Ubiquitous Non-Majorana Zero-Bias Conductance Peaks in Nanowire Devices
Résumé
We perform tunneling measurements on indium antimonide nanowire-superconductor hybrid devices fabricated for the studies of Majorana bound states. At finite magnetic field, resonances that strongly resemble Majorana bound states, including zero-bias pinning, become common to the point of ubiquity. Since Majorana bound states are predicted in only a limited parameter range in nanowire devices, we seek an alternative explanation for the observed zero-bias peaks. With the help of a self-consistent Poission-Schrödinger multiband model developed in parallel, we identify several families of trivial subgap states that overlap and interact, giving rise to a crowded spectrum near zero energy and zero-bias conductance peaks in experiments. These findings advance the search for Majorana bound states through improved understanding of broader phenomena found in superconductor-semiconductor systems.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...