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Abstract. Numerous real-world systems can be modeled with Petri nets, which allow a combi-
nation of concurrency with synchronizations and conflicts. To alleviate the difficulty of checking
their behaviour, a common approach consists in studying specific subclasses. In the converse
problem of Petri net synthesis, a Petri net of some subclass has to be constructed efficiently from
a given specification, typically from a labelled transition system (lts) describing the behaviour of
the desired net.

In this paper, we focus on a notorious subclass of persistent Petri nets, the weighted marked graphs
(WMGs), also called generalised (or weighted) event (or marked) graphs or weighted T-nets. In
such nets, edges have multiplicities (weights) and each place has at most one ingoing and one
outgoing transition. Although extensively studied in previous works and benefiting from strong
results, both their analysis and synthesis can be further investigated.

We provide new behavioural properties of WMGs expressed on their reachability graph, notably
backward persistence and strong similarities between any two sequences sharing the same starting
state and the same destination state. Besides, we design a general synthesis procedure aiming at
the WMG class. Finally, when no solution to the synthesis problem exists, i.e., when the given lts
is not WMG-solvable, we show how to construct a WMG whose reachability graph is a minimal
over-approximation of the given lts.

Keywords: Weighted Petri net, analysis, synthesis, marked graph, event graph, theory of re-
gions, approximation, persistence.
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1. Introduction

Petri nets have proved useful to model numerous artificial and natural systems. Their weighted
version allows weights on arcs, making possible the bulk consumption or production of tokens,
hence a more compact representation of the systems.

Many fundamental properties of Petri nets are decidable, although often hard to check. Given a
bounded Petri net, a naive analysis can be performed by constructing its finite reachability graph,
whose size may be considerably larger than the net size. To avoid such a costly computation,
subclasses are often considered, allowing to derive efficiently their behaviour from their structure
only. This approach has led to various polynomial-time checking methods dedicated to several
subclasses, the latter being defined by structural restrictions in many cases [1, 2, 3, 4, 5].

In the domain of Petri net synthesis, a specification has to be implemented by a Petri net, meaning
that the behaviour of the Petri net obtained must correspond exactly to the specification. Classi-
cal representations of such a specification encompass labelled transitions systems (lts for short),
which are rooted directed graphs with labels on the arcs, and a synthesis procedure is meant to
build a Petri net of a specific subclass whose reachability graph is isomorphic to a given lts, when
possible.

Weighted marked graphs: applications and previous studies. In this paper, we focus on
marked graphs with weights (also called generalised event graphs or weighted T-nets), a subclass
of weighted Petri nets in which each place has at most one input and one output. They can model
Synchronous DataFlow graphs [6], which have been fruitfully used to design and analyse many
real systems such as embedded applications, notably Digital Signal Processing (DSP) applica-
tions [7, 8, 9].

Various characterisations and polynomial-time sufficient conditions of structural and behavioural
properties, notably of liveness, boundedness and reversibility, have been developed for WMGs [10,
11] and larger classes [12, 13, 2]. These nets are a special case of persistent systems, in which no
transition firing can disable another transition.

Petri net synthesis: previous studies. Given a labelled transition system, previous works have
proposed algorithms synthesizing a Petri net with an isomorphic reachability graph, sometimes
aiming at a Petri net subclass [14, 15, 16]. In the latter case, the objective is to delineate proper-
ties of the lts that are specific to the target subclass, so as to determine sufficient and necessary
conditions for its synthesisability within the subclass. Ideally, such specific conditions should
be easier to check than generic ones, for instance during a pre-synthesis phase. When the given
lts has no solution within the desired class, algorithms exist that build a minimal solvable over-
approximation of the lts in some subclasses of Petri nets [17, 18].

Marked graphs, i.e., unit-weighted marked graphs, belong to the larger class of choice-free nets,
in which each place has at most one output. Both classes benefit from dedicated synthesis algo-
rithms that operate in polynomial time [14, 15, 19, 20, 21]. However, such methods do not yet
exist for the intermediate class of marked graphs with arbitrary weights.

Contributions. In this paper, we further investigate the class of weighted marked graphs (WMGs),
extending our previous conference paper [22]. We delineate new properties of these nets and pro-
pose a synthesis procedure aiming at this subclass. In case no WMG-solution exists, we also
propose an algorithm building a minimal WMG-solvable over-approximation of the given lts.
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First, we provide new structural and behavioural properties of WMGs: we give a comparison
property on the sequences starting at the same state and reaching another common state, we show
that WMGs are necessarily backward persistent, meaning that for all reachable states s1, s2, s3
such that s2[a〉s1 (i.e., s1 is reached from s2 through the action with label a) and s3[b〉s1, there
exists a reachable state s4 with s4[b〉s2 and s4[a〉s3. We also develop conditions allowing the
existence of a feasible sequence corresponding to a given Parikh vector.

Then, we delineate necessary conditions for the WMG-solvability of an lts, such as backward
persistence and the existence of particular cycles. We show, with the help of a counter-example
from another subclass, that these conditions are not sufficient for a WMG solution to exist.

Thereafter, we devise a WMG-synthesis procedure, specialising previous methods that were de-
signed for the larger class of choice-free nets.

Finally, and this is the main addition with respect to [22], we show the existence of a minimal
WMG-solvable over-approximation of any given lts and exploit a fixed point algorithm to com-
pute it. This allows to exploit the synthesis procedure mentioned above to build a WMG whose
language minimally includes the sequences specified by the given lts.

Organisation of the paper. In Section 2, we introduce general definitions, notations and prop-
erties. In Section 3, we recall some properties of persistent Petri nets and provide new structural
and behavioural results on WMGs, including the proof of backward persistence. In Section 4, we
describe a synthesis procedure for WMGs. In Section 5, we investigate minimal WMG-solvable
over-approximations. As usual, the last section presents our conclusions and perspectives.

2. Classical Definitions, Notations and Properties

In the following, we define formally Petri nets, labelled transitions systems and related notions.
We also recall classical properties of Petri nets in Proposition 2.1.

Petri nets, incidence matrices, pre- and post-sets. A (Petri) net is a tuple N = (P, T,W ) such
that P is a finite set of places, T is a finite set of transitions, with P ∩ T = ∅, and W is a weight
function W : ((P × T )∪ (T × P ))→ N setting the weights on the arcs. A marking of the net N
is a mapping from P to N, i.e., a member of NP , defining the number of tokens in each place of
N .
A (Petri net) system is a tuple ζ = (N,M0) where N is a net and M0 is a marking, often called
initial marking. The incidence matrix C of N (and ζ) is the integer place-transition matrix with
components C(p, t) = W (t, p)−W (p, t), for each place p and each transition t. For any place p
and any transition t, we denote by C(p) the row of p and by C(t) the column of t.
The post-set n• and pre-set •n of a node n ∈ P ∪ T are defined as n• = {n′ ∈ P ∪ T |
W (n, n′)>0} and •n = {n′ ∈ P ∪ T |W (n′, n)>0}.

Firings and reachability in Petri nets. Consider a net N = (P, T,W ). A transition t is enabled
at a marking M if ∀p ∈ •t, M(p) ≥ W (p, t), in which case t can occur at or be fired from M .
The firing of t from M leads to the marking M ′ = M + C(t) and we note it M [t〉M ′.
A finite (firing) sequence σ = t1 . . . tn of length n ≥ 0 on the set T , hence with t1, . . . , tn ∈ T , is
a mapping {1, . . . , n} → T . Infinite sequences are defined similarly as mappings N \ {0} → T .
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A sequence σ of length n is enabled (or fireable, or feasible, or realisable) in a system ζ =
(N,M0) if the successive states obtained, M0[t1〉M1 . . . [tn〉Mn, satisfy Mk−1[tk〉Mk, ∀k ∈
{1, . . . , n}, in which case Mn is said to be reachable from M0: we note this as M0[σ〉Mn. If
n = 0, σ is the empty sequence ε, implying M0[ε〉M0. The set of markings reachable from M0

is noted [M0〉. A place p ∈ P contains frozen tokens if, for each reachable marking M ∈ [M0〉,
M(p) > 0. The number of frozen tokens on p from M0 is given by minM∈[M0〉M(p), i.e. the
maximal number of tokens that can never be used. 1

The reachability graph of ζ, noted RG(ζ), is the rooted directed graph (V,A, ι) where V repre-
sents the set of vertices [M0〉, A is the set of arcs labelled with transitions of T such that the arc
M

t−→M ′ belongs to A if and only if M [t〉M ′ and M ∈ [M0〉, and ι = M0 is the root.

In Figure 1, a weighted system is pictured on the left. Its reachability graph is pictured on the
right, where vT denotes the transpose of vector v.

Petri net subclasses. (N,M0) is bounded iff its reachability graph is finite, i.e. there exists an
integer k such that, for each marking M reachable from M0 and each place p, M(p) ≤ k. N
is plain if no arc weight exceeds 1; choice-free (CF for short, meaning that the structure does
not permit any choice in the usage of tokens: in each place, the tokens may only be used by a
single transition) [25, 26] (also called place-output-nonbranching in [27]) if ∀p ∈ P , |p•| ≤ 1;
fork-attribution (FA, where a fork is a transition with at least two output places, and an attribution
is a place with at least two input transitions) [26] if it is CF and, in addition, ∀t ∈ T , |•t| ≤ 1; a
weighted marked graph (WMG, also called weighted T-nets in [10]) if it is CF and, in addition,
∀p ∈ P , |•p| ≤ 1.

