach.
The results are compared to those obtained via the Sum-Of-
Squares approach. They are proved to be equivalent in case
of unbounded domains and less conservative if polytopic-type
bounds are known.

Index Terms—LMI, Matrix-valued polynomials, Robustness,
Positivity, Sum-Of-Squares

I. INTRODUCTION

About ten years after Shor has proposed the Sum-Of-
Squares (SOS) approach for obtaining the global minimum
of polynomial functions [26], Chesi et al. [3], Lasserre [8]
and Parrilo [14] have independently shown that SOS decom-
position can be cast into semi-definite programming. After
these first results, many publications taking advantage of SOS
decomposition technique have been reported, e.g. nonlinear
system analysis, hybrid system analysis, etc., some of which
are surveyed in [13], [7]. But all positive polynomials are
not SOS and Motzkin polynomials are examples of this fact.
More precisely, as enunciated in Hilbert problems, the set
of SOS polynomials coincides with the set of non-negative
polynomials only in three very simple cases: single indeter-
minate (whatever degree), quadratic form (whatever number
of indeterminates), and quartic form in two indeterminates
[26], [18]. However, under some realistic restrictions, the
gap between SOS polynomials and non-negative polynomials
disappears. Lasserre has proved that all non-SOS polynomials,
which are non-negative, can be approximated by other poly-
nomials of higher degree which can be verified to be non-
negative with theory of moments [8], and they can also be
approximated by some SOS polynomials with small SOS poly-
nomial perturbations [9]. Further, polynomial functions, which
are non-negative on unit ball, can be approximated by some
SOS polynomials with small SOS polynomial perturbations
[10]. Although most results are derived assuming scalar-valued
polynomials, matrix-valued version of SOS approximation are
also available. Proposed by Chesi et al. in [2] these are
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exploited by Scherer and Hol in [25] with use of Putinar’s
SOS representation.

On the other hand, much research for robust stabil-
ity/performance analysis has been conducted in the last decade
using Slack Variable (SV) approach, e.g. [4], [28], [16], [6].
Based on Finsler lemma, the approach creates new variables
that allow without much mathematical complications to de-
rive LMI results with reduced conservatism. In addition to
simplicity in matrix manipulations, the approach benefits of
extensions for control design, [1], [15], [5]. But, the question
whether conservatism of the SV approach can be further
reduced remains an open problem. Partial answers have been
provided. One (see [11], [12]) takes advantage of the fact
that SV approach is in general applied to polynomials with
indeterminates constrained in the unit simplex and results
are obtained based on a matrix-valued version of Pólya’s
theorem [24]. Another (see [17], [20], [21]) uses redundant
system modeling and may be interpreted as taking polynomial
representations in basis of increasing degree. All these publica-
tions illustrate the influence of polynomial matrix inequalities
representations for robustness analysis problems. However,
to the authors’ knowledge, no result has been reported for
the relationship between SOS approach and SV approach.
Based on preliminary results of [23], [22] this relationship
is investigated in the present paper. SV approach is shown to
encompass SOS approach.

The two upper cited techniques to be compared can be
mathematically summarized as follows. For a given choice of a
basis of monomials gathered in a vector θ̆ (in the present paper
the elements of θ̆ are of the form

∏
k θmk

k where the θk are the
scalar indeterminates), a matrix valued polynomial has at least
one representation such that F (θ) = (θ̆⊗1)T F̂ (θ̆⊗1), where 1
stands for the identity matrix of the dimension of F (θ) and ⊗
is the Kronecker product. The elements of the F̂ matrix are the
coefficient matrices of the polynomial. SOS result states that
F (θ) is positive semi-definite for all indeterminates θ if there
exists a matrix L̂ such that (θ̆⊗ 1)T L̂(θ̆⊗ 1) = 0 and F̂ + L̂
is positive semi-definite. F (θ) has in such case a factorization
as a SOS. SV technique is based on Finsler lemma and on
the fact that there exists an affine with respect to θ matrix
Ψ(θ) such that ΨT (θ)(θ̆⊗ 1) = 0. SV result states that F (θ)
is positive semi-definite for θ in the convex set of a finite
number of vertices θ[p] if there exists a matrix N such that
F̂ + Ψ(θ[p])N + NT ΨT (θ[p]) is positive semi-definite for all
vertices. In the paper we extend this last SV result for the case
when indeterminates are unbounded (not in a polytope) and
prove the direct relation between the N and L̂ matrices.
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The outline is as follows. The next section is devoted to
(inevitably intricate) notations and to the problem definition:
proving a polynomial matrix values are positive semi-definite
for indeterminates constrained in the intersection of poly-
topes and scalar polynomial inequalities. Section III states
the main results, namely the LMI formulas obtained via
the SV approach, and shows equivalence of SV and SOS
methods in case of unbounded polytopic constraints. The by-
products of the SV approach is a less conservative result in
case of bounded indeterminate domains and an easy to code
reformulation of SOS results. Section IV considers the mixed
bounded/unbouded case and formulates results for solving
robust polynomial semi-definite programs. A conclusion ends
the paper.

