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Several works have proposed methods for the analysis and synthesis of Petri net subclasses from labelled transition systems (LTS). In this paper, we focus on Choice-Free (CF) Petri nets, in which each place has at most one output, and their subclass of Weighted Marked Graphs (WMGs). We provide new conditions for the WMG-synthesis from a circular LTS, i.e. forming a single circuit, and discuss the difficulties in extending these new results to the CF case.

Introduction

Petri nets form a highly expressive and intuitive operational model of discrete event systems, capturing the mechanisms of synchronisation, conflict and concurrency. Many of their fundamental behavioural properties are decidable, allowing to model and analyse numerous artificial and natural systems. However, most interesting model checking problems are worst-case intractable, and the efficiency of synthesis algorithms varies widely depending on the constraints imposed on the desired solution. In this study, we focus on the Petri net synthesis problem from a labelled transition system (LTS), which consists in determining the existence of a Petri net whose reachability graph is isomorphic to the given LTS, and building such a Petri net solution when it exists.

In previous studies on analysis or synthesis, structural restrictions on nets encompassed plain nets (each weight equals 1; also called ordinary nets) [START_REF] Murata | Petri nets: properties, analysis and applications[END_REF], homogeneous nets (i.e. for each place p, all the output weights of p are equal) [START_REF] Teruel | Structure theory of Equal Conflict systems[END_REF][START_REF] Hujsa | On liveness and deadlockability in subclasses of weighted Petri nets[END_REF], free-choice nets (the net is plain, hence also homogeneous, and any two transitions sharing an input place have the same set of input places) [START_REF] Desel | Free Choice Petri Nets[END_REF][START_REF] Teruel | Structure theory of Equal Conflict systems[END_REF], join-free nets (each transition has at most one input place) [START_REF] Teruel | Structure theory of Equal Conflict systems[END_REF][START_REF] Delosme | Polynomial sufficient conditions of well-behavedness for weighted join-free and choice-free systems[END_REF][START_REF] Hujsa | Polynomial sufficient conditions of well-behavedness and home markings in subclasses of weighted Petri nets[END_REF][START_REF] Hujsa | On liveness and deadlockability in subclasses of weighted Petri nets[END_REF], etc.

More recently, another kind of restriction has been considered, limiting the number of different transition labels of the LTS [START_REF] Barylska | On binary words being Petri net solvable[END_REF][START_REF] Barylska | Conditions for Petri net solvable binary words[END_REF][START_REF] Erofeev | Generating all minimal Petri net unsolvable binary words[END_REF][START_REF] Erofeev | Reachability graphs of two-transition Petri nets[END_REF].

In this paper, we study the problem of solvability of LTS with weighted marked graphs (each place has at most one output transition and one input transition) and choice-free nets (each place has at most one output transition). Both these classes are important for real-world applications, and they are widely studied in the literature [START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF][START_REF] Hujsa | On the reversibility of well-behaved weighted choice-free systems[END_REF][START_REF] Devillers | Synthesis of weighted marked graphs from constrained labelled transition systems[END_REF][START_REF] Commoner | Marked directed graphs[END_REF][START_REF] Teruel | On weighted Tsystems[END_REF][START_REF] Best | Sufficient conditions for the marked graph realisability of labelled transition systems[END_REF][START_REF] Devillers | Analysis and synthesis of weighted marked graph Petri nets[END_REF][START_REF] Best | Simultaneous petri net synthesis[END_REF]. In this work, we focus mainly on finite circular LTS, meaning strongly connected LTS that contain a unique cycle 4 . In this context, we investigate the cyclic solvability of a word w, meaning the existence of a Petri net solution to the finite circular LTS induced by the infinite cyclic word w ∞ .