A WMG is pictured on the left of Figure 1. Well-studied subclasses encompass marked graphs [28]
which are plain and fulfill |p•| = 1 and |•p| = 1 for each place p, and T-nets [1], which are plain
and fulfill |p•| ≤ 1 and |•p| ≤ 1 for each place p. The dual notion of marked graphs is the class
of P-nets (also called S-nets), where |t•| = 1 and |•t| = 1 for each transition t.

p3 p4

p1 p2

2 1
4 3

1 1

2 3

t1

t2
t3 (0, 1, 4, 0)T

(0, 0, 4, 3)T

(2, 1, 0, 0)T

(1, 1, 2, 0)T

(2, 0, 0, 3)T (1, 0, 2, 3)T

t2

t1

t3 t1

t1

t3

t1 t3

Figure 1: A WMG system ζ and its reachability graph RG(ζ) are pictured respectively on the
left and on the right (markings are represented by vectors with indices corresponding succes-
sively to p1, p2, p3 and p4). The initial marking is boxed in RG(ζ).

Lts and their relationship with Petri nets. A labelled transition system with initial state, ab-
breviated lts, is a quadruple TS = (S,→, T, ι) where S is the set of states, T is the set of labels,
→⊆ (S × T × S) is the transition relation, and ι ∈ S is the initial state.

1In pure nets, i.e. nets where •n ∩ n• = ∅ for each node, deleting frozen tokens from the initial marking preserves the set
of feasible sequences, and simple conditions exist that compute potentially useful tokens [23, 24].
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Two lts TS 1 = (S1,→1, T, s01) and TS 2 = (S2,→2, T, s02) are isomorphic if there is a bi-
jection β : S1 → S2 with β(s01) = s02 and (s, t, s′) ∈→1⇔ (β(s), t, β(s′)) ∈→2, for all
s, s′ ∈ S1.
A label t is enabled at s ∈ S if ∃s′ ∈ S : (s, t, s′) ∈→, written s[t〉 or s[t〉s′, in which case s′ is
reachable from s through the execution of t. We denote by s• the set {s′|∃t ∈ T, s[t〉s′}.
A label t is backward enabled at s if ∃s′ ∈ S : (s′, t, s) ∈→, written [t〉s or s′[t〉s. A (firing) se-
quence σ of length n ≥ 0 on the set of labels T , denoted by σ = t1 . . . tn with t1, . . . , tn ∈ T , is
enabled at some state s0 if the successive states obtained, s0[t1〉s1 . . . [tn〉sn, satisfy sk−1[tik〉sk,
∀k ∈ {1, . . . , n}: we note s0[σ〉sn. Similarly, other notions and notations, related to sequences
and reachability in Petri nets, extend readily to labelled transition systems by replacing markings
with states.
The reachability graph RG(ζ) of a system ζ = (N,M0) can be represented by the labelled tran-
sition system TS = (S,→, T, ι) if an isomorphism γ : S → [M0〉 exists such that γ(ι) = M0

and (s, t, s′) ∈→⇔ γ(s)[t〉γ(s′) for all s, s′ ∈ S. If an lts TS is isomorphic to the reachability
graph of a Petri net system ζ = (N,M0), we say that ζ solves TS , and that it WMG-solves TS
if N is a WMG.
These notions are illustrated on the lts on the right of Figure 2, which is isomorphic to the reach-
ability graph of the WMG in Figure 1; it is thus WMG-solvable.

Vectors, semiflows and cycles. The support of a vector is the set of the indices of its non-null
components. Consider any net N = (P, T,W ) with its incidence matrix C. A T-vector is an
element of NT ; it is called prime if the greatest common divisor of its components is one (i.e.,
its components do not have a common non-unit factor). A T-semiflow ν of the net is a non-null
T-vector whose components are only non-negative integers (i.e., ν 	 0) and such that C · ν = 0.
A T-semiflow is called minimal when it is prime and its support is not a proper superset of the
support of any other T-semiflow [26].
The Parikh vector P(σ) of a finite sequence σ of transitions is a T-vector counting the number
of occurrences of each transition in σ, and the support of σ is the support of its Parikh vector,
i.e., supp(σ) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}. A (non-empty) cycle around a marking
M is a non-empty sequence σ such that M [σ〉M ; the Parikh vector of a non-empty cycle is a
T-semiflow and a non-empty cycle is called prime if its Parikh vector is prime.

Further notions. Consider a lts TS = (S,→, T, ι). For all states s, s′ ∈ S, a sequence s[σ〉s′
is called a cycle, or more precisely a cycle at (or around) state s, if s = s′. A non-empty cycle
s[σ〉s is called small if there is no non-empty cycle s′[σ′〉s′ in TS with P(σ′) � P(σ). A two-
way uniform chain of TS is a couple ({si ∈ S|i ∈ Z,∀i, j ∈ Z : i 6= j ⇒ si 6= sj}, σ ∈ T+)
such that ∀i ∈ Z, si[σ〉si+1, where T+ is the set of non-empty sequences on T .

In Figure 2, a two-way uniform chain is depicted on the left; on the right, the lts is finite, hence
has no two-way uniform chain. The lts TS is:

• totally reachable if S = [ι〉;

• reversible if ι ∈ [s〉 for each state s ∈ [ι〉, meaning the strong connectedness of this lts
when it is totally reachable;

• weakly periodic if for each couple ({si ∈ S|i ∈ N}, σ ∈ T+) such that ∀i ∈ N si[σ〉si+1

(σ is thus a non-empty sequence of labels), either si = sj ∀i, j ∈ N, or i 6= j ⇒ si 6= sj
∀i, j ∈ N;
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• strongly cycle consistent if for each sequence s[α〉s′, the existence of cycles s1[β1〉s1,
s2[β2〉s2, . . . , sn[βn〉sn and of numbers k1, k2, . . . , kn ∈ Q such that P(α) =

∑n
i=1 ki ·

P(βi) implies that s = s′;

• deterministic if, for all states s, s′, s′′ ∈ S and labels t, t′ ∈ T such that s[t〉s′ ∧ s[t〉s′′,
necessarily s′ = s′′; it is fully deterministic if for all sequences σ and σ′ such that P(σ) =
P(σ′), we have, for all states s, s′, s′′ ∈ S: s[σ〉s′ ∧ s[σ′〉s′′ ⇒ s′ = s′′;

• backward deterministic if, for all states s, s′, s′′ ∈ S and labels t, t′ ∈ T such that s′[t〉s ∧
s′′[t〉s, necessarily s′ = s′′; it is fully backward deterministic if, for all sequences σ and σ′

such that P(σ) = P(σ′), we have, for all states s, s′, s′′ ∈ S: s′[σ〉s∧ s′′[σ′〉s⇒ s′ = s′′;

• persistent if for all states s, s′, s′′ ∈ S and labels t′, t′′ ∈ T such that s[t′〉s′ and s[t′′〉s′′
with t′ 6= t′′, there exists a state s′′′ ∈ S such that s′[t′′〉s′′′ and s′′[t′〉s′′′; it is backward
persistent if for all states s, s′, s′′ ∈ S and labels t′, t′′ ∈ T such that s′[t′〉s and s′′[t′′〉s
with t′ 6= t′′, there exists a state s′′′ ∈ S such that s′′′[t′′〉s′ and s′′′[t′〉s′′.

Figure 2 illustrates some of these notions. All notions defined for labelled transition systems
apply to Petri nets through their reachability graphs. For example, a Petri net is reversible if its
reachability graph is isomorphic to a reversible lts, meaning that the initial marking is reachable
from every reachable marking.

. . .
s−2 s−1 s0 s1 s2

. . .σ σ σ σ s5

s0

s1

s3

s2
s4

t2

t1

t3 t1

t1
t3

t1
t3

Figure 2: On the left, a two-way uniform chain based on σ. On the right, a labelled tran-
sition system with states {s0, s1, s2, s3, s4, s5}, labels {t1, t2, t3} and initial state ι = s0. It
is isomorphic to the reachability graph of Figure 1. The label t2 is enabled at s0 and t3 is
backward enabled at s0. The state s1 is reachable from s0 through the execution of t2. De-
note by σ the sequence t2t3t1t1. Then, the Parikh vector of σ is P(σ) = (2, 1, 1) and its
support is supp(σ) = {t1, t2, t3}. Since s0[σ〉s0, σ is a cycle around state s0. This lts is to-
tally reachable, weakly periodic, fully deterministic and fully backward deterministic, strongly
cycle consistent, persistent, backward persistent and reversible.

The following proposition recalls properties satisfied by every Petri net system (see e.g. [27]).

Proposition 2.1. (Classical properties of Petri nets)
If ζ = (N,M0), where N = (P, T,W ), is a Petri net system, then RG(ζ) is totally reachable,
weakly periodic, fully deterministic, fully backward deterministic, and strongly cycle consistent.
Moreover it has no two-way uniform chain over the set S = NP of all the possible markings for
N , meaning that no couple ({Mi ∈ NP |i ∈ Z \ {0},∀i, j ∈ Z : i 6= j ⇒ si 6= sj}, σ ∈ T+)
exists such that ∀i ∈ Z, Mi[σ〉Mi+1.
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3. Properties of WMGs and Larger Persistent Classes

In this section, we investigate the structure and behaviour of WMGs. For that purpose, we first
recall notions and results relevant to persistent systems in Subsection 3.1. Then, in Subsection 3.2,
for the class of WMGs, we show a property of the sequences sharing the same starting state and
the same ending state, and we prove backward persistence. Finally, in Subsection 3.3, we propose
conditions for the existence of feasible sequences corresponding to a given T-vector in WMGs.

3.1. Previous Results and Notions Related to Persistence

In addition to the general properties of Petri nets mentioned in Proposition 2.1, we recall results
and notions useful to the study of persistent systems.

The following result is dedicated to WMGs and extracted from [10, 26].