II. PRELIMINARIES

General notations

Rn×m, Sn and Qn, denote respectively the sets of n × m
real, symmetric n × n real and skew-symmetric n × n real
matrices. For two symmetric matrices, A and B, A > (≥)B
means that A − B is positive (semi-) definite. AT denotes
the transpose of A. 1n, 0m,n and 0n denote respectively the
identity matrix of size n, null matrix of size m × n and the
square null matrix of size n × n. If the context allows it,
the dimensions of these matrices are sometimes omitted. For
a given matrix B ∈ Rm×n such that rank(B) = r, define
B⊥ ∈ Rn×(n−r) the right orthogonal complement of B such
that BB⊥ = 0 and B⊥B⊥T > 0. The notation 〈A〉 stands
for the symmetric matrix A + AT . Trivially 〈A〉 = 0 if and
only if A is skew-symmetric and 〈A〉 = 2A if and only if A is
symmetric. ⊗ stands for the Kronecker product (matrix direct
product). For A = [aij ] ∈ Rn×m and B ∈ Rp×q it is such that
C = A⊗B is a Rnp×mq matrix with block entries C = [aijB].
For matrices of appropriate dimensions, the Kronecker product
is such that (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Problem definition

Consider k̄ real scalar independent indeterminates θ1, . . . θk̄

and define θ =
(

θ1 . . . θk̄

)T
the vector of all indeter-

minates. Consider F a symmetric-matrix valued polynomial
function of the indeterminates, F (θ) ∈ Sn. The goal of the
paper is to give LMI tests to prove F (θ) is positive semi-
definite for θ constrained in the intersection of two type of
sets

F (θ) ≥ 0n , ∀θ ∈ G ∩ P (1)

defined as follows.

• Consider q̄ scalar polynomials of the indeterminates
θ1, . . . θk̄, gq(θ) ∈ R, q = 1 . . . q̄. The first type of set
is such that these polynomials are non-negative:

G =
{

θ ∈ Rk̄ : gq(θ) ≥ 0 , q = 1 . . . q̄
}

. (2)

Such set is possibly unbounded and may be non-
connected.

• Consider Kb ⊂ {1 . . . k̄} be a set of indeterminates’
indexes and let k̄b be the number of elements in the

set. Define ϑ ∈ Rk̄b the vector of indeterminates θk∈Kb

ordered with growing index. The second type of set is
a semi-polytope defined as the intersection of Rk̄ with a
polytope of the indeterminates ϑ having p̄ vertices ϑ[p] :

P =

{
θ ∈ Rk̄ : ϑ =

p̄∑
p=1

ζpϑ
[p] ,

ζp ≥ 0∑p̄
p=1 ζp = 1

}
. (3)

In such set, the indeterminates θk∈Kb
are bounded.

Two special and important cases are studied in the next
section: first, the (fully) bounded case when k̄b = k̄; second,
the unbounded case when k̄b = 0. Based on these results,
section IV gives extensions to the mixed bounded/unbounded
case (0 < k̄b < k̄).

Notations for polynomials manipulations

For each inderterminate θk define θ̆mk

k =(
1 θk . . . θmk

k

)T ∈ Rmk+1 the vector of powers
up to power mk. The notation θ̆ = θ̆m1

1 ⊗ θ̆m2
2 . . . ⊗ θ̆

mk̄

k̄
produces a vector of all monomials obtained as products
of elements θj

k with indeterminates indices k ranging from
1 to k̄ and powers going up to mk. In the following, the
polynomials are expressed in this basis of monomials. Note
that this basis is very general and maybe over-dimensioned
for given polynomials and lead to increased computational
effort. To handle this issue one may consider Groebner bases
methods. But for the purpose of comparison between SV and
SOS the general basis is needed and the use of Groebner
bases is left for future work.