An important purpose of studying such constrained LTS is to better understand the relationship between LTS decompositions and their solvability by Petri nets. Indeed, the unsolvability of simple subgraphs of the given LTS, typically elementary paths (i.e. not containing any node twice) and cycles (i.e. closed paths, whose start and end states are equal), often induces simple conditions of unsolvability for the entire LTS, as highlighted in other works [START_REF] Barylska | On binary words being Petri net solvable[END_REF][START_REF] Erofeev | Generating all minimal Petri net unsolvable binary words[END_REF][START_REF] Best | Synthesis and reengineering of persistent systems[END_REF]. Moreover, cycles appear systematically in the reachability graph of live and/or reversible Petri nets [START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF], which are used to model various real-world applications, such as embedded systems [START_REF] Hujsa | Contribution to the study of weighted Petri nets[END_REF].

Contributions.

In this work, we study further the links between simple LTS structures and the reachability graph of WMGs and CF nets, as follows. First, we show that a binary LTS is CF-solvable if and only if it is WMG-solvable. Then, we provide new general conditions for the WMG-solvability of a cyclic word over an arbitrary alphabet, together with an algorithm synthesizing a cyclical WMG-solution for a given word. We also discuss the difficulties of extending these results to the CF class.

Organisation of the paper. After recalling classical definitions, notations and properties in Section 2, we present the equivalence of CF-and WMG-solvability for 2-letter words in Section 3. Then, in Section 4, we focus on circular LTS: we develop a new characterisation of WMG-solvability and a dedicated synthesis algorithm. We also provide a number of examples, which demonstrate that some of the presented results cannot be applied to the class of CF-nets. Finally, Section 5 presents our conclusions and perspectives.

LTS, sequences and reachability. A labelled transition system with initial state, LTS for short, is a quadruple TS = (S, →, T, ι) where S is the set of states, T is the set of labels, → ⊆ (S × T × S) is the transition relation, and ι ∈ S is the initial state. A label t is enabled at s ∈ S, written s[t , if ∃s ∈ S : (s, t, s ) ∈→, in which case s is said to be reachable from s by the firing of Petri nets and reachability graphs. A (finite, place-transition) weighted Petri net, or weighted net, is a tuple N = (P, T, W ) where P is a finite set of places, T is a finite set of transitions, with P ∩ T = ∅ and W is a weight function W : ((P × T ) ∪ (T × P )) → N giving the weight of each arc. A Petri net system, or system, is a tuple S = (N, M 0 ) where N is a net and M 0 is the initial marking, which is a mapping M 0 : P → N (hence a member of N P ) indicating the initial number of tokens in each place. The incidence matrix C of the net is the integer P × T -matrix with components C(p, t) = W (t, p) -W (p, t). A place p ∈ P is enabled by a marking M if M (p) ≥ W (p, t) for every output transition t of p. A transition t ∈ T is enabled by a marking M , denoted by M [t , if for all places p ∈ P , M (p) ≥ W (p, t). If t is enabled at M , then t can occur (or fire) in M , leading to the marking M defined by M (p) = M (p) -W (p, t) + W (t, p); we note M [t M . A marking M is reachable from M if there is a sequence of firings leading from M to M . The set of markings reachable from M is denoted by [M . The reachability graph of S is the labelled transition system RG(S) with the set of vertices [M 0 , the set of labels T , initial state M 0 and transitions

{(M, t, M ) | M, M ∈ [M 0 ∧M [t M }. A system S is bounded if RG(S) is finite.
Vectors. The support of a vector is the set of the indices of its non-null components. Consider any net N = (P, T, W ) with its incidence matrix C. A T-vector is an element of N T ; it is called prime if the greatest common divisor of its components is one (i.e., its components do not have a common non-unit factor). A T-semiflow ν of the net is a non-null T-vector such that C • ν = 0. A T-semiflow is called minimal when it is prime and its support is not a proper superset of the support of any other T-semiflow [START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF]. The Parikh vector P(σ) of a finite sequence σ of transitions is a T-vector counting the number of occurrences of each transition in σ, and the support of σ is the support of its Parikh vector, i.e., supp(σ

) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}.
Strong connectedness and cycles in LTS. The LTS is said reversible if, ∀s ∈ [ι , we have ι ∈ [s , i.e., it is always possible to go back to the initial state; reversibility implies the strong connectedness of the LTS. A sequence s[σ s is called a cycle, or more precisely a cycle at (or around) state s, if s = s . A non-empty cycle s[σ s is called small if there is no nonempty cycle s [σ s in TS with P(σ ) P(σ) (the definition of Parikh vectors extending readily to sequences over the set of labels T of the LTS). A cycle s[σ s is prime if P(σ) is prime. TS has the prime cycle property if every small cycle has a prime Parikh vector. A circular LTS is a finite, strongly connected LTS that contains a unique cycle; hence, it has the shape of an oriented circle. The circular LTS induced by a word w = w 1 . . . w k is the LTS with initial state s 0 defined as

s 0 [w 1 s 1 [w 2 s 2 . . . [w k s 0 .
All notions defined for labelled transition systems apply to Petri nets through their reachability graphs.

Petri net subclasses. A net N is plain if no arc weight exceeds 1; pure if ∀p ∈ P : (p • ∩ • p) = ∅, where p • = {t ∈ T | W (p, t)>0} and • p = {t ∈ T | W (t, p)>0}; CF (choice-free [10, 27]) or ON (place-output-nonbranching [4]) if ∀p ∈ P : |p • | ≤ 1; a WMG (weighted marked graph [26]) if |p • | ≤ 1 and | • p| ≤ 1
for all places p ∈ P . The latter form a subclass of the choice-free nets; other subclasses are marked graphs [START_REF] Commoner | Marked directed graphs[END_REF], which are plain with |p • | = 1 and | • p| = 1 for each place p ∈ P , and T-systems [START_REF] Desel | Free Choice Petri Nets[END_REF], which are plain with |p • | ≤ 1 and | • p| ≤ 1 for each place p ∈ P .

Isomorphism and solvability. Two LTS TS

1 = (S 1 , → 1 , T, s 01 ) and TS 2 = (S 2 , → 2 , T, s 02 ) are isomorphic if there is a bijection ζ : S 1 → S 2 with ζ(s 01 ) = s 02 and (s, t, s ) ∈→ 1 ⇔ (ζ(s), t, ζ(s )) ∈→ 2 , for all s, s ∈ S 1 .
If an LTS TS is isomorphic to RG(S), where S is a system, we say that S solves TS . Solving a word w = 1 . . . k amounts to solve the acyclic LTS defined by the single path ι[ 1 s 1 . . . [ k s k . A finite word w is cyclically solvable if the circular LTS induced by w is solvable. An LTS is WMG-solvable if a WMG solves it.

Separation problems. Let T S = (S, →, T, s 0 ) be a given labelled transition system. The theory of regions [START_REF] Badouel | Petri Net Synthesis[END_REF] characterises the solvability of an LTS through the solvability of a set of separation problems. In case the LTS is finite, we have to solve 1 2 •|S|•(|S|-1) states separation problems and up to |S|•|T | event/state separation problems, as follows: If the LTS is infinite, also the number of separation problems (of each kind) becomes infinite.

• A region of (S, →, T, s 0 ) is a triple (R, B, F) ∈ (S → N, T → N, T → N) such that for all s[t s , R(s) ≥ B(t) and R(s ) = R(s)-B(
A synthesis procedure does not necessarily lead to a connected solution. However, the technique of decomposition into prime factors described in [START_REF] Devillers | Products of Transition Systems and Additions of Petri Nets[END_REF][START_REF] Devillers | Factorisation of transition systems[END_REF] can always be applied first, so as to handle connected partial solutions and recombine them afterwards. Hence, in the sequel, we focus on connected nets, without loss of generality. In the next section, we consider the synthesis problem of CF nets with exactly two different labels.

Reversible Binary CF Synthesis

In this section, we link the CF-solvability of a reversible LTS with 2 letters to the WMG-solvability.

Lemma 1 (Pure CF-solvability).

If a reversible LTS has a CF-solution, it has a pure CF-solution.