Proposition 3.1. (Minimal T-semiflow and cycles in WMGs)
Let N be a connected WMG net. If N has some T-semiflow, then it has a unique minimal (hence
prime) one, that we shall denote by π. The support of π is the whole set of transitions (supp(π) =
T ) and for any other T-semiflow ν we have ν = k · π for some integer k > 0. Moreover, for
any marking M0, if the reachability graph RG(ζ) of the WMG net system ζ = (N,M0) contains
some non-empty cycle, then the Parikh vector of each small cycle of RG(ζ) equals π.

The following notion of residues is useful for the study of persistent systems.

Definition 3.2. (Residues)
Let T be a set of labels and τ, σ ∈ T ∗ two (possibly empty) sequences over this set. The (left)
residue of τ with respect to σ, denoted by τ−• σ, arises from cancelling successively in τ the
leftmost occurrences of all symbols from σ, read from left to right. Inductively: τ−• ε = τ ;
τ−•t = τ if t /∈ supp(τ); τ−•t is the sequence obtained by erasing the leftmost t in τ if t ∈ supp(τ);
and τ−• (tσ) = (τ−• t)−• σ.

For example, acbcacbc−• abbcb = cacc and abbcb−• acbcacbc = b.

We deduce the following properties of residues, stemming from the definitions of residues and
Parikh vectors.

Corollary 3.3. (Explicit formula for the Parikh vector of a residue)
For any two sequences τ and σ and transition t ∈ T , P(σ−• τ)(t) = max(0,P(σ)(t)−P(τ)(t)).

Corollary 3.4. (Disjoint support of residues)
For any two sequences τ and σ, the residues δ1 = τ−• σ and δ2 = σ−• τ have disjoint supports:
supp(δ1) ∩ supp(δ2) = ∅. Consequently, δ1−• δ2 = δ1 and δ2−• δ1 = δ2.

Proof:
For any label t, P(τ)(t) = P(σ)(t) ⇒ P(δ1)(t) = P(δ2)(t) = 0, P(τ)(t) > P(σ)(t) ⇒
P(δ2)(t) = 0 and P(τ)(t) < P(σ)(t)⇒ P(δ1)(t) = 0. In any case, t 6∈ supp(δ1) ∩ supp(δ2).

ut
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Corollary 3.5. (Equivalent extensions)
For any two sequences τ and σ, P(σ(τ−• σ)) = P(τ(σ−• τ)) and, for each transition t ∈ T , if we
denote by CP this common Parikh vector, we have CP (t) = max

(
P(σ)(t),P(τ)(t)

)
.

Proof:
For any t ∈ T , P(σ(τ−• σ))(t) is P(σ)(t) if there are more t’s in σ than in τ . On the contrary,
if there are more t’s in τ than in σ, P(σ(τ−• σ))(t) is the number of t’s in σ plus the number of
additional t’s in τ . Hence the claimed property. ut

Corollary 3.6. (Null residues)
For any two sequences τ and σ, P(σ) = P(τ)⇔ P(σ−• τ) = 0 = P(τ−• σ).

Proof:
For any t ∈ T , if there are more t’s in σ than in τ , P(σ)(t) > P(τ)(t) and P(σ−• τ)(t) > 0, and
symmetrically if there are fewer t’s in σ than in τ . The property results. ut

In the literature, the following result has proved to be a cornerstone in the study of persistence.

Theorem 3.7. (Keller’s theorem [29])
Let (S,→, T, ι) be a deterministic, persistent lts. Let τ and σ be two label sequences enabled at
some state s. Then τ(σ−• τ) and σ(τ−• σ) are both enabled at s and lead to the same state.

Applying Theorem 3.7, we obtain the following result directly.

Proposition 3.8. (Persistence and determinism)
Let TS be a persistent lts. If TS is also deterministic, then it is fully deterministic.

3.2. Equivalent Sequences and Backward Persistence

In the following, we provide new properties on the reachability graph of WMGs. Since non-
connected nets can be studied by analysing each connected component separately, we restrict our
attention to connected nets.

For the class of WMGs, we first provide in Lemma 3.10 a property of the sequences starting
from a same state s and leading to the same state s′. Then, we prove the backward persistence
of WMGs in Theorem 3.11. To achieve it, we need to define the reverse of a net and of a firing
sequence.

Definition 3.9. (Reverse nets and sequences)
The reverse of a net N , denoted by −N , is obtained from N by reversing all the arcs while
keeping the weights. We denote by σ−1 the sequence σ followed in reverse order. For example,
if σ = t1t2t2t3, then σ−1 = t3t2t2t1.
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The class of WMGs is closed under reverse, contrarily to the class of CF nets.

Lemma 3.10 highlights strong similarities in the reachability graph between two sequences shar-
ing the same starting state and the same destination state. The proof makes use of reverse se-
quences feasible in reverse WMGs.

Lemma 3.10. (Equivalent sequences in WMGs)
Let N be a connected WMG. Assume the existence of markings M,M1 and sequences σ, σ′

such that M [σ〉M1 and M [σ′〉M1. If N has no T-semiflow, then P(σ) = P(σ′). Otherwise,
either P(σ) = P(σ′), or there exists an integer k > 0 such that P(σ) = P(σ′) + k.π or
P(σ) + k.π = P(σ′), where π is the unique minimal T-semiflow of N .

Proof:
Let us assume that P(σ) 6= P(σ′). We show in the following thatN has necessarily a T-semiflow
in this case, proving the first claim by contraposition.
SinceN is a WMG, it is persistent. Defining τ = σ−•σ′ and τ ′ = σ′−•σ, applying Keller’s theorem
(Theorem 3.7), we have for some marking M2 that M1[τ〉M2 and M1[τ ′〉M2. By Corollary 3.4,
τ and τ ′ have disjoint supports, τ−• τ ′ = τ and τ ′−• τ = τ ′. Thus, applying Keller’s theorem, a
marking M3 is reached from M2 by firing τ or τ ′. Iterating this process up to any positive integer
i, some marking Mi+1 is reached from Mi with Mi[τ〉Mi+1 and Mi[τ

′〉Mi+1.

Now, in the reverse net−N , which is also a WMG, sinceM2[(τ)−1〉M1 andM2[(τ ′)−1〉M1, still
with disjoint supports, we can construct markingsM0,M−1 . . . such that ∀i ∈ Z,Mi[(τ)−1〉Mi−1
and Mi[(τ

′)−1〉Mi−1, i.e., also Mi−1[τ〉Mi and Mi−1[τ ′〉Mi. If all Mi’s are (pairwisely) differ-
ent, this leads to a two-way uniform chain for the system (N,M1), contradicting Proposition 2.1.
Consequently, for some i, j ∈ Z with i 6= j, we have Mi = Mj , and since σ, σ′ are different,
they are not both empty and τ , τ ′ cannot be both empty. Thus, N has a T-semiflow, proving the
first claim of the lemma.

For the second claim, either P(σ) = P(σ′) or P(σ) 6= P(σ′). Consider the latter case: from the
first part of the proof, taking the same notation, there is a positive integer n such that τn and τ ′n

are cycles appearing in the reachability graph of the system (N,M). Since the supports of τ and
τ ′ are not both empty, Proposition 3.1 applies: there is a unique minimal T-semiflow π, whose
support is T , and integers k, k′ ≥ 0 exist such that P(τn) = k · π and P(τ ′n) = k′ · π, where
k > 0 or k′ > 0. Since the supports of τ and τ ′ are disjoint and the support of any cycle is T ,
then either k′ = 0, τ ′ = ε, τ is a cycle and P(σ) 	 P(σ′), or k = 0, τ = ε, τ ′ is a cycle and
P(σ′) 	 P(σ). Thus, either P(σ) = P(σ′) + P(τ) = P(σ′) + q.π for an integer q > 0 or
P(σ′) = P(σ) + P(τ ′) = P(σ) + q.π for an integer q > 0. Hence the claim. ut

In [10], in the proof of Theorem 4.8, it is mentioned that each WMG is backward persistent
without a proof, based on the fact that the reverse of a WMG is still a WMG, hence a persistent
net. However, this property needs to be proved carefully: since M1[a〉M and M2[b〉M , Keller’s
theorem implies the existence of a marking M ′ reachable from (−N,M1) and (−N,M2), such
thatM ′[a〉M2 andM ′[b〉M1 in the original system; however, the reachability ofM ′ in the original
system, under the assumption of reachability for M1 and M2, is not obvious. In the following,
we show it is indeed the case.
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Theorem 3.11. (Backward persistence of WMGs)
In a connected WMG system ζ = (N,M0), let us assume that markingsM1,M2,M are reachable
and that, for two different labels a and b,M1[a〉M andM2[b〉M . Then, a markingM ′ is reachable
in ζ such that M ′[a〉M2 and M ′[b〉M1.

Proof:
Let us write N = (P, T,W ) and introduce two sequences σ1 and σ2 enabled in ζ such that
M0[σ1〉M1 and M0[σ2〉M2. From the previous remarks, we know that M ′ is reachable in the
reverse system (−N,M1), hence belongs to NP . It remains to show that M ′ is reachable in ζ.

From Lemma 3.10, either P(σ1a) = P(σ2b) or, without loss of generality, P(σ1a) = P(σ2b) +
k · π, where π is the unique minimal T-semiflow of N , with support T . Then, in either case,
b occurs at least once in σ1. For the reverse net −N , we have M1[σ−11 〉M0, and from Keller’s
theorem, we have M1[b〉M ′ and M2[a〉M ′; we also have M0[b−• σ−11 〉M ′′ and M ′[σ−11 −

• b〉M ′′.
Since b occurs in σ1, hence also in σ−11 , b−• σ−11 = ε and M ′′ = M0. Going back to ζ, we deduce
that M0[(σ−11 −

• b)−1〉M ′, thus M ′ is reachable in ζ. ut

M0

M1

M2

M ′ M

σ1

σ2

a
ba

b

M ′′

M0

M1

M2

M ′ M

σ−11

σ−11 −• b

a
ba

b

b−• σ−11 = ε M0

M1

M2

M ′ M

σ1

σ2

a
ba

b
σ

Figure 3: Illustration of the proof of Theorem 3.11: the initial assumptions are depicted on
the left, the sequences in the reverse system (−N,M) are depicted in the middle, where the
sequence leading to M ′′ from M0 equals ε, implying that M ′′ = M0. In the original system,
we deduce the reachability of M ′ from M0 on the right, with σ = (σ−11 −

• b)−1.