For the sake of readability of formulas define the notation
σk1,k2 =

∏k2
k=k1

(mk + 1) for all 1 ≤ k1 ≤ k2 ≤ k̄ and let
σ1,0 = 1 and σk̄+1,k̄ = 1. Moreover, let σ = σ1,k̄ and define
πk = σmk/(mk + 1) for all k ∈ {1 . . . k̄}.

For each k ∈ {1 . . . k̄} define m̄k as the maximal degree
of the entries of the matrix polynomial F and of the gq

polynomials with respect to the indeterminate θk. For any
sequence {mk}k=1...k̄ such that 2mk ≥ m̄k, the F and gq

polynomials can be expressed as

F (θ) = (θ̆T ⊗ 1n)F̂ (θ̆ ⊗ 1n) , gq(θ) = θ̆T Ĝq θ̆ (4)

where F̂ ∈ Snσ and Ĝq ∈ Sσ . Note that the coefficients
matrices F̂ and Ĝq are non unique, especially if the maximal
degrees mk are chosen large. Given the sequence {mk}k=1...k̄,
construction of an admissible choice of F̂ and Ĝq matrices
may be tedious but does not make any problem. F̂ and Ĝq

are further assumed to be given.

Slack Variable approach is based on the use of elimination
lemma [27] (a variation on Finsler lemma) that states inequal-
ity B⊥T QB⊥ > 0 is equivalent to the existence of a matrix
N such that Q + 〈NB〉 > 0. The key idea for producing
LMI results is that “creating” the additional variable N may
transform a polynomial inequality (B(θ)⊥ is a polynomial
with respect to indeterminates θ) into a linear inequality
(B(θ) is affine with respect to θ). This linearization is usually
achieved at the expense of some conservatism because N is
chosen independent of θ. Yet, in the present paper the inherent
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conservatism of the method is reduced thanks to the use of
multiple slack variables, one per indeterminate. Notations for
this multiple slack variables creation are as follows.

For each k ∈ {1 . . . k̄}, define the following two constant

matrices η
[0]
k =

[
01,mk

− 1mk

]
, η

[∞]
k =

[
1mk

01,mk

]
. The vector

θ̆mk

k of power series of θk happens to be a right orthogonal
complement of an affine expression of these two matrices:
θ̆mk

k = ((η[0]
k + θkη

[∞]
k )T )⊥. Moreover one gets that the

following equation on the vector of all monomials θ̆

(θ̆T ⊗ 1n)
(
1σ1,k−1 ⊗ (η[0]

k + θkη
[∞]
k )⊗ 1nσk+1,k̄

)
= 0 (5)

holds whatever k = 1 . . . k̄ and whatever θ ∈ Rk̄ (see equation
(11) given in Appendix for details about this fact). Rather than
considering θ̆ as a right orthogonal complement for a matrix
dependent of all indeterminates θ1 . . . θk̄, the upper formula
is used in the paper to create separate slack variables with
respect to each indeterminate.

For compactness of formulas define the following matrices

Ψ[0]
k =

(
1σ1,k−1 ⊗ η

[0]
k ⊗ 1nσk+1,k̄

)
Ψ[∞]

k =
(
1σ1,k−1 ⊗ η

[∞]
k ⊗ 1nσk+1,k̄

)
and Ψk(θk) = Ψ[0]

k + θkΨ[∞]
k . With this notations, for-

mula (5) read as (θ̆T ⊗ 1n)Ψk(θk) = 0. Moreover, in
case k ∈ Kb, define Ψ[p]

k = Ψk(θ[p]
k ) which is such that

Ψk(θk) =
∑p̄

p=1 ζpΨ
[p]
k (according to notations in (3)).

III. SLACK VARIABLES RESULTS

The first result is for the case of bounded indeterminates in
a polytope. This case corresponds to the usual framework in
which SV approach has been developed [4], [16], [6]. At the
difference of these references, the Theorem generates several
slack variables (Nk), rather than just one. This modification,
that increases the numerical complexity, provides new degrees
of freedom useful in the following to prove new properties.