Proof. Let TS = (S, →, T, ι) be a reversible LTS. First, we observe that, if t ∈ T does not occur in →, TS is solvable iff TS = (S, →, T \ {t}, ι) is solvable and a possible solution of TS is obtained by adding to any solution of TS a transition t and a fresh place p, initially empty, with an arc from p to t (e.g. with weight 1), so that t is pure. We may thus assume that each label of T occurs in →. The general form of a place in a CF-solution is exhibited in Figure 1. If h = 0, we are done, so that we shall assume h > 0. If -h ≤ k < 0, the marking of p cannot decrease, and since x occurs in →, the system cannot be reversible. If k = 0, for the same reason all the k i 's must be null too, µ 0 ≥ h, and we may drop p. Hence we assume that k > 0 and ∃i : k i > 0.

Once x occurs, the marking of p is at least h, remains so, and since the system is reversible, all the reachable markings have at least h tokens in p. But then, if we replace p by a place p with initially µ 0 -h tokens, the same k i 's and h = 0, we shall get exactly the same reachability graph, but with h tokens less in p than in p. This will wipe out the side condition5 for p, and repeating this for each side condition, we shall get an equivalent pure and choice-free solution.

Theorem 1 (Reversible binary CF-solvability).

A binary reversible LTS is CF-solvable iff it is WMG-solvable.

Proof. If we have two labels, from Lemma 1, if there is a CF-solution, there will be one with places of the form exhibited in Figure 2, hence a WMG-solution. In the next section, the number of letters is no more restricted.

Cyclic WMG-and CF-solvablity

In this section, we recall and extend the conditions for WMG-solvability of some restricted classes of LTS formed by a single circuit, which were suggested in [START_REF] Devillers | Synthesis of weighted marked graphs from constrained labelled transition systems[END_REF]. We gradually study the separation problems (SSPs in Subsection 4.1 and ESSPs in Subsection 4.2) for cyclical solvability with WMGs, and develop a languagetheoretical characterisation of WMG-cyclically solvable sequences. The characterisation gives rise to a synthesis algorithm which is presented later. Unfortunately, most of these results cannot be directly extended to the more general class of CF-nets, which is demonstrated by examples in Subsection 4.3.

In the following, two distinct labels a and b are called (circularly) adjacent in a word w if w = (w 1 abw 2 ) or w = (bw 3 a) for some w 1 , w 2 , w 3 ∈ T * . We denote by p a, * any place p a,b where b is adjacent to a. Also, since |T | > 1, at least one label is adjacent to t 0 , and at least one is adjacent to the ones we exhibited, etc., until we get the whole set T , and we may start from any label t i instead of t 0 .

Theorem 2 (Sufficient condition for cyclic WMG-solvability [START_REF] Devillers | Synthesis of weighted marked graphs from constrained labelled transition systems[END_REF]). Consider any word w over any finite alphabet T such that P(w) is prime. Suppose the following: ∀u = w t1t2 (i.e., the projection 6 of w on {t 1 , t 2 }) for some circularly adjacent labels t 1 , t 2 in w, u = v for some positive integer , P(v) is prime, and v is cyclically solvable by a circuit (i.e. a circular net as in Fig. 3). Then, w is cyclically solvable with a WMG. Theorem 3 (Cyclic WMG-solvability of ternary words [START_REF] Devillers | Synthesis of weighted marked graphs from constrained labelled transition systems[END_REF]). Consider a ternary word w over the alphabet T with Parikh vector (x, x, y) such that gcd(x, y) = 1. Then, w is cyclically solvable with a WMG if and only if ∀u = w t1t2 such that t 1 = t 2 ∈ T , and w = (w 1 t 1 t 2 w 2 ) or w = (t 2 w 3 t 1 ), u = v for some positive integer , P(v) is prime, and v is cyclically solvable by a circuit. For a circular LTS, the solvability of its binary projections by circuits is a sufficient condition, as specified by Theorem 2, but it turns out not to be a necessary one. Indeed, for the cyclically solvable sequence w 1 = aacbbdabd (cf. left of Fig. 4), its binary projection on {a, b} is w 1 a,b = aabbab which is not cyclically solvable with a WMG (neither generally solvable). Looking only at the Parikh vector of the sequence is also not enough to establish its cyclical (un)solvability. For instance, sequences w 2 = abcabdabd and w 3 = abcbadabd are Parikh-equivalent: P(w 2 ) = P(w 3 ) = (3, 3, 1, 2) (and also Parikh-equivalent to w 1 ), but w 2 is cyclically solvable with a WMG (e.g. with the WMG on the right of Fig. 4) and w 3 is not WMG-cyclically solvable.