In order to show the sensibility of Theorem 3.11 to the hypotheses, Figure 4 shows it is not true
for FA systems (hence also for CF systems). However, the only difference in the definition of FA
and WMG systems is that the constraints on the cardinality of predecessors concerns transitions
in the first case and places in the second one.

3.3. Fireability of T-vectors in WMGs

In this subsection, we develop conditions for the existence of enabled sequences corresponding to
given Parikh vectors. For that purpose, we borrow some vocabulary from [10, 5] as follows: for
a net with incidence matrix C, we say that a marking M is potentially reachable from a marking
M0 if a T-vector ν exists such that M = M0 + C · ν. If, additionally, a sequence σ is enabled in
(N,M0) such that P(σ) = ν, we also say that ν is enabled (or fireable, or feasible, or realisable)
at M0. This is inspired by the classical state equation, stating that if M0[σ〉M in a Petri net, then
M = M0 + C ·P(σ).
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p1

p2 p3

2

t1

t2 t3

(0, 2, 0)T (1, 1, 0)T

(2, 0, 0)T

(0, 1, 1)T

(1, 0, 1)T
t2

t2

t1

t3 t2

t3

Figure 4: A Fork-Attribution (FA) system on the left and its reachability graph on the right,
where the initial marking is boxed. The FA system is not backward persistent, since the marking
(1, 1, 0)T can be reached from two predecessors by firing t2 and t3 respectively from the initial
marking and from (0, 1, 1)T , but the initial marking has no predecessor.

Lemma 3.12. (Enabled T-vectors in WMGs)
Let N = (P, T,W ) be a WMG with incidence matrix C. Let M be a marking and ν ∈ NT be
a T-vector such that M + C · ν ≥ 0. Let T1 be the support of ν, P1 = •T1 ∩ T •1 , σ′ a transition
sequence such that ν ≤ P(σ′), and M ′ be a marking such that ∀p ∈ P1 : M ′(p) = M(p). Then,
if M ′[σ′〉, there is a firing sequence M [σ〉 such that P(σ) = ν.

Proof:
By induction on the size of ν. If ν = 0, the property is clearly true. Otherwise, let t be the first
transition of T1 occurring in σ′, i.e., σ′ = σ′1tσ

′
2 with ν(ti) = 0 for each ti in σ′1.

Assume that ¬M [t〉, then for some p ∈ •t,M(p) < W (p, t). SinceM+C ·ν≥0, there is t′ ∈ •p,
t′ 6= t, such that t′ ∈ T1, and t′ is unique in •p since N is a WMG. This contradicts the fact that
M ′[σ′1t〉 since t′ does not occur in σ′1. Hence, we assume thatM [t〉M1 andM ′[σ′1〉M ′′[t〉M ′1[σ′2〉.
Since the net is a WMG, the only transitions able to modify the places in P1 are in T1. Thus,
we have M(p) = M ′(p) = M ′′(p) and M1(p) = M ′1(p) for each p ∈ P1 (no transition of T1
belongs to σ′1). Let us denote by δt the T-vector with value 1 for t, 0 elsewhere.

Hence, the induction hypothesis applies to ν − δt ≤ P(σ′2) from the markings M1 and M ′1, and
there is a firing sequence M1[σ1〉 with P(σ1) = ν − δt. Thus, the sequence σ = tσ1 with Parikh
vector ν is enabled at M . The lemma results. ut

Instantiating Lemma 3.12 with M = M ′, we deduce the following corollary.

Corollary 3.13. (Potential reachability in WMGs)
Let N = (P, T,W ) be a WMG with incidence matrix C. Let M be any marking and ν ∈ NT be
a T-vector such that M ′ = M + C · ν ≥ 0. Let σ be a transition sequence such that ν ≤ P(σ).
Then, if M [σ〉, there is a firing sequence M [σ′〉M ′ such that P(σ′) = ν.

Lemma 3.12 and Corollary 3.13 are not valid in the class of FA systems. Indeed, denoting by C
the incidence matrix of the system in Figure 4, by M0 its initial marking (0, 2, 0)T and by ν the
T-vector (1, 1, 1)T , we have: M0 = M0 +C · ν, and the sequence σ = t2t2t1t3 is enabled at M0,
with P(σ) ≥ ν. However, there is no initially feasible sequence whose Parikh vector equals ν.

We present following the notion of a maximal execution vector in order to obtain Theorem 3.15
on potentially reachable markings below.
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Definition 3.14. (Maximal execution vector in WMGs)
Let ζ be a WMG system whose set of transitions is T . We denote by maxexζ : T → N ∪ {∞}
the extended T-vector satisfying: ∀t ∈ T , maxexζ(t) is the maximal number of times t may be
executed in firing sequences of ζ, allowing the case maxexζ(t) =∞.

Theorem 3.15. (Potential reachability in WMGs, revised)
Let ζ = (N,M0) be a WMG with incidence matrix C. Let ν ∈ NT be a T-vector such that
M = M0 + C · ν ≥ 0. Let maxexζ be the maximal execution vector of ζ. Then, there exists a
firing sequence M0[σ〉M with P(σ) = ν if and only if ν ≤ maxexζ .

Proof:
Suppose thatM0[σ〉M with P(σ) = ν. Since σ can be fired atM0, we deduce, from the definition
of maxexζ , that ∀t ∈ T , maxexζ(t) ≥ P(σ)(t), thus ν ≤ maxexζ .

Conversely, suppose that ν ≤ maxexζ . Then, for each t ∈ T , since ν(t) ≤ maxexζ(t), there is
a finite firing sequence M0[σt〉 such that ν(t) ≤ P(σt)(t). By persistence and Keller’s theorem
(applied |T | − 1 times), there is a finite firing sequence M0[σ′〉 such that ∀t ∈ T : P(σt)(t) ≤
P(σ′)(t), hence ν ≤ P(σ′) and Corollary 3.13 applies. ut

In this section, we delineated several properties on the reachability graph of WMGs. In the next
section, we exploit some of these conditions, notably persistence and backward persistence, to
synthesise a WMG from a given lts, when possible.

4. Synthesis of Connected, Bounded, Weakly Live WMGs

In the domain of Petri net synthesis from labelled transition systems, the aim is to build a Petri net
system whose reachability graph is isomorphic to a given lts, when it exists. Usually, one has to
check first some necessary structural properties of the lts, in a pre-synthesis phase. In some rare
cases, such conditions have been proven sufficient for ensuring the existence of a solution (some-
times a unique minimal one) in the class considered and for driving the synthesis process [19, 20].
However, in most cases, the known synthesis methods need a combination of such necessary
structural conditions with computational checks and constructions [30, 31, 27, 32, 14, 15].

In this section, we focus on finite, totally reachable and weakly live lts, the latter property meaning
that each label of T occurs at least once in the lts (if this is not the case, one may simply drop the
useless transitions from T ). We build a procedure synthesising a connected WMG solving such
lts when possible.

First, in Subsection 4.1, we highlight necessary structural conditions of WMG-solvability, no-
tably persistence, backward persistence and the existence of specific cycles. We also build a
counter-example showing that these conditions, when satisfied, are not sufficient to ensure WMG-
solvability.

Section 4.2 recalls the bases of Petri net synthesis, i.e., the notions of regions and separation
problems, and specialises them to WMG nets.

Then, in Subsection 4.3, we highlight constraints induced by each place and we delineate two
subsets of the lts states that are particularly relevant to WMG-synthesis. By focusing the analysis
on these states, the number of checking steps is potentially reduced.
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Finally, in Subsections 4.4 and 4.5, we define systems of constraints for two kinds of lts shapes:
the cyclic case, i.e., when the lts is strongly connected (hence reversible), and the acyclic case,
i.e., when the lts does not contain any cycle. We show these two cases contain all the lts that
are solvable by a connected, bounded and weakly live WMG. Also, the number of constraints is
reduced by checking only the relevant states defined in Subsection 4.3. When these systems have
a solution, we obtain a WMG solving the lts. To extend this method to all the WMG-solvable lts,
the decomposition technique developed in [33, 34, 35] to factorise a lts into prime factors2 can
finally be exploited.

4.1. Necessary Conditions for Solvability with Connected WMGs

For a synthesis into a connected WMG to succeed, the given lts must satisfy the conditions of
Proposition 2.1, the properties described in Proposition 3.1, as well as persistence and backward
persistence, as proved in Theorem 3.11. The boundedness of the WMG obtained stems from the
finiteness of the lts. We capture part of these conditions with the following notation b and c and
explain the relationship between the existence of a cycle in the lts and property c.

Properties b and c. For any lts TS = (S,→, T, ι), we denote by:

• b (for basic) the property: TS is finite, weakly periodic, deterministic and backward deter-
ministic, persistent and backward persistent, totally reachable;

• c (for cyclic) the property: TS is strongly connected, all its small cycles have the same
prime Parikh vector π with support T , and P(α) is a multiple of π for each cycle α.

Let us consider the case in which the finite lts contains a cycle. Then, the (finite) reachability
graph of any connected and bounded WMG solving this lts contains a cycle. Thus, from Propo-
sition 3.1, the cycle contains all transitions. By Corollary 4 in [26], the system is live, and by
backward persistence, it is also reversible, implying the strong connectedness of the reachability
graph. Consequently, we have to consider only two cases: the given lts is either acyclic or is
strongly connected, the second case being considered in property c.