Theorem 1: Assume k̄b = k̄, all indeterminates are bounded
inside a given polytope. Property (1) holds if there exist q̄p̄

symmetric matrices H
[p]
q ∈ Sn and k̄ matrices Nk ∈ Rnπk×nσ

such that for all (p, q) ∈ {1 . . . p̄} × {1 . . . q̄} the following
LMI conditions are feasible: H

[p]
q ≥ 0n and

F̂ +

〈
k̄∑

k=1

Ψ[p]
k Nk

〉
≥

q̄∑
q=1

Ĝq ⊗H [p]
q . (6)

Proof : Define θ ∈ P any element of the polytope
parameterized by the p̄ scalars ζp as in (3). Let Hq(θ) =∑p̄

p=1 ζpH
[p]
q . The inequalities (6) are linear with respect to

the vertices θ[p] and H
[p]
q therefore by convexity they hold as

well for all values θ in the polytope P: Hq(θ) ≥ 0n and

F̂ +

〈
k̄∑

k=1

Ψk(θk)Nk

〉
≥

q̄∑
q=1

Ĝq ⊗Hq(θ) . (7)

Pre and post-multiply inequalities (7) by θ̆T ⊗ 1n and its
transpose respectively. One gets due to formulas (5):

∀θ ∈ P : Hq(θ) ≥ 0n , F (θ) ≥
q̄∑

q=1

gq(θ)Hq(θ) .

Hence F (θ) ≥ 0n for all θ ∈ G ∩ P . �

The unbounded case is now considered. It is to our knowl-
edge the first time such SV result is produced without con-
straining indeterminates inside polytopes. As suggested by the
notations it can be interpreted as taking vertices at infinity.

Theorem 2: Assume k̄b = 0, no bound is a priori known
on the indeterminates. Property (1) holds if there exist q̄
symmetric matrices Hq ∈ Sn and k̄ skew-symmetric matrices
N̂k ∈ Qnπk such that for all q ∈ {1 . . . q̄} the following LMI
conditions are feasible:

Hq ≥ 0n , F̂ +

〈
k̄∑

k=1

Ψ[0]
k N̂kΨ[∞]T

k

〉
≥

q̄∑
q=1

Ĝq ⊗Hq . (8)

Proof : The N̂k matrices being skew-symmetric one obtains
that

〈
(Ψk(θk)N̂kΨ[∞]T

k

〉
=

〈
Ψ[0]

k N̂kΨ[∞]T
k

〉
. The matrices

Nk = N̂kΨ[∞]T
k and Hq(θ) = Hq therefore satisfy conditions

(7) for all θ ∈ Rk̄. The remaining follows the lines of
Theorem’s 1 proof. �

One major issue of the paper is to give a comparison
between SV and SOS approaches. For the unbounded case
the two happen to be exactly the same as stated by the next
Theorem. Therefore it implies that all results known in the
SOS context may be generalized to the SV approach. In
particular, when G ∩ P = Rk̄ is unconstrained, exactness of
the LMI tests is guaranteed for the following cases: k̄ = 1
(single indeterminate polynomials); mk ≤ 1 (quadratic forms);
k̄ = 2 and mk ≤ 2 (quartic forms of two indeterminates).
Moreover, asymptotic convergence of LMI conditions to exact
tests for problem (1) as the degree of the basis of monomials
grows (under particular assumptions on the constraints, see
[25]) keeps true for the SV approach. More precisely, to
obtain the exact equivalence of the SV approach with results
for the SOS approach in [25], it is needed to extend the
results to Hq defined as SOS polynomial matrices. This may
be done without any theoretical obstacle but needs involved
mathematical manipulations (see for example papers [22],
[19]). We have limited our study to the case of zero degree
Hq to limit this mathematical manipulation complexity.

Theorem 3: The LMI conditions (8) hold if and only if the
matrix-valued polynomial F (θ)−

∑q̄
q=1 gq(θ)Hq is SOS.

To prove the Theorem, recall (see [25]) that a polynomial
S(θ) = (θ̆T ⊗ 1n)Ŝ(θ̆ ⊗ 1n) is SOS if and only if Ŝ + L̂
is positive semi-definite for some matrix L̂ constrained such
that (θ̆T ⊗ 1n)L̂(θ̆ ⊗ 1n) is identically zero for all θ ∈ Rk̄.
Theorem 3 therefore hold if all such matrices L̂ have a multiple
Slack Variables formulation: L̂ =

〈∑k̄
k=1 Ψ[0]

k N̂kΨ[∞]T
k

〉
for

some skew-symmetric matrices N̂k. This corresponds to the
following lemma (when α = 1 and β = n).
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Lemma 1: Let α and β be two integers. The multi-
indeterminate matrix polynomial L(θ) = (1α ⊗ θ̆T ⊗
1β)L̂(1α ⊗ θ̆ ⊗ 1β) is identically zero for all θ ∈ Rk̄ if and
only if there exists k̄ skew-symmetric matrices N̂k such that

L̂ =
〈∑k̄

k=1(1ασ1,k−1 ⊗ η
[0]
k ⊗ 1βσk+1,k̄

)N̂k . . .