All the binary projections of w 1 and w 3 are cyclically WMG-solvable, except w i a,b . But only the unsolvability of w 3 a,b implies the unsolvability of w 3 . Since all the w i are Parikh-equivalent, then so are their binary projections. So, to find the difference we have to look at the sequences themselves, without abstracting to Parikh-vectors. Since the projections w 1 a,b and w 3 a,b are equivalent (up to cyclical rotation and swapping a and b), it is also not enough to look only at the 'problematic' binary projections. We then look at the conditions for solvability of separation problems. Lemma 2 (SSPs are solvable for prime cycles). If for the cyclical transition system T S = (S, →, T, s 0 ) defined by some word w = t 0 . . . t k , where

SSPs for Prime Cycles

S = {s 0 , . . . , s k }, →= {(s i-1 , t i-1 , s i ) | 1 ≤ i ≤ k} ∪ {(s k , t k , s 0 )} with t i ∈ T , P (w) 
is prime, then all the SSPs are solvable.

Proof.

If |T | = 1, then k = 0 (otherwise P(t 0 . . . t k ) is not prime) and |S| = 1,
so that there is no SSP to solve. We may thus assume |T | > 1.

For 0 ≤ i, j ≤ k such that s i = s j (so that i = j), we note P ij = P(t i t i+1 . . . t j-1 ) if i < j and

P ij = P(t i t i+1 . . . t k-1 t k t 0 t 1 . . . t j-1 ) if i > j.
For each pair of distinct labels a, b ∈ T that are adjacent in T S, construct places p a,b (and p b,a since adjacency is commutative) as in Fig. 5 with m = P(w)(b) gcd(P(w)(a), P(w)(b))

, n = P(w)(a) gcd(P(w)(a), P(w)(b))

,

and µ 0 = n • P(w)(b). Clearly, the markings of p a,b reachable by repeatedly firing u = w ab are always non-negative, and the initial marking is reproduced after each repetition of the sequence u. Consider two distinct states s i , s j ∈ S (w.l.o.g. i < j). We now demonstrate that there is at least one place of the form p a,b such that

M i (p a,b ) = M j (p a,b
), where M l denotes the marking corresponding to state s l for 0 ≤ l ≤ k. If j -i = 1, then any place of the form p ti, * distinguishes states s i and s j . The same is true if

j -i > 1 but ∀l ∈ [i, j -1] : t l = t i .
Otherwise, choose some letter a from t i . . . t j-1 and an adjacent letter b. Then (so that b also belongs to t i . . . t j-1 ). Consider some other letter c which is adjacent to a or b. If place p a,c distinguishes s i and s j , we are done. Otherwise, due to the choice of the arc weights for these places, we have This property has some similarities with Theorem 4.1 in [START_REF] Devillers | Analysis and synthesis of weighted marked graph Petri nets: Exact and approximate methods[END_REF], but the preconditions are different.

M j (p a,b ) = M i (p a,b ) + m • P ij (a) -n • P ij (b). If M i (p a,b ) = M j (p a
P ij (a) P(w)(a) = P ij (c) P(w)(c) = P ij (b) P(w)(b) . Since t i . . . t
The reachability graph of any CF net, hence of any WMG, satisfies the prime cycle property [START_REF] Best | Characterisation of the state spaces of marked graph Petri nets[END_REF][START_REF] Best | Bounded choice-free Petri net synthesis: Algorithmic issues[END_REF]. Thus, primeness of a sequence allows us skip checking of SSPs when looking at solvability within these two classes of Petri nets.