Without loss of generality, we assume in the sequel that the considered lts are weakly live. The
following lemma presents relationships between properties relevant to the synthesis.

Lemma 4.1. (Determinism, reversibility, cycle consistence)
Let us consider a weakly live lts TS = (S,→, T, ι).
1) If TS satisfies b, it also satisfies the full determinism and full backward determinism.
2) If TS satisfies b and is acyclic, all the sequences between any two states have the same Parikh
vector.
3) If TS satisfies b and contains a small prime cycle with support T and Parikh vector π, then
TS satisfies property c, there is a small prime cycle around each state, each arc belongs to a small
prime cycle, TS satisfies the strong cycle consistence; also, for any two states s1 and s2, there is
a sequence from s1 to s2 whose Parikh vector δ is not greater than or equal to π, and each other
sequence σ from s1 to s2 satisfies P(σ) = P(δ) + k · π for a non-negative integer k.

2An lts is prime when it is not isomorphic to a disjoint product of non-trivial sub-lts (where disjunction applies to the label
sets of the two lts) ; it then corresponds to a connected net, when solvable.



14 R. Devillers, T. Hujsa / Analysis and Synthesis of WMGs: Exact and Approximate Methods

Proof:
1) Full determinism and full backward determinism arise directly from determinism and back-
ward determinism and from persistence and backward persistence, with the aid of Proposition 3.8
applied to TS and to its reverse version.

2) If the lts is acyclic, satisfies b and, for some s ∈ S and s′ ∈ [s〉, we have s[α〉s′ as well as
s[β〉s′ with P(α) 6= P(β), so that α−• β or β−• α is non-empty (both of them may be non-empty).
Then, as in the proof of Lemma 3.10, with the aid of Keller’s theorem 3.7 and Corollary 3.4, we
can build a uniform chain s′[α−• β〉s1[α−• β〉s2 · · · and s′[β−• α〉s1[β−• α〉s2 · · · . Since the lts is
finite, there must exist positive integers i and j such that i < j and si = sj , forming a non-empty
cycle, hence a contradiction with the acyclicity.

3) In the rest of the proof, we suppose that the lts satisfies b and contains a small prime cy-
cle α around some state s ∈ S with support T . Determinism and persistence imply that cycles
can be pushed forward Parikh-equivalently, i.e., if s[α〉s ∧ s[t〉s′, then s′[α′〉s′ for some α′ with
P(α′) = P(α) (applying Keller’s theorem). Symmetrically, backward determinism and back-
ward persistence imply that cycles can be pushed backward Parikh-equivalently.

Now, consider any non-empty cycle β around some state s′ in TS . Both cycles α and β can be
pushed backward Parikh-equivalently to the initial state ι (since s and s′ are reachable from ι
by total reachability). Using Keller’s theorem, both support-disjoint sequences α−• β and β−• α
are feasible at ι and lead to some marking s0. Since (α−• β)n and (β−• α)n are feasible at ι
for every positive integer n while the lts is finite, there exists a positive integer m such that
(α−•β)m and (β−•α)m are cycles. Since the lts is also weakly periodic, deterministic and backward
deterministic, both α−• β and β−• α are cycles. Since α, β 6= ε and supp(α) = T , we have
P(α−• β) � P(α). Hence, if α−• β 6= ε, it forms a smaller cycle, contradicting the fact that α
is already a small cycle. Thus, necessarily, α−• β = ε, implying that P(β) ≥ P(α). Suppose
that P(β) is not a multiple of P(α). Denote by k the largest integer such that P(β) ≥ k · P(α)
and β′ = β−• αk 6= ε. Necessarily, P(α) 6≥ P(β′) and P(β′) 6≥ P(α), implying that P(α) 	
P(α−• β′) 	 0, where α−• β′ is a cycle, contradicting the fact that α is a small cycle. We deduce
that P(β), as well as each other Parikh vector of each non-empty cycle of the lts, is a multiple of
P(α) = π.

Hence, from total reachability and persistence, there is a small prime cycle (with Parikh vector π)
around the initial state, as well as around any state.

Since there is a small cycle with support T around each state, by Keller’s theorem each arc
can be extended into a cycle: s[t〉s′ implies there is a sequence s′[γ〉s with P(tγ) = π. As a
consequence, TS is reversible, thus strongly connected.

For any cycle s[β〉s, from the above, we have that P(β) = k · π for some integer k ≥ 0. Now,
if a sequence s[γ〉s′ is such that k1 · P(γ) = k2 · π for some positive integers k1, k2, since π is
prime k1 must divide k2; let us denote by k′ the integer k2/k1. We have P(γ) = k′ · π so that by
full determinism s = s′, hence the strong cycle consistence.

Consider a sequence s[α〉s′ in TS . Suppose that P(α) ≥ π. Since there is a small cycle γ with
Parikh vector π around s, we build a shorter sequence by applying Keller’s theorem as follows:
α−• γ is fireable at s and leads to s′. We can build such shorter sequences until we get a sequence
s[α′〉s′ with P(α′) 6≥ π and P(α) = P(α′) + k · π for some integer k > 0. If we start from
another sequence s[β〉s′, we get similarly s[β′〉s′ with P(β′) 6≥ π, and P(β) = P(β′) +h · π for
a non-negative integer h. If P(β′) 6= P(α′), then we have two cases.

In the first case, one of them is greater than the other one, without loss of generality P(β′) ≥
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P(α′), in which case, with Keller’s theorem, we can construct from s′ the cycle β′−• α′ with
P(β′−• α′) 6≥ P(π) a contradiction with the fact that the Parikh vector of every cycle of TS is a
multiple of π (with support T ).

In the second case, β′−•α′ andα′−•β′ are both non-empty with disjoint supports (see Corollary 3.4),
and these supports are smaller than T . In this second case, we construct from s1 = s′ a chain
s1[σ〉s2[σ〉s3 · · · , with σ = β′−•α′ as well as for σ = α′−• β′. Since the lts is finite, we must have
si = sj for some i < j, hence a cycle with Parikh vector n · π = (j − i) ·P(σ) for some positive
integer n, which is incompatible with the fact that the support of π is T and the support of σ does
not contain all transitions.

Thus, we get a contradiction in both cases, implying that P(β′) = P(α′). We deduce that
for every sequence σ from s1 to s2, there exists a sequence δ 6≥ π from s1 to s2 such that
P(σ) = P(δ) + k · π for some non-negative integer k. ut

Insufficiency of the necessary conditions b and c for WMG-solvability. In Figure 5, we pro-
vide an example of an FA system whose reachability graph satisfies all conditions of properties
b and c but is not WMG-solvable. Its reachability graph is represented by the lts of Figure 6.
We deduce that these conditions, when satisfied by a given lts, are not sufficient for ensuring the
existence of a solution in the WMG subclass. Indeed, in Figure 5, each possible attempt of a
construction leads to a contradiction, as detailed next.

• Non-existence of a WMG solution with six places:
To obtain a WMG solution structured as on the right of Figure 5, the following sequences
must be feasible at the initial marking M0:

t3t1 ⇒M0(p1) ≥ 3

t3t1t2t3t1t3t2t1 ⇒M0(p2) ≥ 3

t2t3t1t2 ⇒M0(p3) ≥ 9

t3t1t3t2t1t3t2t1t3t2t3 ⇒M0(p4) ≥ 9

t3t1t3 ⇒M0(p5) ≥ 6

t2t3t1t2t3t1t3t1t2 ⇒M0(p6) ≥ 12

The sequence σ = t2t3t1t3t1t3t2t1t3t3 is then feasible in such a constrained WMG but is
not enabled in the FA system ζ.

• Non-existence of a WMG solution with fewer places:
Since the previous WMG system with six places and its necessary marking are too permis-
sive, we deduce that the same contradicting sequence σ is also feasible in all less constrained
WMGs, typically obtained by removing some places while retaining the necessary initial
marking in the other places.

Checking the necessary conditions in a pre-synthesis phase.

Properties b and c (or ¬c), to be checked in the pre-synthesis phase, are similar to the properties
to be checked for CF-synthesis and are carefully analysed, formally as well as practically, in [15].
In particular, the complexity is at most quadratic in |S| and |T |.

In the next subsection, we exhibit subsets of states of the lts whose analysis is sufficient to ensure
some constraints, allowing to perform fewer operations.
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Figure 5: A Fork-Attribution (FA) system ζ is pictured on the left. Its minimal prime T-
semiflow π = (6, 3, 7) equals the Parikh vector of each small cycle of RG(ζ). The latter
is persistent and backward persistent, reversible, finite and fulfills properties b and c. The
most constrained WMG solution ζ ′ whose reachability graph could be isomorphic to RG(ζ)
is depicted on the right: its weights are directly deduced from π (using the fact that, for each
place p, C(p) ·π = 0) and, in each place, the given amount of tokens is necessary to enable the
sequences of RG(ζ). However, this necessary initial marking already enables a sequence that
is not feasible in ζ, namely σ = t2t3t1t3t1t3t2t1t3t3. Since every possible variant ζ ′′ of ζ ′ is
less constrained than ζ ′, each such ζ ′′ also enables σ. We deduce that no WMG solves RG(ζ).

4.2. Regions and Separation Problems

Following the seminal works of Ehrenfeucht and Rozenberg [36, 37] on the synthesis of elemen-
tary nets, i.e., plain nets where markings are restricted to safe ones (no more than one token may
occur in any place), the general strategy to synthesise a Petri net from a labelled transition sytem
consists in building regions of the given lts. For the synthesis of elementary nets, regions are
subsets of states in the lts that behave coherently with respect to the various labels. Its generalisa-
tion for Petri nets [30] looks like a place in a net together with its markings corresponding to the
various states of the lts.