(1ασ1,k−1 ⊗ η
[∞]T
k ⊗ 1βσk+1,k̄

)
〉

.
(9)

.

Proof : The ’if’ part is similar to the proof of Theorem 2
and is therefore omitted. The ’only if’ part of the proof needs
many more derivations and is therefore given in appendix at
the end of the paper. �

Lemma 1 can also be seen as a simple to code formula for
generating the matrix L̂ of the SOS approach. Unfortunately
the drawback is that the number of decision variables con-
tained in the N̂k matrices is larger than those needed in SOS.
It is thus a simple to code but over-parameterized formula. To
reduce the numerical complexity it is also possible to structure
some more the N̂k matrices following the ideas in [23], [22].
The reason for these structures can be found in the details of
the proof given in appendix.

A. Mixed bounded/unbounded case

Theorem 4: Property (1) holds if there exist q̄p̄ symmetric
matrices H

[p]
q ∈ Sn, k̄b matrices Nk ∈ Rnπk×nσ without any

structure and (k̄ − k̄b) skew-symmetric matrices N̂k ∈ Qnπk ,
such that for all (p, q) ∈ {1 . . . p̄} × {1 . . . q̄} the following
LMI conditions are feasible: H

[p]
q ≥ 0n and

F̂ +

〈 ∑
k/∈Kb

Ψ[0]
k N̂kΨ[∞]T

k +
∑

k∈Kb

Ψ[p]
k Nk

〉
≥

q̄∑
q=1

Ĝq ⊗H [p]
q .

(10)

Theorem 4 is a trivial combination of both previous result. It
allows to reduce conservatism of the unbounded case if some
of the indeterminates are known to be constrained in bounded
sets as stated in the following corollary.

Corollary 1: If the set G is known to be bounded or
partially bounded with respect to some indeterminates θk∈Kb

,
then, let any over-bounding semi-polytopic set, P ⊃ G, the
LMIs (10) are feasible if (8) is feasible.

This corollary indicates that if the constraints G define a
bounded (or partially bounded) region, then the SV result
is less conservative than the SOS result (assuming identical
representations F̂ , Ĝq of the polynomials). As said previously
(just before Theorem 3) this comparison is here done for the
case when one restricts the variables Hq to be indeterminate
independent. These can also be chosen as polynomials (of
degree such that gq(θ)Hq(θ) are of degrees 2mk with respect
to each indeterminate θk) in which case the comparison
between SV and SOS holds as well for the same reasons.
Still, conservatism reduction provided by the slack variables
for bounded indeterminates is at the expense of increasing
drastically the number of variables and the size of the LMIs

(by a factor p̄). Not to make this factor too large, one may
consider cross-polytopes with p̄ = 2k̄ vertices defined as
θ[p] = (0 . . . 0 ± ρ 0 . . . 0)T with ρ sufficiently large.

Numerical examples with comparisons of the SV and SOS
methods can be found in [23], [22]. They illustrate both
the efficiency of the contribution and its drawbacks in terms
of numerical complexity. For space reasons these numerical
examples are not reproduced in the present paper.

IV. CONCLUSIONS

Aiming at the origin to compare Slack Variables (SV) and
Sum-Of-Squares (SOS) approaches, we finally obtain in this
paper both, an easy to code formulation of SOS results, and a
generalization of the SV approach for non-bounded indetermi-
nates. SV results moreover prove to be less conservative than
SOS in case of bounded indeterminates, yet more demanding
in terms of numerical burden. As attested by the numerous
papers adopting SV approach (sometimes implicitly without
direct references to the method), this technique is quite popular
for robustness analysis in case of polytopic uncertainties but
up to now seemed not to have extensions for other types
of uncertainties. The exposed results allow these extensions
where, as suggested by the notations, vertices of the polytope
are replaced by matrices describing the parameters at the origin
and at infinity.
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APPENDIX

This appendix is dedicated to the proof of Lemma 1. For this
end notations and preliminary technical results are exposed.