ESSPs in Cyclical Solvability with WMGs

Now, consider further conditions for the cyclical WMG-solvability of a sequence w = t 0 . . . t k , where P(w) is prime. Let us assume that the system ((P, T, W ), M 0 ) is a WMG solving w cyclically. Due to the definition of WMGs, all the places that we have to consider are of the form schematised in Fig. 6. The arc weights may differ due to the integer parameter l ≥ 1, but the ratio

W (a,p a,b ) W (p a,b ,b) = m
n is determined by the Parikh vector of w and its cyclical solvability (let us notice that the initial marking is to be defined). Moreover, we have to consider only these places, which are connected to the pairs of adjacent transitions in w. Indeed, if w = u 1 | si a | si+1 b u 2 , where s i is the state reached after performing u 1 and s i+1 is the state reached after performing u 1 a, then any place that solves the ESSP 7 ¬M i [b is an input place for b. On the other hand, any place whose marking at M si differs from its marking at M si+1 is connected to a. Hence, a place p ∈ P solving ¬M i [b is of the form p a,b . Since p is only affected by a and b, it also disables b at all the states between s l and s i in w when it is of the form w = u 3 | sj t j | sj+1 b + | s l u 4 | si abu 2 with P(u 4 )(b) = 0 (in the case there is no b in the prefix between s 0 and abu 2 , s l = s 0 ). Analogously, if t j = b, there must be a place q ∈ P of the form p tj ,b that solves ¬M sj [b . Doing so, we ascertain that the places of the form schematised in Fig. 6 for the adjacent pairs of transitions are sufficient to handle all the ESSPs. In a WMG, a place can have at most one input transition. This restriction is relaxed for choice-free nets and multiple inputs are allowed. Nevertheless, this does not imply that a single input place for each transition will always be sufficient. As an instance, consider the sequence bcaf deaaabcdaaf dcaaa (see Fig. 10) which is cyclically solvable with a CF net.

Assume that we can solve all ESSPs against transition a with a single place p as on the right of Fig. 9 (we know that we do not need any side-conditions). following system of inequalities must hold true:

cycle : 2 • k b + 3 • k c + 3 • k d + k e + 2 • k f = 9 • k (0) ¬s 5 [a : µ 0 + k b + k c + k d + k f -k < k (1) 
s 6 [aaa : 

µ 0 + k b + k c + k d + k e + k f -k ≥ 3 • k (2)

Conclusions and Perspectives

In this work, we specialised previous methods of analysis and synthesis to the CF nets and their WMG subclass, two useful subclasses of weighted Petri nets allowing to model various real-world applications.

We highlighted the correspondance between CF-solvability and WMG-solvability for binary alphabets. We also tackled the case of an LTS formed of a single circuit with an arbitrary number of letters, for which we developed a characterisation of WMG-solvability together with a dedicated and efficient synthesis algorithm. Finally, we discussed the applicability of our conditions to CF synthesis.

As a natural continuation of the work, we expect extensions of our results in two directions: generalising the class of goal-nets (e.g. to choice-free or forkattribution nets), and relaxing the restrictions for the LTS under consideration.

Fig. 1 .

 1 Fig.1. A general pure (h = 0) or non-pure (h > 0) choice-free place p with initial marking µ0. Place p has at most one outgoing transition named x. The set {a1, . . . , am} comprises all other transitions, i.e., T = {x, a1, . . . , am}, and kj denotes the weight of the arc from aj to p (which could be zero).

Fig. 2 .

 2 Fig.2. A generic pure CF-place with two labels.

Fig. 3 .

 3 Fig. 3. A generic WMG solving a finite circular LTS induced by a word w over the alphabet {a, b}.

Fig. 4 .

 4 Fig.[START_REF] Best | Synthesis and reengineering of persistent systems[END_REF]. The WMG on the left solves aacbbdabd cyclically, and the WMG in the middle solves aacbbeabd cyclically. On the right, the WMG solves abcabdabd cyclically.

Fig. 5 .

 5 Fig. 5. A place of general form in a WMG.

  ,b ), place p a,b distinguishes s i and s j . Otherwise we have m • P ij (a) = n • P ij (b), hence, due to the choice of m and n: P ij (a) P(w)(a) = P ij (b) P(w)(b)

Fig. 6 .