Definition 4.2. (Regions)
A region of an lts TS = (S,→, T, ι) is a triple of functions r = (R,B,F) ∈ NS × NT × NT

such that for all (s, t, s′) ∈→, bothR(s) ≥ B(t) andR(s′) = R(s)− B(t) + F(t) hold.
Interpreting any region as a place in a Petri net, R(s) is the marking of that place corresponding
to state s (hence R(ι) corresponds to its initial marking). F(t) (for forward) corresponds to the
weight of the arc from that place to transition t, and B(t) (for backward) corresponds to the weight
of the arc from transition t to that place.

Synthesising a net then amounts to find regions solving two kinds of separation problems.

Definition 4.3. (Separation problems)
Let TS = (S,→, T, ι) be an lts. A state separation problem (SSP ) is a pair {s, s′} of states
in S with s 6= s′. It is solved by a region (R,B,F) when R(s) 6= R(s′) (meaning the region
allows to discriminate between s and s′). An event/state separation problem (ESSP ) consists of
a state s ∈ S and a label t ∈ T (s, t) such that ¬s[t〉. It is solved by a region (R,B,F) when
R(s) < B(t) (meaning the place allows to exclude a forbidden transition from some state).
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Figure 6: The reachability graph of the FA system ζ on the left of Figure 5. Its initial state is
denoted by s0 and is represented by the node larger than the other ones. The sequence σ defined
in the latter figure is indeed not feasible in this reachability graph, since the last occurrence of
t3 is not enabled from s16. This RG fulfills properties b and c, but is not WMG-solvable.

The sets SSPTS and ESSPTS contain all SSP instances of TS , and all ESSP instances of TS ,
respectively. The set of all separation problems of TS is SPTS = SSPTS ∪ ESSPTS .

In summary, from the regions theory [30], constructing a Petri net solution to the problem of
synthesis from a given lts, when such a solution exists, amounts to build a set of places (or
regions) satisfying the following necessary and sufficient conditions:

• The number of tokens in any place must remain non-negative at each reachable marking
described by a state in S.

• For each state s not allowing b, there must exist a place p such that Ms(p) < W (p, b),
where Ms is the marking associated to s (event/state separation).

• Any two different states s′, s′′ must be distinguished by a place p′ such that Ms′(p
′) 6=

Ms′′(p
′) (state separation).

In many cases (see for instance [38]) however, and in particular for the WMG-synthesis (see
Theorem 4.8 below), but also for CF-synthesis (see for example [31, 20, 15]), the last constraint,
i.e., the state separation property, arises from the other two and from the assumptions on TS .

In order to specialise these ideas to the synthesis of WMG-nets, we introduce WMG-regions by
constraining the number of ‘input’ and ‘output’ transitions, together with related notions, and a
way to construct such regions.

Definition 4.4. (WMG-Regions)
A WMG-region of an lts TS = (S,→, T, ι) is a triple of functions r = (R,B,F) ∈ NS×NT×NT

such that for all (s, t, s′) ∈→, bothR(s) ≥ B(t) andR(s′) = R(s)−B(t)+F(t) hold, together
with |{t|B(t) > 0}| ≤ 1 and |{t|F(t) > 0}| ≤ 1.
AllowingR ∈ ZS in the above defines a WMG-semi-region. A minimal WMG-region is a WMG-
region with the additional constraint that a state s exists with R(s) = 0 (expressing the absence
of frozen tokens).
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A WMG-region may be seen as a place of the kind illustrated in Figure 7 together with markings
coherent with the various states of the lts. A WMG-semi-region is similar but allowing negative
‘markings’. Without the constraints on F (number of input transitions), we get the CF-regions
exploited for instance in [15].

R
a b

F B

Figure 7: Graphical interpretation of a WMG-region.

Corollary 4.5. ((Semi-)regions, constant additions and constant divisions)
If c is a constant non-negative function on S and (R,B,F) is a WMG-region, (R+c,B,F) is also
a WMG-region and (R − c,B,F) is a WMG-semi-region. Moreover, if TS is finite, (R,B,F)
is a WMG-semi-region and c = mins∈S R(s), then (R − c,B,F) is a minimal WMG-region.
Finally, if (R,B,F) is a WMG-region and d ∈ N divides both B and F , (bR/dc,B/d,F/d) is
also a WMG-region.

In order to build a WMG-region of a finite totally reachable lts TS = (S,→, T, ι), we may choose
a, b ∈ T , F(a),B(b) ∈ N (with gcd(F(a),B(b)) = 1, unless F(a) = 0 = B(b))) andR(ι) = 0.
Then, for each s ∈ S, we choose a path ι[α〉s (for instance while constructing a spanning tree)
and define R(s) = F(a) · P(α)(a) − B(b) · P(α)(b). We check that for each arc (s, t, s′) ∈→,
if t 6∈ {a, b} then R(s) = R(s′); if t = a 6= b then R(s′) = R(s) + F(a); if t = b 6= a then
R(s′) = R(s) − B(b), and if t = a = b then R(s′) = R(s) + F(a) − B(a). It is also possible
to see F(a) and B(b) as variables, the previous constraints as a system of equations, and solve
it. If it works, we get a WMG-semi-region, and with the constant shift mins∈S R(s) explained in
Corollary 4.5 we get a minimal WMG-region.

We may now define explicitly the various kinds of separation problems.

Definition 4.6. (WMG-Separation problems)
Let TS = (S,→, T, ι) be an lts. A state separation problem {s, s′} (with s 6= s′) is (WMG-
)solved by a WMG-region (R,B,F) when R(s) 6= R(s′). An event/state separation problem
(s, t) is (WMG-)solved by a WMG-region (R,B,F) whenR(s) < B(t).
We shall denote by SSP¬WMG(TS ) the set of state separation problems that cannot be WMG-
solved for TS and by ESSP¬WMG(TS ) the set of event/state separation problems that cannot be
WMG-solved for TS .

For instance, if TS is not deterministic and s[t〉s1 ∧ s[t〉s2 for some s ∈ S and t ∈ T with
s1 6= s2, we have {s1, s2} ∈ SSP¬WMG(TS ). The same is true if s1[t〉s ∧ s2[t〉s, or more
generally if s[α1〉s1∧s[α2〉s2 with P(α1) = P(α2), or s1[α1〉s∧s2[α2〉s with P(α1) = P(α2).

These pairs {s1, s2} are not separable even with general Petri net regions, where there is no
constraint on the non-null values of B and F , but there are also cases which are separable by
general regions but not by WMG ones. This is illustrated by the lts on the bottom left of Figure 10:
{ι, s1} is separated by the regions corresponding to the places in the net on the bottom right of that
Figure, but it is easy to see that there is no WMG-region separating them (the only WMG-region
is the one with null B and F).
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In order to analyse the state separation problems, it may be observed that, thanks to Corollary 4.5,
we can consider WMG-semi-regions instead of WMG ones; hence we can fix R(ι) = 0. Any
constant shift applied to a solution will preserve the state separations, hence will allow to get
a WMG-region separating the same states. To check the (non-)separability of a pair of states
{s1, s2} with s1 6= s2, we thus have to check if a pair of transitions a and b exists (here we allow
b = a) such that the system of inequations in F(a) and B(b) in N composed by

• R(ι) = 0,

• ∀(s, x, s′) ∈→:
R(s′) = R(s) +

(
F(a) if x = a, 0 otherwise

)
−
(
B(b) if x = b, 0 otherwise

)
(this will allow to build the functionR progressively from ι),

• R(s1) 6= R(s2),

has a solution or not.

For the event/state separation problems, we cannot consider WMG-semi-regions since constant
shifts may enable new transitions. However, we can restrict our attention to minimal WMG-
regions, since, in each Petri net solution, tokens that are never used can be removed from the
initial marking while preserving the structure of the reachability graph, yielding a new solution
in which each place is eventually emptied. Hence, for each pair s ∈ S and t ∈ T such that ¬s[t〉,
we have to check if there exist a pair of transitions a and b (we allow again b = a) and a state
s′ ∈ S, such that the system of inequations in F(a) and B(b) in N composed by

• R(s′) = 0,

• ∀(s1, x, s2) ∈→:
R(s2) = R(s1) +

(
F(a) if x = a, 0 otherwise

)
−
(
B(b) if x = b, 0 otherwise

)
(this will allow to build the functionR progressively from s′),

• ∀s3 ∈ S : R(s3) ≥ 0,

• R(s) < B(t)

has a solution or not.

However, following the last part of the proof of Theorem 8 in [15], it occurs that the state sepa-
ration problems are automatically solvable if the event/state ones are solvable and if property b
is satisfied. To show this is also true for our problems, we need first to recall the notion of home
states, which we also use in the next subsection.

Definition 4.7. (Home states)
A state s̃ ∈ S of a totally reachable lts TS = (S,→, T, ι) is a home state if ∀s ∈ S : s̃ ∈ [s〉, i.e.
s̃ is reachable from each reachable state.

Theorem 4.8. (Redundant state-separation checking)
If a lts TS satisfies property b and all event/state separation problems are solved by WMG-
regions, then all the state separation problems are also solved by the same WMG-regions.

Proof:
It is not hard to see [39] that in a finite, totally reachable, deterministic, and persistent lts (hence
in particular when property b is satisfied), home states always exist.
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Since all event/state separation problems are solved by WMG-regions, we can build a WMG
system ζ with exactly the same language as the given lts (i.e., M0[α〉 in ζ ⇔ ι[α〉 in TS ).