Define θ[k1,k2] =
(

θk1 . . . θk2

)T
the vector of indeter-

minates with indices k ranging from k1 to k2. As previously
θ̆mk

k =
(

1 θk . . . θmk

k

)T ∈ Rmk+1 is the vector
of powers of each indeterminate θk up to power mk. Let
θ̆[k1,k2] = θ̆

mk1
k1

⊗θ̆
mk1+1

k1+1 . . .⊗θ̆
mk2
k2

be the vectors of all mono-
mials obtained as products of elements θj

k with indeterminates
indices k ranging from k1 to k2 and powers going up to mk.
The vectors θ̆[k1,k2] have exactly σk1,k2 =

∏k2
k=k1

(mk + 1)
elements. Recall that by definition σ1,0 = 1 and σk̄+1,k̄ = 1.

Recall as well the notation πk = σmk/(mk + 1). For
compactness of formulas, θ = θ[1,k̄], θ̆ = θ̆[1,k̄] and σ = σ1,k̄.
The notations are such that whatever k ∈ {1 . . . k̄}, θ̆ =

= θ̆[1,k−1] ⊗ θ̆mk

k ⊗ θ̆[k+1,k̄]

= (θ̆[1,k−1] ⊗ 1σk,k
⊗ θ̆[k+1,k̄])(1⊗ θ̆mk

k ⊗ 1)
= (1σ1,k−1 ⊗ θ̆mk

k ⊗ 1σk+1,k̄
)(θ̆[1,k−1] ⊗ 1⊗ θ̆[k+1,k̄]).

(11)

This type of factorization of one among all indeterminates is
of major importance for deriving the results.

Lemma 2: Let α and β two integers and assume L̂(θ) is
a matrix polynomial of several scalar indeterminates. If the
following two conditions hold

(1α ⊗ eT
1 ⊗ 1β)L̂(θ)(1α ⊗ e1 ⊗ 1β) = 0

(1α ⊗ eT
l+1 ⊗ 1β)L̂(θ)(1α ⊗ el+1 ⊗ 1β) = 0

(12)

where e1 =
(

1 0 . . . 0
)T ∈ Rl+1 and el+1 =(

0 . . . 0 1
)T ∈ Rl+1, then there exists a polynomial

matrix M(θ) of same degree as L̂(θ) such that L̂(θ) =〈
(1α ⊗

[
01,l

−1l

]
⊗ 1β)M(θ)(1α ⊗

[
1l 0l,1

]
⊗ 1β)

〉
Proof : The proof is direct application of Theorem 2.3.7 in

[27]. Details are omited for space limitation reasons. �

Lemma 3: Let α and β two integers and the mono-
indeterminate matrix polynomial of order 2mk: L(θk) =
(1α ⊗ θ̆mkT

k ⊗ 1β)L̂(1α ⊗ θ̆mk

k ⊗ 1β). The polynomial L(θk)
is identically zero for all θk ∈ R, if and only if there exists a
skew-symmetric matrix Mk such that

L̂ =
〈
(1α ⊗ η

[0]
k ⊗ 1β)Mk(1α ⊗ η

[∞]T
k ⊗ 1β)

〉
.

Proof : The ’if’ part of the proof is omitted because similar
to that of Theorem 2. The ’only if’ part is now produced. For
the time of the proof define the following matrices

Υ[0]
l = 1α ⊗

[
01,l

− 1l

]
⊗ 1β , Υ[∞]

l = 1α ⊗
[

1l

0l,1

]
⊗ 1β

which coincide with 1α ⊗ η
[0]
k ⊗ 1β and 1α ⊗ η

[∞]
k ⊗ 1β

respectively when l = mk.