 6 Fig.6. A general place from a to b of a WMG solution (l may be any multiple of 1/ gcd(m, n)).

2 Fig. 7 .Fig. 8 .Fig. 9 .

 2789 Fig. 7. Sequence abcbad is cyclically solved by the CF net on the right.

Fig. 10 .

 10 Fig. 10. w = bcaf deaaabcdaaf dcaaa is cyclically solved by the CF net on the right.

¬s 11 [a : µ 0 + 2 • 6 )

 26 k b + 2 • k c + k d + k e + k f -4 • k < k (3) s 12 [aa : µ 0 + 2 • k b + 2 • k c + 2 • k d + k e + k f -4 • k ≥ 2 • k (4) ¬s 16 [a : µ 0 + 2 • k b + 2 • k c + 3 • k d + k e + 2 • k f -6 • k < k (5) s 17 [aaa : µ 0 + 2 • k b + 3 • k c + 3 • k d + k e + 2 • k f -6 • k ≥ 3 • k (From the system above we obtain:(2) -(1) : k e > 2 • k (4) -(3) : k d > k (6) -(5) : k c > 2 • k which implies 3 • k c + 3 • k d + k e > 13• k, contradicting the equality (0). Hence, the ESSPs against a cannot be solved by a single place.

  t, and we write s[t s . Generalising to any (firing) sequences σ ∈ T * , s[ε and s[ε s are always true, with ε being an empty sequence; and s[σt s , i.e., σt is enabled from state s and leads to s if there is some s with s[σ s and s [t s . For clarity, in case of long formulas we write | r σ| s τ | q instead of r[σ s[τ q, thus fixing some intermediate states along a firing sequence. A state s is reachable from state s if ∃σ ∈ T * : s[σ s . The set of states reachable from s is noted [s . TS = (S, →, T, ι) is fully reachable if S = [ι .

  • A states separation problem (SSP for short) consists of a set of states {s, s } with s = s , and it can be solved by a place distinguishing them, i.e., has a different number of tokens in the markings corresponding to the two states. • An event/state separation problem (ESSP for short) consists of a pair (s, t) ∈ S×T with ¬s[t . For every such problem, one needs a place p such that M (p) < W (p, t) for the marking M corresponding to state s, where W refers to the arcs of the hoped-for net. On the other hand, for every edge (s , t, s ) ∈→ we must guarantee M (p) ≥ W (p, t), M being the marking corresponding to state s .

t)+F(t).

A region models a place p, in the sense that B(t) models W (p, t), F(t) models W (t, p), and R(s) models the token count of p at the marking corresponding to s.

  j-1 is finite, by progressing along the adjacency relation, either we find a place which has different markings at s i and s j , or for all a, b ∈ supp(t i . . . t j-1 ) we have If supp(t i . . . t j-1 ) = supp(w), P(w) is proportional to P(t i . . . t j-1 ), but since t i . . . t j-1 is smaller than w (otherwise s i = s j ) this contradicts the primality of P(w). Hence, there exist adjacent c and d such that c ∈ supp(w)\supp(t i . . . t j-1 ) and d ∈ supp(t i . . . t j-1 ). For the place p c,d we have M j (p c,d ) = M i (p c,d ).

	P ij (a) P(w)(a)	=	P ij (b) P(w)(b)	.

A set A of k arcs in a LTS G defines a cycle of G if the elements of A can be ordered as a sequence a1 . . . a k such that, for each i ∈ {1, . . . , k}, ai = (ni, i, ni+1) and n k+1 = n1, i.e. the i-th arc ai goes from node ni to node ni+1 until the first node n1 is reached, closing the path.

A place p is a side-condition if • p ∩ p • = ∅.

The projection of a word w ∈ A * on a set A ⊆ A of labels is the maximum subword of w whose labels belong to A , noted w A . For example, the projection of the word w = 1 2 3 2 on the set { 1, 2} is the word 1 2 2.
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In fact, for every pair of adjacent transitions a and b in w, a single place of the form p a,b is sufficient. Indeed, assume there are p 1 , p 2 ∈ P of the form p a,b . If Hence, p 1 is redundant in the system, and the following is true. Lemma 3. If w ∈ T * is cyclically solvable by a WMG, there exists a WMG S = ((P, T, W ), M 0 ), where P consists of places p a,b , for each pair of distinct circularly adjacent a and b (i.e., either w = u 1 abu 2 or w = bu 3 a).