Let us assume that some state separation problem is not solved by the constructed WMG-regions:
there are thus two different states s1 and s2 that correspond to the same marking. In that case,
let s1[β〉q1 be a path to a home state q1 of TS . Since s1 and s2 correspond to the same marking
and the languages are the same, s2[β〉q2 for some state q2 corresponding to the same marking as
q1. Since q1 is a home state, there is a path q2[α〉q1. Since the languages are the same and q1,
q2 correspond to the same marking, we have q2[α〉q1[α〉q3[α〉q4 . . ., and from the finiteness and
weak periodicity of TS , we must have q1 = q2. But then, by backward determinism, we also
have s1 = s2. ut

4.3. Constraints and Subsets of States Relevant to WMG-Synthesis

In the following, we describe some constraints that must be fulfilled in order to synthesise a
WMG. Also, we define two subsets of the states of the given lts that are sufficient to check in
order to fulfill several constraints over all states, decreasing potentially the size of the systems of
constraints to solve.

A WMG synthesis amounts to build places (or WMG-regions) of the kind schematised in Figure 8.

ma,b

pa,b
a b

Wa Wb ma,∗

pa,∗
a

Wa m∗,b

p∗,b
b

Wb

Figure 8: Possible types of places for the synthesis of a WMG (N,M0), with initial marking
ma,b = M0(pa,b), ma,∗ = M0(pa,∗) and m∗,b = M0(p∗,b).

Constraints related to places in the WMG. Note that a place pa,∗ is equivalent to a place pa,b
with Wb = 0, and a place p∗,b is equivalent to a place pa,b with Wa = 0. In a place pa,b, we can
always choose Wa and Wb relatively prime without loss of generality, with an adequate initial
marking M0. Indeed, if Wa = k ·W ′a and Wb = k ·W ′b, the place pa,b behaves the same as p′a,b
with weights W ′a and W ′b and initial marking bma,b/kc. If a and b are the same label, then we
have a single transition and the place is equivalent to either a place pa,∗, p∗,a or no place at all,
depending on the sign of the difference between Wa and Wb. In a place pa,∗, the initial marking
M0(pa,∗) may always be chosen as 0 and the weight Wa as 1. In a place p∗,b, we must have
Wb ≤ M0(p∗,b) (otherwise the lts would not be weakly live), and the weight Wb can always be
chosen as 1, with an adequate choice of the initial marking M0.

If T = ∅, TS is reduced to its initial state and the (minimal) solution is the empty Petri net.
If T = {a} is a singleton, either TS is acyclic, in the form of a single chain, and the minimal
solution is a place p∗,a, with an initial marking deduced from the length of the chain, or it is a
loop ι[a〉ι with a minimal solution reduced to a transition a without any place. Hence, in the
following, we assume without loss of generality that |T | > 1. We shall also assume that the lts to
be synthesised satisfies property b and either acyclicity or c.

M0 is the marking corresponding to the initial state ι; consider any state s ∈ S with a short-
est sequence from ι to s, meaning that no other sequence from ι to s has a smaller Parikh
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vector. By Lemma 4.1 (point 2 or 3), such a sequence exists, and all such sequences from
ι to s share the same Parikh vector ∆s. The marking corresponding to state s is given by
Ms(pa,b) = M0(pa,b) + ∆s(a) ·Wa −∆s(b) ·Wb.

Two subsets of states relevant to the WMG-synthesis. The constraints on the positivity of place
markings and on their usage to solve event/state separations are linked to two particular subsets
of states of TS : for each label x ∈ T , we define

OX (x) = {r ∈ S | r[t〉 ⇒ t = x} and NXX (x ) = {s ∈ S|¬s[x〉 ∧ ∀s′ ∈ s• : s′[x〉}

For each state s in OX (x ) (the notation stemming from “Only X”), the only arc starting at s, if
any, is labelled x. Let us consider a place pa,b and a longest sequence without a starting from
some state s. This sequence is finite since the lts is finite, and each cycle along the sequence, if
any, has support T , hence contains an a. Thus, we reach a state r either without successor (this
may only occur if the lts is acyclic) or with a single output a, hence in OX (a) in both cases, and
Ms(pa,b) ≥Mr(pa,b). As a consequence, to check that all markings of pa,b reachable from ι are
non-negative, we only have to check the states in OX (a):

(
∀r ∈ OX (a) : Mr(pa,b) ≥ 0

)
⇔(

∀s ∈ S : Ms(pa,b) ≥ 0
)
. This ensures that the initial marking of pa,b is large enough.

For each state s in NXX (x ), x cannot be executed at s (hence the first two letters NX of the
notation), but in each next state s′, if any, x is enabled (hence the last letter X of the notation).
Let us assume that a place pa,b (allowing all valid transitions, as expressed above through OX (a))
can be used to exclude performing b at some state s (we thus assume ¬s[b〉 and the initial marking
of pa,b is small enough), meaning Ms(pa,b) < Wb. If s′[t〉s with ¬s′[b〉 (which implies t 6= b),
then Ms(pa,b) ≥ Ms′(pa,b), so that the same place pa,b disables b at s′. Moreover, the longest
chains of states excluding to perform b are necessarily finite since b occurs in any non-empty
cycle and the lts is finite; hence they all end in states of NXX (b). As a consequence, in order
to exclude performing b when necessary, one only has to find, for each state r ∈ NXX (b), a
place pa,b such that Mr(pa,b) < Wb. We thus have that, for each b ∈ T ,

(
∀s ∈ S : ¬s[b〉 ⇒

∃pa,b with Ms(pa,b) < Wb

)
⇔
(
∀s ∈ NXX (b) : ∃pa,b with Ms(pa,b) < Wb

)
. We may mention

that, in some cases, a same place pa,b can be used for several states in NXX (b).

In our case, for any label x, the states in NXX (x ) have a very special shape, highlighted in the
following lemma whose proof is illustrated in Figure 9.

Lemma 4.9. (Single outputs of the states in NXX )
Let TS = (S,→, T, ι) be a lts satisfying property b. If x, a, b ∈ T , r ∈ NXX (x ), r[a〉 and r[b〉,
then a = b.

Proof:
Let us assume that r[a〉r1 and r[b〉s1 with a 6= b. Since r ∈ NXX (x ), we have r1[x〉r2 and
s1[x〉s2 for some states r2, s2. By persistence (and determinism), we also have r1[b〉s, s1[a〉s,
s[x〉s′, r2[b〉s′ and s2[a〉s′ for some s, s′. By backward persistence, we then have s′′[a〉r2 and
s′′[b〉s2 for some s′′, as well as s′′′[x〉s′′ and s′′′[b〉s1 for some s′′′. Finally, by backward deter-
minism, s′′′ = r and r[x〉, contradicting the fact that r ∈ NXX (x ). ut

If TS is acyclic, by persistence there is a unique (maximal) state without successor; it is then the
unique home state; let us call it s∞. We then have s∞ ∈ ∩x∈TNXX (x ). If TS is cyclic, there is



22 R. Devillers, T. Hujsa / Analysis and Synthesis of WMGs: Exact and Approximate Methods

r

s1 s2

r1 r2

s s′
s′′ s′′′

b

x

a
x

a

b

x
a

b
a

b

x

b

a

Figure 9: Illustration of the proof of Lemma 4.9.

no such state, but every state is a home state. In any case, we may have several states s in some
NXX (x ) and label a 6= x with s[ax〉.

Lemma 4.9 becomes wrong when backward persistence is lifted: a state r and distinct transitions
a, b, x may then exist such that r[ax〉, r[bx〉 and ¬r[x〉. This state belongs to NXX (x ), but it is
possible to obtain this situation in the reachability graph of a choice-free system, in which places
are allowed to have several inputs: two inputs a and b of some place p may be enabled by the
same state, in such a way that any firing of a or b enables the output x of p.

The next subsections are devoted to WMG-synthesis procedures, assuming that property b is
fulfilled by the lts. We define systems of inequalities that exploit the structure and properties of
WMGs we just exhibited and are consequently easier to solve than in the bounded choice-free
case [14, 15].

4.4. Computational Synthesis in the General Cyclic Case

Let TS = (S,→, T, ι) be a lts satisfying properties b and c, denoting by π the unique minimal
Parikh vector of small cycles, with support T . Each place pa,b must satisfyWa ·π(a) = Wb ·π(b),
thus we can choose Wa = π(b) and Wb = π(a) (or any proportional values3, in particular
π(b)/ gcd(π(a), π(b)) and π(a)/ gcd(π(a), π(b))), and the only parameter that still needs to be
fixed is the initial marking (plus the exact pairs a, b for which we need those places).

For each b ∈ T , we need such a place pa,b if there is a state s ∈ NXX (b) such that s[ab〉
(otherwise, there is no way to enable a b after an a when b is not directly enabled). We denote by
pred(b) the set {a ∈ T |∃s ∈ NXX (b), s[ab〉} and, for any a ∈ pred(b), NXX (a, b) = {s ∈
NXX (b)|s[ab〉}.
For each a, b ∈ T such that a ∈ pred(b), since Wa = π(b) and Wb = π(a), we have to solve the
following constraints (in M0, over the non-negative integers):

3This is the only way to define an adequate pa,b; in particular, there is no p∗,b or pa,∗ in a bounded cyclic WMG net.
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{
∀s ∈ OX (a) : M0(pa,b) ≥ ∆s(b) · π(a)−∆s(a) · π(b)

∀s ∈ NXX (a, b) : M0(pa,b) < ∆s(b) · π(a)−∆s(a) · π(b) + π(a)

This amounts to first compute

M0(pa,b) = max
s∈OX (a)

{∆s(b) · π(a)−∆s(a) · π(b)}

and then to check that, for each s ∈ NXX (a, b),

M0(pa,b) < ∆s(b) · π(a)−∆s(a) · π(b) + π(a).

If each such system of constraints is solvable, we obtain a WMG solution of TS . Otherwise,
there is no solution and the reason is known.