The lowest degree and the highest degree terms of L should
be zeros which writes

(1α ⊗ eT
1 ⊗ 1β)L̂(1α ⊗ e1 ⊗ 1β) = 0

(1α ⊗ eT
mk+1 ⊗ 1β)L̂(1α ⊗ emk+1 ⊗ 1β) = 0

which due to Lemma 2 implies the existence of a matrix
M such that L̂ =

〈
Υ[0]

mkMΥ[∞]T
mk

〉
. Decompose M =

Mskew + Msym in its skew-symmetric and symmetric parts.
The structures of Υ[0]

mk and Υ[∞]
mk are such that

(1α ⊗ θ̆mkT
k ⊗ 1β)Υ[0]

mk = −θk(1α ⊗ θ̆mk−1T
k ⊗ 1β)

Υ[∞]T
mk (1α ⊗ θ̆mk

k ⊗ 1β) = 1α ⊗ θ̆mk−1
k ⊗ 1β

therefore, the polynomial L being identically zero implies

0 = (1α ⊗ θ̆mkT
k ⊗ 1β)L̂(1α ⊗ θ̆mk

k ⊗ 1β)
= −2θk (1α ⊗ θ̆mk−1T

k ⊗ 1β)Msym(1α ⊗ θ̆mk−1
k ⊗ 1β)︸ ︷︷ ︸

N(θk)
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for all θk ∈ R, i.e. the polynomial N(θk) is identically zero.
The remaining of the proof is done by induction on mk the
maximal degree in the vector θ̆mk

k =
(

1 θk . . . θmk

k

)T
.

• Start with mk = 1. Then θ̆mk−1
k = 1 and

N(θk) = Msym = 0. Hence it is proved that L̂ =〈
Υ[0]

1 MkΨ[∞]T
1

〉
with Mk = Mskew skew-symmetric.

• Assume Lemma 3 holds for polynomials of order
2(mk − 1) and apply it to the polynomial N . It im-
plies existence of a skew-symmetric matrix P such
that Msym =

〈
Υ[0]

mk−1PΥ[∞]T
mk−1

〉
. At this stage of

the proof one gets that L̂ =
〈
Υ[0]

mkMskewΥ[∞]T
mk

〉
+〈

Υ[0]
mk

〈
Υ[0]

mk−1PΥ[∞]T
mk−1

〉
Υ[∞]T

mk

〉
with Mskew and

P skew-symmetric. Simple manipulations show that
Υ[0]

mkΥ[∞]
mk−1 = Υ[∞]

mk Υ[0]
mk−1. Therefore one gets af-

ter developping the expression and re-facorizing it
properly that L̂ =

〈
Υ[0]

mkMkΥ[∞]T
mk

〉
where Mk =

Mskew + Υ[0]
mk−1PΥ[∞]T

mk−1 + Υ[∞]
mk−1PΥ[0]T

mk−1 which is
such that 〈Mk〉 =

〈
Mskew

〉
+ Υ[0]

mk−1 〈P 〉Υ
[∞]T
mk−1 +

Υ[∞]
mk−1 〈P 〉Υ

[0]T
mk−1. Since both matrices Mskew and P

are skew-symmetric (
〈
Mskew

〉
= 0 and 〈P 〉 = 0), Mk

is proved to be skew-symmetric (〈Mk〉 = 0) �

Due to Lemma 2, if L̂ is a polynomial matrix of some
other indeterminates, M may be chosen to be a polynomial
with same degree with respect to these indeterminates. This
fact is used in the following.

Proof of Lemma 1: Demonstration is done by induction on
the number of indeterminates.

• For k̄ = 1, Lemma 1 holds due to Lemma 3.
• Assume Lemma 1 holds for polynomials with k̄ − 1

indeterminates and consider a polynomial L of k̄ inde-
terminates assumed to be identically zero. Perform the
following factorization

L(θ) = (1α ⊗ θ̆T
[1,k̄]

⊗ 1β)L̂(1α ⊗ θ̆T
[1,k̄]

⊗ 1β)
= (1α ⊗ θ̆mkT

1 ⊗ 1β)L1(θ[2,k̄])(1α ⊗ θ̆mk
1 ⊗ 1β)

where L1 is the following polynomial of k̄ − 1 indeter-
minates L1(θ[2,k̄]) =

(1ασ1,1 ⊗ θ̆T
[2,k̄] ⊗ 1β)L̂(1ασ1,1 ⊗ θ̆[2,k̄] ⊗ 1β) . (13)

Apply Lemma 3 to the polynomial L viewed as a
polynomial of the first indeterminate, it implies existence
of a skew-symmetric polynomial matrix M1 of order 2mk

with respect to each other indeterminates θk (k = 2 . . . k̄)
such that L1(θ[2,k̄]) =〈

(1α ⊗ η
[0]
1 ⊗ 1β)M1(θ[2,k̄])(1α ⊗ η

[∞]T
1 ⊗ 1β)

〉
. (14)

The polynomial M1 admits a representation in the basis
of monomials as M1(θ[2,k̄]) =

(1αm1 ⊗ θ̆T
[2,k̄] ⊗ 1β)M̂1(1αm1 ⊗ θ̆[2,k̄] ⊗ 1β) . (15)

Decompose M̂1 = M̂skew
1 +M̂sym

1 in its skew-symmetric
and symmetric parts. The constraint that M1(θ[2,k̄]) is
skew-symmetric implies

0 = 2(1αm1 ⊗ θ̆T
[2,k̄]

⊗ 1β)M̂sym
1 (1αm1 ⊗ θ̆[2,k̄] ⊗ 1β).