Let w be cyclically solvable with a WMG S = ((P, T, W ), M 0 ) as in Lemma 3, and place p ∈ P be of the form p a,b (as in Fig. 6, with l = 1) for an adjacent pair ab. Choose two successive ab's

possibly other letters between s r+2 and s q (if there is only one ab, apply the argumentation while wrapping around w circularly, i.e., with s r = s q ). Since p solves ESSPs ¬s r [b and ¬s q [b , the next inequalities hold true, where µ r denotes the marking of p a,b at state s r :

From the first and the third line of (2) we get P rj (a) • m -P rj (b) • n > -n. This implies:

From the third and the fourth line of (2) we obtain

For P jq (a) = 0, since P rq = P rj + P jq this inequality can be written as

Thus, from (3) and (4) we have a necessary condition for solvability in the following sense.

Lemma 4 (A necessary condition for cyclical solvability with a WMG).

If w ∈ T * is cyclically solvable by a WMG, then for any adjacent transitions a and b in w, and any two successive-up-to-rotation occurrences of ab in w = u 1 | sr a b . . . | sq a b u 2 , the inequality

holds true, where m, n are as in (1), r < j ≤ q, and the right inequality is omitted when P jq (a) = 0.

In particular, Lemma 4 explains the cyclical unsolvability of the word

Pjq(a) .

Lemma 5 (A sufficient condition for cyclical solvability by a WMG).

If w ∈ T * has a prime Parikh vector, and for each pair of circularly adjacent ab in w = . . . | q a b . . . , the inequality

holds true, then w is cyclically solvable by a WMG. From Lemma 4 and Lemma 5 we can deduce the following characterisation.

Theorem 4 (A characterisation of cyclical solvability with a WMG).

A sequence w ∈ T * is cyclically solvable with a WMG iff P(w) is prime and for any pair of circularly adjacent labels in w, for instance w = . . . | q ab . . ., m n < P jq (b) + 1 P jq (a) , j = q holds true with m, n as in [START_REF] Badouel | Petri Net Synthesis[END_REF]. A WMG-solution can be found with the places of the form p a,b for every such pair of a and b.

Based on the characterisation from Theorem 4 and the considerations above, Algorithm 1 below synthesizes a cyclical WMG-solution for a given sequence w ∈ T * , if one exists, with a runtime in O(|w| 2 ). For a comparison, the general regionbased synthesis typically uses ILP-solvers, and for Karmarkar's algorithm [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF] (which is known to be efficient) we may expect a running time of O(|w| 3 •L(|w|)), with a logarithmic factor L(|w|) = log(|w|) • log(log(|w|)). Note that, with this general approach, some redundant places may be constructed, but they can be reduced in a post-processing phase.

CF-solvability vs WMG-solvability of Cycles

The class of WMGs is clearly a proper subset of the class of CF nets. If we are only looking at cyclical solvability of sequences, this inclusion remains strict, i.e., there exist sequences which are cyclically solvable by a CF net but have no cyclical solution in the form of a WMG. E.g., the sequence w = abcbad has a cyclical CF-solution (cf. Fig. 7). On the other hand, for a | r b c | q b a d we have P(w)(a) P(w

Prq(b) which, by Theorem 3, implies the cyclical unsolvability of w by a WMG.

From Lemma 3, for the cyclical solvability by a WMG it is enough to use only places between adjacent transitions. For the sequence abcbad in Fig. 7, transition b follows a and c, and the input place of b in the CF-solution is an output place for both a and c. The situation is similar for transition a, which follows b and d. However, this is not always the case when we are looking for a solution in the class of CF nets. For instance, the sequence cabdaaabeab is cyclically solvable by a CF net (see Fig. 8). In this sequence, b always follows a. But in order to solve ESSPs against b, we need a place which is an output place for c and e (in addition to a).