4.5. Computational Synthesis in the General Acyclic Case

In the acyclic case, we may first apply the factorisation techniques of [33, 34, 35] to check if the
given lts is prime (i.e., it cannot be further factorised) and thus has a chance to have a connected
solution. The weights Wa and Wb around the place pa,b are not constrained by a T-semiflow.
Thus, we may need variants of such places (differing by the weights Wa, Wb and the initial
marking). We may also need places p∗,b and pa,∗; in particular, a place p∗,b with Wb = 1 and
M0 = ∆s∞(b) excludes executing b at the final state s∞. Such a place may be redundant with
other ones, but we do not aim here at building an optimal solution (i.e., with the least number of
places): we focus on the existence of a solution and on its construction.

In this acyclic case, the enabledness of labels is described by the first set of constraints below,
using again the sufficient condition stating that the markings at states from OX (a) must be non-
negative. The last constraint expresses that the place is useful for excluding some transition from
some state.

For each b ∈ T , a ∈ pred(b) and s ∈ NXX (a, b), we have to solve the following constraints (in
M0(pa,b),Wa,Wb ∈ N):{

∀s′ ∈ OX (a) : M0(pa,b) ≥ ∆s′(b) ·Wb −∆s′(a) ·Wa

M0(pa,b) < ∆s(b) ·Wb −∆s(a) ·Wa +Wb.

To solve such a system, we can first consider the system in Wa and Wb:

∀s′ ∈ OX (a) : ∆s(b) ·Wb −∆s(a) ·Wa +Wb > ∆s′(b) ·Wb −∆s′(a) ·Wa

, i.e., ∀s′ ∈ OX (a) : [∆s(b)−∆s′(b) + 1] ·Wb > [∆s(a)−∆s′(a)] ·Wa

and then check if there exists a solution satisfying:

∆s(b) ·Wb −∆s(a) ·Wa +Wb > 0.

If each such system of constraints is solvable, we obtain a WMG solution of TS . Otherwise, no
solution exists and we know the reason.
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5. Approximate Synthesis

In case a WMG-synthesis fails, constructing an approximate solution can be an adequate option
in various situations. There are several ways to proceed.

For instance, instead of considering unlabelled Petri nets, we may shift to labelled ones, i.e., nets
where transitions have a label so that, in firing sequences as in reachability graphs, each transition
is replaced by its label. There may be various solutions, and then we may try to find one with
a minimal number of transitions. There is always a labelled Petri net solution with a maximal
number of transitions, where each state s is associated to a different place ps, with an empty
initial marking but the initial one which has one token, and each arc α = s[t〉s′ is associated to
a fresh transition tα with label t, but the result is a P-net and it may even happen that there is no
labelled WMG-solution. This is illustrated by Figure 10.

ι s1
a

a
ι s1

a

a

t1

t2

ι s1
a

b

ι s1
a

b

t1

t2

Figure 10: Above, on the left, an lts which is not WMG-solvable; on the right, a labelled
WMG-solution. Below, on the left, another lts which is not WMG-solvable; on the right, a
labelled solution which is a P-net but not a WMG one, and there is no labelled WMG-solution.

Hence, in the sequel, we exploit instead a method used in [17, 18], based on lts homomorphisms.

Definition 5.1. (Lts homomorphism)
An lts homomorphism from lts TS = (S,→, T, ι) to lts TS ′ = (S′,→′, T ′, ι′), is a partial
function f : S → S′, defined for ι with f(ι) = ι′ and (s1; t; s2) ∈→⇒ (f(s1); t; f(s2)) ∈→′
when f is defined for s1, which implies that f is also defined for s2 and for every state reachable
from any state for which f is defined. If such a function f exists, we note TS v TS ′ (via f ).

From the definition, f is defined on [ι〉 at least, and f([ι〉) ⊆ [ι′〉). With respect to [17, 18] our
definition is slightly more general since it uses partial functions instead of total ones. In the sequel,
this will allow to start from an lts TS that is not necessarily totally reachable nor deterministic. It
may be observed that v is a partial order.

5.1. WMG-solvable Over-Approximation

Starting from any lts TS = (S,→, T, ι) with T finite, we show that a finite WMG-solvable lts
TS ′ exists such that TS v TS ′. Indeed, let TSmax (T ) be the lts ({ι}, {(ι, t, ι)|t ∈ T}, T, ι)
with a single state (the initial one) and a loop around it labelled by each label in T ; with f(s) = ι
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for each s ∈ S, we trivially have TS v TSmax (T ) and TSmax (T ) has a WMG-solution with
isolated transitions t for each t ∈ T . In general, there are many WMG-solvable lts TS ′ with
TS v TS ′, which we call WMG-solvable over-approximations of TS .

The problem is then to find a minimal WMG-solvable over-approximation of TS , if possible.
Each PN-solvable lts is totally reachable and deterministic. Suppose that the latter two properties
are fulfilled by lts TS and TS ′: if TS v TS ′ and TS ′ v TS , then they are isomorphic. This
fact is important when searching a minimal over-approximation.

On the contrary, if TS is not totally reachable and TS ′ is obtained from TS by dropping states
that are not reachable from ι (together with the arcs to/from them), then trivially TS v TS ′ and
TS ′ v TS . Hence, in the process of finding a minimal WMG-solvable over-approximation of
a finite lts TS , we can always first build TS 0 from TS by dropping all the states non-reachable
from ι (then TS v TS 0).

In the rest of this section, so as to show that every finite lts TS has a unique (up to isomorphism)
minimal WMG-solvable over-approximation, we exploit (and detail a bit more) a construction
investigated in [18] that forms a series of finite lts TS i such that TS i v TS i+1 for each i ∈ N,
and if TS i = TS i+1 (up to isomorphism) then TS i is the desired minimal over-approximation.
Here, since the considered lts do not necessarily satisfy all the conditions of b, we need to consider
state separation problems in addition to event/state ones.

In Subsection 4.2, we defined WMG-regions, WMG-semi-regions and the separation problems
involved in a general synthesis process. In the rest of this section, we exploit them to compute a
minimal WMG-over-approximation of a given lts.

5.2. Fixed Point for WMG-Over-Approximations

To construct the approximation, we consider the following steps:

• starting from the given lts, we remove iteratively its WMG-unsolvable separation problems
by merging states and adding new arcs to the lts, thus building a sequence of lts;

• from a previous result, we derive that this sequence leads to a fixed point, which is the
minimal WMG-solvable over-approximation.

From the (finite) lts TS 0 defined as the given finite TS without its non-reachable states, we define
next a series of WMG-over-approximations {TS i | i ∈ N}.

First, let T̃S i = MergeWMG(TS i) be TS i where all pairs of states {s1, s2} ∈ SSP¬WMG(TS i)
are merged. The result is fully forward and backward deterministic, as well as strongly cycle
consistent; it is also finite and over-approximates TS i. This may suppress event/state separation
problems, but some may remain and new ones may occur, rendering the built lts non-WMG-
solvable.

Next, let TS i+1 = ExpandWMG(T̃S i) be T̃S i where one adds a fresh state s′ for each (s, t) ∈
ESSP¬WMG(T̃S i), with an arc (s, t, s′). This wipes out the cases where an arc is missing while
over-approximating T̃S i, but may introduce new WMG-unsolvable state separation problems.

We then specialise4 Theorem 5.4.4 of [18] (see also [17]):

4Unfortunately, this does not apply to choice-free synthesis, since the result requires that the considered Petri net subclass
is stable with respect to complement regions (details on complement regions can be found in [30, 17, 18]). This works for
WMGs, but not for CF nets. In the latter case, the chains may be infinite, leading to unbounded nets.
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Theorem 5.2. (Minimal WMG-solvable over-approximation)
Given a finite lts TS , the chain of lts thus defined reaches a fixed point which is the unique-up-
to-isomorphism finite minimal WMG-solvable over-approximation of TS .

Example. Let us consider the lts TS in Figure 11. State s5 is not reachable from ι, hence it is
dropped in TS 0. In TS 0, s6 cannot be separated from s2, hence they are merged in T̃S 0. In
T̃S 0, b cannot be WMG-separated from s1, as well as a from s4: this yields the expansion TS 1.
There is no unsolvable WMG state separation problem in TS 1, which is then the same as T̃S 1.
In the latter, b cannot be WMG-separated from s8, as well as a from s7: this yields the expansion
TS 2. In TS 2, two new unsolvable state separations arise, leading to merge s9 with s3 and s10
with s1. No more (state or event/state) separation problems arise from now on, so that we reach
the wanted fixed point TS 3. The corresponding WMG-solution is shown on the bottom right.
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Figure 11: Construction of the minimal WMG-over-approximation TS 4 of TS and the corre-
sponding WMG-solution.
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6. Conclusions and Perspectives

Weighted marked graphs (WMGs) form a well-known subclass of Petri nets with numerous real-
life applications. These nets have been extensively studied in previous works, leading to strong
theoretical results.

For this class, we obtained new behavioural properties of WMGs expressed on their reachability
graph, including backward persistence and strong similarities between the sequences sharing the
same starting state and the same destination state. We also delineated necessary structural con-
ditions that must be fulfilled by a labelled transition system to be WMG-solvable. We showed
however that these necessary conditions are not sufficient.

Using these properties, we designed a general and efficient synthesis procedure dedicated to the
WMG class, specialising previous methods devised for choice-free nets.

Finally, in case no WMG solves the given lts, we showed the existence and described the construc-
tion of a minimal WMG-solvable over-approximation of the lts. This allows our general synthesis
method to create a WMG whose reachability graph minimally includes the specification.

A perspective is to develop additional properties of WMGs in order to enhance the pre-synthesis
phase, allowing to discard more non-solvable systems promptly. Ideally, such properties should
characterise the WMG-solvable labelled transition systems in a purely structural way, in the spirit
of the methods designed for plain marked graphs and T-systems in [19, 20].
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