M̂sym
1 therefore defines a polynomial of k̄ − 1 indeter-

minates which is identically zero. Lemma 1 is assumed
to hold for polynomials of k̄ − 1 indeterminates, thus

M̂sym
1 =

〈
k̄∑

k=2

(1αm1σ2,k−1 ⊗ η
[0]
k ⊗ 1βσk+1,k̄

)N̂1k . . .

(1αm1σ2,k−1 ⊗ η
[∞]T
k ⊗ 1βσk+1,k̄

)
〉

with skew-symmetric matrices N̂1k. Simple manipula-
tions show that whatever k = 2 . . . k̄ and whatever
(i, j) ∈ {0,∞}2 the following formula hold

(1α ⊗ η
[i]
1 ⊗ 1β)(1αm1σ2,k−1 ⊗ η

[j]
k ⊗ 1βσk+1,k̄

)
= (1ασ1,k−1 ⊗ η

[j]
k ⊗ 1βσk+1,k̄

)(1α ⊗ η
[i]
1 ⊗ 1β̃k

)

where β̃k = βσ2,k̄mk/(mk + 1). Therefore with a quite
similar operations as in the proof of Lemma 3, one gets
that〈

(1α ⊗ η
[0]
1 ⊗ 1β)M̂sym

1 (1α ⊗ η
[∞]T
1 ⊗ 1β)

〉
=

〈∑k̄
k=2(1ασ1,k−1 ⊗ η

[0]
k ⊗ 1βσk+1,k̄

)Ñk . . .

(1ασ1,k−1 ⊗ η
[∞]T
k ⊗ 1βσk+1,k̄

)
〉 (16)

where Ñk = (1α ⊗ η
[0]
1 ⊗ 1β̃k

)N̂1,k(1α ⊗ η
[∞]T
1 ⊗

1β̃k
) + (1α ⊗ η

[∞]
1 ⊗ 1β̃k

)N̂1,k(1α ⊗ η
[0]T
1 ⊗ 1β̃k

). The
matrices Ñk happen to be skew-symmetric because N̂1,k

are skew-symmetric. Denote Ñ1 = M̂skew
1 . At this stage,

combining equations (14), (15) and (16) gives

L1(θ[2,k̄]) = (1ασ1,1⊗ θ̆T
[2,k̄]⊗1β)L̂1(1ασ1,1⊗ θ̆[2,k̄]⊗1β)

(17)
where L̂1 =〈∑k̄

k=1(1ασ1,k−1 ⊗ η
[0]
k ⊗ 1βσk+1,k̄

)Ñk . . .

(1ασ1,k−1 ⊗ η
[∞]T
k ⊗ 1βσk+1,k̄

)
〉 (18)

with all matrices Ñk being skew-symmetric. Subtracting
expression (17) to (13) gives

(1ασ1,1⊗ θ̆T
[2,k̄]⊗1β)

(
L̂− L̂1

)
(1ασ1,1⊗ θ̆[2,k̄]⊗1β) = 0

for all θ[2,k̄] ∈ Rk̄−1. This new polynomial matrix of k̄−1
indeterminates is identically zero. Lemma 3 is assumed
to hold for such polynomials of k̄ − 1 indeterminates,
therefore there exist k̄−1 skew-symmetric matrices N̂2,k

(k = 2 . . . k̄) such that L̂− L̂1 =〈∑k̄
k=2(1ασ1,k−1 ⊗ η

[0]
k ⊗ 1βσk+1,k̄

)N̂2,k . . .

(1ασ1,k−1 ⊗ η
[∞]T
k ⊗ 1βσk+1,k̄

)
〉

.
(19)

Combining (18) and (19) proves the result where N̂1 =
Ñ1 = M̂skew

1 and N̂k = N̂2,k + Ñk for k = 2 . . . k̄. �


